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Abstract 

Competition between scientific hypotheses is not always a matter of mutual 

exclusivity. Consistent hypotheses can compete to varying degrees either directly or 

indirectly via a body of evidence. We motivate and defend a particular account of hypothesis 

competition by showing how it captures these features. Computer simulations of Bayesian 

inference are used to highlight the limitations of adopting mutual exclusivity as a simplifying 

assumption to model scientific reasoning, particularly due to the exclusion of hypotheses that 

may be true. We end with a case study demonstrating the subtleties involved in hypothesis 

competition in scientific practice. 

 

  

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ulster University's Research Portal

https://core.ac.uk/display/287021882?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Copyright Philosophy of Science 2017. Preprint (not copyedited or formatted). Please use 

DOI when citing or quoting. 

 

1. Introduction 

In formal philosophy of science, certain simplifying and idealizing assumptions are often 

required in order to make questions tractable.  The problem is that such assumptions can also 

get in the way, confounding results derived from our formal models.  Results are confounded 

when they depend upon a part of the model that does not accurately portray the target.  Here 

is a simple, toy example:  even an ornate, highly detailed model of Cathédrale Notre-Dame 

de Paris will not represent every crack, patch, and cranny in the structure’s brick walls.  To 

conclude from this model that the actual Cathedral’s bricks are somewhat glossy and smooth 

would be a mistake; an idealized feature of the model will have confounded your “results” 

should you conclude this. 

The nature of the idealizing assumption(s) made by one’s formal model naturally 

depends on the case.  However, it is striking how often one particular idealizing assumption 

shows up (implicitly or explicitly) in formal philosophy of science, namely, the assumption 

that competing scientific hypotheses are mutually exclusive.  This assumption is the subject 

of our paper. 

Many philosophers of science may not think of this as an idealizing assumption.  

They might think that this feature of a formal model gets the target right—at least often 

enough for it not to be a worrisome confounder.  We accordingly argue in Section 2 that 

competition is often not a simple matter of mutual exclusivity.  If the mutual exclusivity 

assumption has an appropriate general place in formal philosophy of science then, it is as a 

simplifying assumption allowing questions about competing hypotheses to be tractable, not 

as an accurate portrayal of reality.  Highlighting the various ways in which consistent 

hypotheses may compete allows us to uncover two desiderata for a fuller and more accurate 

explication of hypothesis competition.  In Section 3, we use these two desiderata to motivate 

and defend a particular formal explication of hypothesis competition.  In Section 4, we use 

computer simulations and this formal explication to explore the extent to which, and 

conditions under which, this idealizing assumption can confound work in formal philosophy 

of science.  We focus on the particular case of the study of Bayesian inference and its 

reliability.  In Section 5, we turn briefly to a case study to highlight further the need for a 

more careful treatment of hypothesis competition in the philosophy of science.  We suggest 

that our explication provides the formal philosopher of science with a far more useful and 

accurate representation of what it takes for hypotheses to compete in actual scientific 

practice. 

 

2. Desiderata for Hypothesis Competition 

Competition between scientific hypotheses is very often not a matter of mutual exclusivity.  

It is easy to find actual cases of consistent scientific hypotheses being treated as competitors.  

There are two distinct ways in which consistent hypotheses may compete, each suggestive of 

senses in which a satisfactory account of hypothesis competition must part from the simple 

mutual exclusivity idea. 
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First, hypotheses that are not strictly speaking mutually exclusive may still do much 

to directly rebut each other; they may be logically consistent even if they nearly rule each 

other out.  To give a simple example, a detective might judge it very unlikely that Smith and 

Jones carried out the robbery together because he knows they are sworn enemies. The upshot 

is that hypotheses may compete to varying degrees corresponding (at least in this case) to the 

extent that they disconfirm one another—how close they come to entirely ruling each other 

out. This gives rise to our first desideratum: 

 

Desideratum 1.  Hypothesis competition is a matter of degree. 

 

 Second, hypotheses may compete with one another, even in cases where they are not 

only consistent but perfectly compatible or even supportive of one another.  There is no 

direct conflict between them in such a case, but they may nonetheless compete indirectly, via 

some body of evidence.  Hypotheses compete in this way to the extent that adopting either 

hypothesis undermines the support that the relevant body of evidence provides for the other. 

As an illustration of this from science, consider the ongoing debates about the mass 

extinction at the Cretaceous-Paleogene (K-Pg) boundary which brought an end to the 

dinosaurs around 66 million years ago.  The leading hypothesis is the occurrence at this time 

in history of a bolide impact (Alvarez et al. 1980; Schulte et al. 2010); but other contending 

hypotheses include massive volcanism, climate change, and sea level regression.  Overall, a 

vast number of further hypotheses have been proposed (Benton 1990).  Cleland (2002, 2011) 

argues that historical science proceeds by i) the proliferation of rival hypotheses to explain a 

puzzling body of traces, and ii) a search for a ‘smoking gun’ to discriminate between them.  

Many scientists claim that evidence relating to the K-Pg boundary—including the iridium 

anomaly and the existence of impact ejecta such as shocked quartz and spherules, as well as 

the discovery of the Chicxulub crater on the Yucatan peninsula in Mexico
 
(Hildebrand et al. 

1991) and evidence that ejecta at K-Pg boundary sites show a distribution pattern related to 

the distance from the crater (Schulte et al. 2010)—provide a smoking gun for the impact 

hypothesis. 

Without considering the indirect pathway to competition, one might legitimately be 

led to question whether any of these hypotheses are really rivals (or competitors) at all—as 

Cleland’s approach requires.  Certainly there is no logical incompatibility between the 

hypotheses mentioned above; any philosopher of science who explicates competition simply 

as mutual exclusivity will not be accurately representing this feature of the scientific debate.
1
  

                                                      
1
 It is easy to think of distinct hypotheses, parallel to the above, that would be mutually 

exclusive.  For example, instead of simply positing the historic occurrence of a bolide 

impact, massive volcanic activity, etc., parallel hypotheses might state that the primary cause 

of mass extinction at the K-Pg boundary was bolide impact, or volcanic activity, etc.  The 

primary cause could not be more than one of these events, and so one might argue that 

competition in this case really does come down to mutual exclusivity.  We think this 
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But note that hypotheses such as impact and volcanism are also not plausibly thought of as 

direct competitors at all. It is much more reasonable to treat them as independent before any 

evidence is taken into account since plausibly they do little or nothing to rebut each other 

directly to any significant degree.
2
  Rather, insofar as there is competition between these 

hypotheses, it comes indirectly by way of the body of evidence for which they both 

individually claim to account.  

The upshot is that a full account of hypothesis competition needs to take into account 

two different ways in which scientific hypotheses can compete.  Figure 1 provides a visual 

representation of the two distinct “pathways to hypothesis competition.”  Solid lines with 

arrows represent logical (deductive or inductive) relationships between propositions.  In (a), 

the absence of an arrow between H1 and H2 means that there is no direct support or 

disconfirming relation between these hypotheses.  This means that H1 and H2 can only 

compete indirectly via E as indicated by pathway 1.  In (b), H1 and H2 have a direct bearing 

on one another and so they may also compete directly if pathway 2 describes a disconfirming 

rather than supporting relation.  

The foregoing discussion gives rise to our second desideratum: 

 

Desideratum 2.  There are two pathways to hypothesis competition: a direct pathway and 

an indirect pathway via the evidence. 

 

                                                                                                                                                                     
argument would be misguided for many reasons, including the following two:  (1) So stated, 

the hypotheses imply the occurrence of the explanandum (the mass extinction), and so they 

all account maximally well for the explanandum in this sense.  However, the hypotheses that 

scientists actually have in mind in this case are evaluated for how well they support the 

explanandum, some being perceived as more or less capable of accounting for the mass 

extinction.  (2) While these parallel, mutually exclusive hypotheses surely do compete, it 

remains the case that the original, consistent hypotheses we (and working scientists) have in 

view can also clearly compete—for one thing, they can do so when they undermine each 

other’s evidential support.  By replacing consistent competing hypotheses with parallel, 

mutually exclusive hypotheses, we are ignoring—not illuminating—the notion of hypothesis 

competition at work in such cases. 
2
 Later we will draw attention to some recent work suggesting a positive dependence. 
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Figure 1.  In (a), H1 and H2 may only compete indirectly via Pathway 1; in (b), H1 and H2 

have the potential to compete directly via Pathway 2 or indirectly via Pathway 1. 

 

 

3. Direct and Indirect Competition 

In (Glass and Schupbach 2017), we develop and defend a formal explication of hypothesis 

competition that satisfies both of the above desiderata.  In this section, we motivate the use of 

this measure explicitly in terms of direct and indirect pathways to competition and we 

reiterate some important implications of competition explicated in this way. 

Our explication is Bayesian only in the sense that it is probabilistic, and uses the 

relevant probabilities as formal representations of rational degrees of belief (or credences) for 

a particular epistemic agent.  Since these are probabilities, they are assumed to satisfy the 

standard Kolmogorov axioms; rational agent credences are thus at least synchronically 

coherent in our framework.  Setting up our minimal Bayesian framework, if A is an algebra 

of propositions (including the tautology and closed under negation and disjunction), then 

probability function Pr: A→[0,1] assigns the degrees of belief that an ideal Bayesian agent 

has in any and all members of A.  The degree to which one proposition (incrementally) 

confirms another is measured differently by distinct candidate measures.  Our favored 

measure is the “log-likelihood” measure (and other measures ordinally equivalent to it).  For 

any three propositions x, y, z ∈ A, this measure calculates the degree to which x confirms y, 

given z, as follows: 

Cl(x,y|z) = log [
Pr(x|y&z)

Pr(x|¬y&z)
] 

The degree to which proposition x disconfirms y, given z, on the other hand is defined as the 

degree to which x confirms ¬y, given z: 
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Cl(x,¬y|z) = log [
Pr(x|¬y&z)

Pr(x|y&z)
] = −Cl(x,y|z) 

Using Cl, our measure of the overall (or “net”) degree to which H and Hʹ compete 

with respect to E may be represented as the average degree to which H and Hʹ disconfirm 

each other in light of E: 

 

Comp(H,H'/E) = [Cl(H,¬H'|E)+Cl(H',¬H|E)]/2 
 

Comp takes increasingly positive values to the extent that H and Hʹ compete (or disconfirm 

one another in light of E), decreasingly negative values to the extent that H and Hʹ support 

(or confirm) one another, and value 0 exactly when H and Hʹ are irrelevant to one another in 

light of E (this happens, e.g., when the direct and indirect competition or support between H 

and Hʹ with respect to E exactly cancel each other out).
3
 

We may demonstrate that Comp captures both pathways to competition by showing 

that it is a simple combination of separate measures of degree of direct and indirect 

competition respectively.  Recall that competition between hypotheses H and Hʹ (where H, 

Hʹ ∈ A) occurs along the direct pathway to the extent that these hypotheses confirm the 

falsity of each other (i.e., “disconfirm” each other).  In our previous paper, we used degree of 

disconfirmation Cl(H′,¬H) to represent the degree to which Hʹ directly rebuts H and used 

this as part of our account of competition. Here we extend this by using Cl to formalize 

degree of direct competition Comp
D

 as the average degree to which either hypothesis 

confirms the negation of the other: 

 

CompD(H,H') = [Cl(H',¬H)+Cl(H,¬H')]/2 = (log [
𝑃𝑟(𝐻′|¬𝐻)

𝑃𝑟(𝐻′|𝐻)
] + log [

𝑃𝑟(𝐻|¬𝐻′)

𝑃𝑟(𝐻|𝐻′)
]) /2 

 

Next, recall that competition between H and Hʹ occurs along the indirect path, by way 

of some body of evidence E ∈ A, to the extent that these hypotheses undermine the support 

that E provides for each other.  To measure this extent, one must compare the degree to 

which E confirms either hypothesis (without consideration for the other hypothesis) with the 

degree to which E confirms that same hypothesis after the alternative hypothesis is accepted 

or assumed.  For example, E confirms H to degree Cl(E,H); given Hʹ, however, E confirms H 

to degree Cl(E,H|H').  In our previous paper, we defined the extent to which Hʹ turns E 

against H by subtracting the latter from the former: Cl(E,H)-Cl(E,H|H').  Here we use this 

                                                      
3
 Comp lies in the range [-∞,+∞].  For a measure of competition with range [−1,1], one can 

instead opt for measure [C
k
(H,¬H'|E)+Ck(H',¬H|E)]/2, which uses the ordinally equivalent 

“Kemeny-Oppenheim” measure of incremental confirmation: 

Ck(x,y|z) = [Pr(x|y&z)-Pr(x|¬y&z)]/[Pr(x|y&z)+Pr(x|¬y&z)]. 
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approach to define degree of indirect competition Comp
I
as the average degree to which the 

hypotheses turn E against one another: 

 

CompI(H,H'/E) = [Cl(E,H)-Cl(E,H|H')+Cl(E,H')-Cl(E,H'|H)]/2 

= (𝑙𝑜𝑔 [
𝑃𝑟(𝐸|𝐻)

𝑃𝑟(𝐸|¬𝐻)
] − 𝑙𝑜𝑔 [

𝑃𝑟(𝐸|𝐻&𝐻′)

𝑃𝑟(𝐸|¬𝐻&𝐻′)
] + 𝑙𝑜𝑔 [

𝑃𝑟(𝐸|𝐻′)

𝑃𝑟(𝐸|¬𝐻′)
]

− 𝑙𝑜𝑔 [
𝑃𝑟(𝐸|𝐻′&𝐻)

𝑃𝑟(𝐸|¬𝐻′&𝐻)
]) /2 

 

The desired result—that Comp captures both pathways to competition—then follows, as 

expressed in the following theorem: 

 

Theorem 1.  Comp(H,H'/E) = Comp
D

(H,H') + Comp
I
(H,H'/E).4 

 

Using our measure, we can make more precise sense of qualitative judgments of 

hypothesis competition.  We explicate the judgment that H and Hʹ compete with respect to E 

(to some degree) as a positive degree of competition, Comp(H,H'/E)>0.  Since positive 

degree of competition corresponds to the case in which H and Hʹ disconfirm one another in 

light of E (and ignoring cases in which Pr(H) or Pr(Hʹ) is zero), we may also state the 

(qualitative) condition for competition using the following probabilistic inequality 

 

Pr(H|Hʹ&E)<Pr(H|E)     (1)  

 

In an earlier study on “explaining away,” Glass (2012, theorem 1) also proved that the 

following inequality provides another equivalent condition for competition: 

 

log [
Pr(E│H&H') ×Pr(E|¬H&¬H')

Pr(E│H&¬H') ×Pr(E|¬H&H')
] +log [

Pr(H|H') ×Pr(¬H|¬H')

Pr(H|¬H') ×Pr(¬H|H')
] < 0 

(2)  

 

We can reapply (2) for our own purposes here, giving us another statement of the criterion 

for competition (to some degree).  (2) turns out to be especially useful insofar as it, unlike the 

                                                      
4
 Proof. [This follows from theorem 1 in Glass and Schupbach (2017).] 

Comp
D

(H,H') + Comp
I
(H,H'/E)    

 = (log [
𝑃𝑟(𝐻′|¬𝐻)

𝑃𝑟(𝐻′|𝐻)

𝑃𝑟(𝐸|𝐻)

𝑃𝑟(𝐸|¬𝐻)

𝑃𝑟(𝐸|¬𝐻&𝐻′)

𝑃𝑟(𝐸|𝐻&𝐻′)
] + log [

𝑃𝑟(𝐻|¬𝐻′)

𝑃𝑟(𝐻|𝐻′)

𝑃𝑟(𝐸|𝐻′)

𝑃𝑟(𝐸|¬𝐻′)

𝑃𝑟(𝐸|¬𝐻′&𝐻)

𝑃𝑟(𝐸|𝐻′&𝐻)
]) /2 

 = (log [
𝑃𝑟(𝐻′|¬𝐻) 𝑃𝑟(𝐸|¬𝐻&𝐻′)

𝑃𝑟(𝐸|¬𝐻)

𝑃𝑟(𝐸|𝐻)

𝑃𝑟(𝐻′|𝐻) 𝑃𝑟(𝐸|𝐻&𝐻′)
] + log [

𝑃𝑟(𝐻|¬𝐻′) 𝑃𝑟(𝐸|¬𝐻′&𝐻)

𝑃𝑟(𝐸|¬𝐻′)

𝑃𝑟(𝐸|𝐻′)

𝑃𝑟(𝐻|𝐻′) 𝑃𝑟(𝐸|𝐻′&𝐻)
]) /2 

 = (log [
𝑃𝑟(𝐻′|¬𝐻&𝐸)

𝑃𝑟(𝐻′|𝐻&𝐸)
] + log [

𝑃𝑟(𝐻|¬𝐻′&𝐸)

𝑃𝑟(𝐻|𝐻′&𝐸)
]) /2 = [Cl(H',¬H|E)+Cl(H,¬H'|E)]/2 = Comp(H,H'/E). 
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other qualitative criteria, separates independent terms (the two summands) relating to the 

indirect and direct pathways by which competition can occur respectively.
5
 

Figure 2 displays degree of competition as a function of the likelihoods for the 

hypotheses on their own—i.e. Pr(E|¬H&Hʹ) and Pr(E|H&¬Hʹ)—in a scenario where the 

hypotheses are independent before the evidence is taken into account, corresponding to the 

absence of direct competition as displayed in figure 1(a), and to the case where the second 

term in (2) is zero.  The values of the probabilities Pr(H|E) and Pr(H|Hʹ&E) are also shown in 

the figure.  For the limiting case in which the likelihoods are zero, the first term in (2) is 

infinite and so the degree of competition is minimal.  Essentially, this means that neither 

hypothesis can account for the evidence on its own, since either hypothesis alone (i.e., 

conjoined with the negation of the other hypothesis) implies the falsity of E.  Furthermore, 

when the likelihoods are zero, Pr(H|Hʹ&E) = 1 and so given E, Hʹ guarantees the truth of H.  

As the likelihoods increase, so does the degree of competition until it reaches zero when 

Pr(H|Hʹ&E) = Pr(H|E), which occurs at a value of the likelihood close to 0.25.  This 

corresponds to the first term in (2) being zero.  For greater values of the likelihoods, 

Pr(H|Hʹ&E) < Pr(H|E) and so the degree of competition is positive.  This corresponds to 

competition along pathway 1. 

Figure 3 shows another scenario similar to the previous one, but where there is a 

direct dependence between the hypotheses corresponding to figure 1(b). Negative 

dependence between the hypotheses, which occurs for Pr(Hʹ|H) < 0.1, gives rise to 

competition via pathway 2 and so adds to the competition due to pathway 1. For sufficiently 

large positive dependence the negative contribution via pathway 1 is cancelled out via the 

contribution from pathway 2 resulting in no competition.  This occurs at Pr(Hʹ|H) = 0.3 when 

Pr(H|Hʹ&E) = Pr(H|E) and as the dependence between Hʹ and H increases further the degree 

of competition becomes lower still. 

 

                                                      
5
 That is, if a probabilistic model is specified in terms of the conditional probabilities 

appearing in (2), then the two summands in (2) can be varied independently. 
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Figure 2.  Degree of competition (solid line) as a function of the likelihoods Pr(E|H&¬Hʹ) = 

Pr(E|¬H&Hʹ), when Pr(H) = Pr(Hʹ) = 0.1, Pr(E|H&Hʹ)= 0.8 and Pr(E|¬H&¬Hʹ) = 0.08. Also 

shown are Pr(H|Hʹ&E) (dashed line) and Pr(H|E) (dotted line). Note that here we use an 

ordinally equivalent measure of competition with range [-1,1] (constructed using Ck as 

described in footnote 3). 
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Figure 3. Degree of competition (solid line) as a function of dependence between hypotheses. 

Pr(Hʹ|H) varies from 0 to 1 while Pr(Hʹ|¬H) is fixed at 0.1; thus, dependence is negative for 

Pr(Hʹ|H) < 0.1 and positive for Pr(Hʹ|H)> 0.1. Apart from Pr(Hʹ) other probabilities are as 

defined in figure 2 except that now Pr(E|H&¬Hʹ) and Pr(E|¬H&Hʹ) are fixed at 0.5. Also 

shown are Pr(H|Hʹ&E) (dashed line) and Pr(H|E) (dotted line).  Note that here we use an 

ordinally equivalent measure of competition with range [-1,1] (constructed using Ck as 

described in footnote 3). 

 

 

4. Computer Simulations of Bayesian inference 

In Section 2, we argued that the mutual exclusivity assumption, though common in formal 

philosophy of science research, is often not true to scientific practice (the object of 

philosophy of science research).  At best then, this assumption is a relatively innocuous 

idealizing assumption.  At worst, it perniciously confounds a wide swath of work in 

contemporary philosophy of science.  In this section, we present some initial research into the 

important questions of just how harmful this idealizing assumption can be to formal results, 

and under what conditions. 

In order to investigate the impact of incorrectly assuming that hypotheses are 

mutually exclusive on making inferences, we carried out computer simulations.  The idea is 

first to define a probability model, which we will stipulate as the correct model, Pr, involving 

H, Hʹ and E, where H and Hʹ are not assumed to be mutually exclusive.  We then modify this 

model to obtain what we will call the mutually exclusive probability model, PrX, where H 

and Hʹ are treated as mutually exclusive.  The next step is to make inferences using the 
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mutually exclusive model and determine how good they are by comparing them with 

inferences made using the correct model.  Inferences are made by selecting the most probable 

hypothesis given E, so essentially we evaluate the mutually exclusive model by determining 

how often it identifies the same hypothesis as the correct model—or how often it correctly 

identifies the most probable of potentially competing hypotheses. Here we focus on how the 

results depend on the direct competition between the two hypotheses and so the above steps 

are repeated for different values of direct competition. 

The first step is to define the correct probability model, Pr, for a given degree of 

direct competition between the hypotheses.  Since the measure of direct competition, CompD, 

lies in the range [-,], to obtain a measure with range [−1,1], we instead use the measure 

[C
k
(H,¬H'|E)+Ck(H',¬H|E)]/2, which uses the ordinally equivalent “Kemeny-Oppenheim” 

measure of incremental confirmation, 

Ck(H',¬H) = [Pr(Hʹ|¬H) − Pr(Hʹ|H)]/ [Pr(Hʹ|¬H) + Pr(Hʹ|H)].  For a given value of 

direct competition, d, we can express d as (d1 + d2)/2, where d1 = (b1 - a1)/(b1 + a1), where a1 

= Pr(H|Hʹ) and b1 = Pr(H|¬Hʹ) and d2 = (b2 - a2)/(b2 + a2), where a2 = Pr(Hʹ|H) and b2 = 

P(Hʹ|¬H).  For a positive value of d, (a similar approach is adopted for negative values), d1 

can then be selected randomly from a uniform distribution over the interval (max(2d - 1),0), 

min(2d,1)) and d2 then set to 2d – d1.  Pr(H) is selected randomly.  With Pr(H) fixed, we can 

obtain values for Pr(Hʹ), a1, b1, a2 and b2—since (i) Pr(H) = a1Pr(Hʹ) + b1Pr(¬Hʹ), where b1 = 

a1(1 + d1)/(1 - d1), (ii) there are corresponding expressions for Pr(Hʹ) and b2, and (iii) a1Pr(Hʹ) 

= a2Pr(H).
6
 

As was the case for figure 3, we select values of likelihoods so that Pr(E|¬H&¬Hʹ) < 

min[Pr(E|H&¬Hʹ), Pr(E|¬H&Hʹ)] ≤ max[Pr(E|H&¬Hʹ), Pr(E|¬H&Hʹ)] < Pr(E|H&Hʹ).  Of 

course, other assignments of likelihoods are possible, but this reflects the situation where the 

evidence is more likely if either one of the hypothesis is true rather than if neither is true and 

it is more likely still if both hypotheses are true. It also ensures that both hypotheses are 

confirmed by E, i.e. Pr(H|E) > Pr(H) and Pr(Hʹ|E) > Pr(Hʹ) in the case where H and Hʹ are 

independent. 

Now that the correct probability model has been specified, it needs to be modified to 

obtain the mutually exclusive probability model, PrX.  We define prior probabilities for H and 

Hʹ so that PrX(HvHʹ) = PrX(H) + PrX(Hʹ) = Pr(HvHʹ), which means that the total area of the 

probability space taken up by the hypotheses remains the same.  This is achieved by reducing 

each correct prior Pr(Hi) by multiplying it by the same factor Pr(HvHʹ) / (Pr(H)+Pr(Hʹ)).  

Apart from that, we simply set PrX(E|H) = PrX(E|H&¬Hʹ) = Pr(E|H&¬Hʹ), PrX(E|Hʹ) = 

PrX(E|¬H&Hʹ) = Pr(E|¬H&Hʹ) and PrX(E|¬H&¬Hʹ) = Pr(E|¬H&¬Hʹ). 

                                                      
6
 There are constraints on how Pr(H) is selected to guarantee a coherent probability 

distribution, but this can be implemented simply by selecting Pr(H) from the interval (0,1) 

until the distribution is coherent. The value of Pr(H) does not suffice to determine the value 

of Pr(Hʹ) and hence a2 and b2 in cases where H and Hʹ are independent and so d = d1 = d2 = 0. 

In this case the value of Pr(Hʹ) is also selected randomly from (0,1). 
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With the two models now in place we find the hypothesis that maximizes PrX(Hi|E).  

We compare it with the hypothesis that maximizes Pr(Hi|E) and, if they match, count the 

iteration as a success for the mutually exclusive model.  By repeating this process (10
7
 times 

in the computer simulations that were carried out) of selecting the models and maximizing 

the posterior probability, we are able to determine the accuracy of the mutually exclusive 

approach as the percentage of cases where it is successful.  As noted earlier, this process is 

then repeated for different values of direct competition between H and Hʹ. 

Clearly, when the mutually exclusive approach is used, only one inference can be 

made, but in reality (as described here by the correct model) both hypotheses could be true 

unless the degree of competition is maximal.  To get an idea of how much of a weakness this 

is in the mutually exclusive approach, we also obtained the accuracy by considering the 

number of successes for hypotheses whose posterior probability in the correct model is 

greater than 0.5 as a percentage of the total number of such hypotheses. This can be 

expressed as  

 
Total number of correctly identified hypotheses with probability greater than 0.5

Total number of hypotheses with probability greater than 0.5
 × 100% 

 

where the probability refers to the posterior distribution Pr(|E) of the correct model. 

Results are presented in figure 4.  Consider first of all the results for the general case 

(solid line).  It is clear that as the degree of direct competition approaches its maximal value 

of 1 the accuracy of making inferences using the mutually exclusive model approaches 

100%.  This makes sense since maximal competition corresponds to mutual exclusion.  

While the accuracy of the mutually exclusive approach is greater than 97% for degrees of 

competition above about 0.5, in general the accuracy decreases as degree of direct 

competition decreases and is at 70% for values close to -1, which corresponds to the case 

where the hypotheses, far from competing, entail each other.  While this seems like a 

reasonable level of accuracy, it must be remembered that there are only two hypotheses to 

choose from and so a random guess would achieve an accuracy of 50%.  Note that a degree 

of competition of 0.5 corresponds to cases in which each hypothesis is on average still three 

times as likely to be true if the alternative hypothesis is false, Pr(Hi|¬Hj) = 3 ×Pr(Hi|Hj) 

while a degree of direct competition of 1/3 corresponds to the case where each is on average 

still twice as likely.  In such cases, there remains a substantial relation of negative relevance 

between the hypotheses, and thus reasoners may still be strongly inclined to think of them as 

competitors.
7
   

                                                      
7
 Note that for both sets of results in figure 4 the results for a zero degree of competition are 

higher than the general trend might suggest, which is presumably related to the fact that there 

is an independence relationship present in this case that is absent in the other cases. Because 

of this independence the probability distribution had to be selected in a different way in this 

case as mentioned in footnote 6. 
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Figure 4.  Accuracy of inferences made using the mutually exclusive model as a function of 

the degree of direct competition between the hypotheses. Results are presented for the 

general case (solid line) and for the case where all hypotheses with a posterior probability 

greater than 0.5 are taken into account in determining accuracy (dashed line).   

 

 Now consider the results that take into account cases where both hypotheses H and Hʹ 

have a posterior probability greater than 0.5 according to the correct model (dashed line in 

figure 4).  When the degree of competition is 1 the hypotheses cannot both have probability 

greater than 0.5, i.e. they cannot both be more likely to be true than false.  Hence for high 

degrees of competition, the accuracy is still close to 100%.  However, the accuracy now falls 

off much more quickly so that it is already below 75% when the degree of competition is 0.3. 

In general, the accuracy continues to fall with lower values of competition until it reaches an 

accuracy of just 35% as the degree of competition approaches -1.  Of course, it is not 

surprising that the mutually exclusive approach performs worse in this case since according 

to it at most one hypothesis could be true (or have probability greater than 0.5).  These results 

highlight the extent of perhaps the most significant problem with the mutually exclusive 

approach: its exclusion of hypotheses that may well be true. 

In summary, insofar as inference is concerned with identifying the most probable 

hypothesis, it could be argued from the results in figure 4 that the mutually exclusive 

approach performs quite well, with an accuracy close to or greater than 90%, provided the 

hypotheses are in direct competition to at least some extent, i.e. the degree of direct 

competition is greater than zero.  However, the problem of excluding hypotheses that may 

well be true is a problem even in cases where the hypotheses are competing.  Of course, all of 

these results provide insight into cases where we are only monitoring varying degrees of 
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direct competition; future investigations will explore the extent to which these inaccuracies 

might be compounded when we instead consider cases of varying degrees of indirect and/or 

net competition. 

 

 

5. Case Study 

Let us return to our earlier discussion of consistent but competing scientific hypotheses in the 

context of the mass extinction at the K-Pg boundary. Here we focus on two of the causal 

hypotheses, asteroid impact and Deccan volcanism, which we denote as H and Hʹ 

respectively. There is no reason to think that these hypotheses are mutually exclusive. While 

there is no competition along the direct pathway 2, there may be competition along the 

indirect pathway 1. If so, the discovery of evidence that provides confirmation of the impact 

hypothesis, as noted earlier, would count against volcanism via pathway 1 even if this 

evidence does not directly contradict volcanism. This is the main strategy adopted by Schulte 

et al. (2010) who, assuming competition between the hypotheses, argue against volcanism 

essentially on the grounds that it is not needed because the asteroid hypothesis on its own 

accounts for the relevant evidence. 

Some responses to Schulte et al. suggest that the impact and volcanism hypotheses 

are not in competition (Archibald et al. 2010; Courtillot and Fluteau 2010; Keller et al. 2010). 

Their arguments, as well as other work (Brusatte 2015), which relate to the first term in 

expression (2) and hence to pathway 1, amount to the claim that overall the evidence given 

both impact and volcanism hypotheses (and perhaps other hypotheses too) is much more 

probable than it is given the impact hypothesis without volcanism, i.e. Pr(E|H&Hʹ) is much 

greater than Pr(E|H&¬Hʹ).  In a recent paper, Renne et al. (2015) argue that the Chicxulub 

impact accelerated the rate of volcanic activity from the Deccan Traps. This kind of direct 

positive dependence between the hypotheses would result in a positive second term in (2) and 

would lead to support between the hypotheses rather than competition along pathway 2. 

This very brief survey indicates that there are grounds for questioning the assumption 

that the impact and volcanic hypotheses are competing. Furthermore, even if the hypotheses 

are competing to some degree, the simulation results presented in section 4 show that if the 

assumption of mutual exclusion is made for inference purposes it could easily lead to 

exclusion of a true hypothesis. 

 

 

6. Conclusion 

We have argued that hypothesis competition cannot be adequately understood in terms of 

mutual exclusion. It is important to recognize that competition is a matter of degree and that 

it can occur in different ways – directly or indirectly via the evidence. In Section 3, we 

defended a previously proposed measure by showing how it explicates these features in terms 

of degrees of direct and indirect competition and by illustrating its quantitative behavior in 

simple scenarios. It might be thought that mutual exclusivity would suffice as a simplifying 



Copyright Philosophy of Science 2017. Preprint (not copyedited or formatted). Please use 

DOI when citing or quoting. 

 

assumption that would capture key aspects of scientific reasoning, but the results of computer 

simulations in Section 4 show that this approach can have significant limitations, particularly 

resulting in the exclusion of hypotheses that may well be true. Finally, our brief discussion of 

the extinction of the dinosaurs in Section 5 illustrates subtleties of competition in scientific 

practice that go well beyond mutual exclusion. This work suggests that there is a need for 

philosophers of science to explore the nature of hypothesis competition in more detail and we 

hope that our account provides a helpful framework for this task. 
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