
Real-Time Face Detection And Motorized Tracking
Using ScicosLab and SMCube On SoC’s

Wing Jack Lee∗, Kok Yew Ng∗†, Chin Luh Tan‡ and Chee Pin Tan∗
∗School of Engineering, Monash University Malaysia, 47500 Bandar Sunway, Malaysia

Emails: wjlee24@student.monash.edu,nkymark@ieee.org,tan.chee.pin@monash.edu
†Vehicular Systems, Department of Electrical Engineering, Linköping University, SE-581 83, Sweden

‡Trity Technologies, Malaysia. Email: chinluh@tritytech.com

Abstract—This paper presents a method for real-time detection
and tracking of the human face. This is achieved using the
Raspberry Pi microcomputer and the Easylab microcontroller as
the main hardware with a camera mounted on servomotors for
continuous image feed-in. Real-time face detection is performed
using Haar-feature classifiers and ScicosLab in the Raspberry Pi.
Then, the Easylab is responsible for face tracking, keeping the
face in the middle of the frame through a pair of servomotors that
control the horizontal and vertical movements of the camera. The
servomotors are in turn controlled based on the state-diagrams
designed using SMCube in the EasyLab. The methodology is
verified via practical experimentation.

I. INTRODUCTION

In recent times, many applications that use image process-
ing for face detection and tracking have been developed for
various purposes. Generally, it involves the recognition of the
human face from other objects in the image frame and then
to continuously reposition the location of the face, preferably
at the centre within the frame. Basically, the face detection
algorithm can be implemented using different methods with
and/or without colour segmentation or even unique object
identifiers. The general operation is that the algorithm will
filter every frame of the image and scan pixel by pixel for a
match, and depending on the algorithm used, the processing
may be quite time and memory consuming.

Colour segmentation for face localisation exploits the differ-
ences of the human skin colour from the external environment.
By doing so, pixels that match the designated skin colour
thresholds are considered to be a match to that of a human face
[1]. However, since the detection is solely based on specific
coloured pixels, the detection time is increased for different
facial positions or poses. To overcome the issue of the wide
range of colour samples of various individuals, the Gaussian
Mixture Model (GMM) and the machine learning algorithm
Adaboost can be used to improve reliability and accuracy of
detection [2]. By plotting a probability distribution function of
all coloured pixels within the image frame and then using a
predetermined threshold for the skin colour pixel, it can be
determined statistically if the skin colour can be classified
and declared as a match. Conversely, pixels that fall outside
the threshold are ignored. To reinforce this distribution more
precisely, a GMM can be used to construct a skin colour model.
Commonly, the GMM utilises the Expectation-Maximization
(EM) algorithm to provide a powerful estimation on every

established Gaussian component [3]. However, in order to
improve the efficiency of the GMM, a huge variety of samples
must be provided to provide better training data.

There is an alternative approach that aims to avoid skin
colour segmentation due to its sensitivity to various lighting
conditions. Instead, it detects the unique features of a face us-
ing the half-face template identification method [4]. Assuming
that all subjects’ faces are symmetrical, effective face detection
can be performed by analysing half, either left or right hand
side of the frontal face, to speed up the processing time and to
ease the computational loads required to process a full face.

Other interesting recent research contributions in this field
include the work by Zhou et al.. In [5], the use of perceptual
features such as Gabor filtering in combination with diffusion
distance was reported, of which the researchers claimed to
be able to significantly improve the performance of facial
recognition compared to some classical methods. Other work
involves the integration of the extraction of semantic features
from faces with Tensor Subspace Analysis (TSA) to perform
recognition based on the eyes and mouth of the subject [6].

Another alternative for an efficient face detection is the
Viola-Jones method of using Boosted Cascade Classifiers that
made up of Haar-like features [7], [8]. This method suggests
that with the aid of the machine learning algorithm Adaboost
to generate a specific weight and size for each Haar-feature on
large samples of training images [9], a powerful classifier can
be created by cascading weak feature classifiers together. The
product of these weak classifiers in cascade is a single Haar-
feature classifier that consists of a combination of multiple
Haar-like features that correspond to specific parts of the
human face. An Integral Image is used to compute the Haar-
like features at any scale or location.

The Haar-like features, also known as Haar-wavelets, are
digital image features that contain a mixture of black and white
regions. These features are used in the learning algorithm as
they provide a better object classification rather than processing
raw input [10]. The matching process works by applying the
Haar-like features across an image and computing its Integral
Image. In order to train the Cascade Classifiers, a huge number
of training samples are required. These training samples are
passed through the Adaboost training algorithm to develop the
classifier in stages.

This widely used Viola-Jones algorithm yields around 90%

detection rate with negligible false detections [11]. False detec-
tion occurs when the algorithm wrongly registers or identifies
a random part or object within an image to be a human
face. At present, many algorithms still have trouble with such
shortcoming.

This paper aims to perform an efficient and effective real-
time detection and motorised tracking of the human face using
simple systems-on-chip (SoC’s). The required hardware to
achieve this purpose are the Raspberry Pi microcomputer and
the EasyLab microcontroller. It is proposed that the tasks of
detection and tracking to be assigned to these 2 hardware
individually, albeit with a communication for transmission of
data between them. The face detection is performed based on
the Haar-feature classifiers using ScicosLab on the Raspberry
Pi while the tracking is executed with state-diagrams using
SMCube on the EasyLab to control the servomotors that will in
turn control the movements of the camera. Thus, by doing this,
the remaining unused GPIOs of the Raspberry Pi can be used
to power and to operate other hardware for other tasks besides
face detection and tracking, especially that the Raspberry Pi
can only supply a total of 51mA from all of its GPIOs.

This paper is organized as follows: Sections II and III
provide the hardware and software overviews respectively.
Section IV explains the face detection algorithm and Section
V covers the algorithm for face tracking. The communication
and transmission of data between the Raspberry Pi and the
EasyLab is presented in Section VI. Section VII discusses
the experimental setup and results and finally, Section VIII
provides some conclusions.

II. HARDWARE OVERVIEW

The Raspberry Pi is a credit card-sized mini computer with
the capability of a full-sized desktop machine. For this research
work, the Pi is used to perform the face detection algorithm.

Meanwhile, the EasyLab is a simple and relatively cheap
prototyping board with a dsPIC class microchip. Developed
by Evidence, this board offers different approaches of which
it can be programmed, including the possibility of using tools
such as block diagrams-based ScicosLab with automatic code
generation. This allows for realistic practical applications as
block-diagrams can be used to model actual physical systems
to great extent of accuracy [12]. Both of these devices are
shown in Figure 1.

The camera used for image feed-in, as shown in Figure 2,
is the Microsoft LifeCam HD-5000 which is 720p (1280×720
pixels) HD capable with Auto Focus built in, and is fully
compatible with the Pi where the driver can be easily located
and installed. The camera is mounted on 2 servomotors, where
one controls the horizontal motion of the camera, while the
other controls the vertical motion. As such, the camera can be
panned and tilted on both the x-axis and y-axis.

III. SOFTWARE OVERVIEW

The main software used in this system is ScicosLab, an
open-source software developed by Evidence that utilizes

Fig. 1. The Raspberry Pi on the left and the EasyLab on the right connected
via USB-serial connection.

Fig. 2. The Microsoft LifeCam HD-5000 Camera mounted on 2 servomotors.

block diagrams for modelling and simulation of dynamic sys-
tems, similar to MATLAB/Simulink. ScicosLab has a built-in
automatic code generation function that can be used to translate
the block diagrams into C-codes, which makes deployment of
codes onto the EasyLab microcontroller feasible. For example,
Figure 3 shows the block diagrams modelled in ScicosLab to
represent the overall of the system proposed in this paper.

The SMCube, also developed by Evidence, is used for code
generation of discrete-time state machines. It allows for the use
of state diagrams to determine the current state of the system
based on the data obtained from sensors such as the camera,
and as such is able to determine the next operational state of
the system. Figure 6 shows the 12 states of the servomotors
operation modes for continuous tracking of the human face
based on the position of the detected face in the image frame.

Lastly, MPLAB is used to upload the generated C-codes
into the EasyLab.

IV. THE FACE DETECTION ALGORITHM

As mentioned in Section I, Viola-Jones developed the Haar-
feature method that uses unique Haar-like features for face
detection [11]. It can be safely assumed that each of these
unique features gives a positive recognition to a specific part
and/or section of the human face. The face implementation

Fig. 3. The overall of the system as modelled in ScicosLab

Fig. 4. Samples of images with human faces representing positive images
for training.

Fig. 5. Samples of images without human faces representing negative images
for training.

of the Haar-feature Classifier can be described through the
following phases:

A. Sampling Phase

The sampling phase collects and archives multiple source
images representing a wide range of data on the different types
and shapes of human faces. These samples are classified as
positive images. On the other hand, non-human face samples
are used as negative images to train the classifier to distinguish
between human faces and otherwise. Altogether, 500 positive
images and 1000 negative images are used as training data.
Samples of these positive and negative images are shown in
Figures 4 and 5.

B. Training Phase

The training phase matches and selects suitable Haar-
features based on the different features and shapes of the
human face from the training samples. The machine learning
algorithm Adaboost is then used to match each Haar-feature
to each sample image and assigns a weight based on every

positive detection. Haar-features that provide no detection are
eliminated. The greater the weight, the higher the priority that
feature representing part of a human face will be. The end
products are multiple Haar-feature classifiers that have been
trained to correspond to the different parts of the human face.

C. Cascading Phase

Here in the cascading phase, each of the Haar-feature
classifiers are cascaded in series to create a cascaded classifier
and also to amplify the detection power. Each stage of classifier
acts as a filter to continuously remove non-human faces until
a powerful final cascaded classifier is obtained.

The final product upon the completion of the training
process is a .xml file that holds information regarding the
Haar-features for the face detection system. The classifier is
then loaded into the detection process and each frame of
the image is scanned, pixel by pixel, and compared with the
trained data in the classifier file. The detection algorithm is
programmed using the Python language on the Raspberry Pi.
The algorithm can be summarized through the following steps:

1) Loads the classifier .xml file.
2) Obtains and stores the image from the webcam (attached

to the Raspberry Pi via USB connection).
3) Downsizes the resolution of the image to enhance pro-

cessing speed.
4) Feeds the image data into the classifier for face detection.
5) Highlights a region of pixels that provides a positive

result from the face classifier.
6) The centre coordinate of the face is computed and sent

to the face tracking algorithm.

V. FACE TRACKING ALGORITHM

The tracking algorithm is a series of functions called by
the EasyLab based on the data containing the coordinates of
the face sent by the Raspberry Pi. By decoding the serial bits
back into the respective x- and y-coordinates representing the
centre of the face in the image frame, the SMCube can then be

75

Appendix E: SMCube State Diagram

Fig. 6. The state diagram as modelled in SMCube

1 2 3

4 5 6

7 8 9

Fig. 7. The 9 regions of which the position of the face within the frame can
be defined.

utilized to make decisions on the pan and tilt of the webcam
using the two servomotors to keep the detected human face in
the centre of the frame.

Figure 6 shows the 12 states based on the position of the
face in the frame, i.e. the face is located below and on the
right side to the centre of the frame etc. These positions are
separated into 9 specific regions as shown in Figure 7. Table
I explains in detail the 12 states in Figure 6, their relation to
the regions specified in Figure 7, as well as the decisions that
are to be made to the servomotors to pan and tilt the camera
in order to track the human face.

TABLE I
THE 12 STATES IN SMCUBE FOR PAN AND TILT OF CAMERA BASED ON

POSITION OF FACE IN FRAME

States Position of Face
(Region #) Decision Made

Idle Rest state
Camera at rest
position and do
nothing

xPositive
Right centre of
frame (6)

Shift camera
right

xNegative
Left centre of
frame (4)

Shift camera
left

yNegative
Bottom right of
frame (9)

Shift camera
lower right

yNegative1
Bottom left of
frame (7)

Shift camera
lower left

yPositive
Top right of
frame (3)

Shift camera
upper right

yPositve1
Top left of
frame (1)

Shift camera
upper left

yNormal
Right centre of frame
(webcam height)
(3,6,9)

Shift camera
right

yNormal1
Left centre of frame
(webcam height)
(1,4,7)

Shift camera
left

Centre Centre of frame (5) Do nothing

yPositive2
Top centre of
frame (2)

Shift camera
upward

yNegative2
Bottom centre of
frame (8)

Shift camera
downward

VI. COMMUNICATION AND TRANSMISSION OF DATA
BETWEEN HARDWARE

A communication channel is set up so that the Raspberry
Pi is able to transmit the coordinates of the detected face
in the image frame to the EasyLab microcontroller. Since
the EasyLab only utilizes the USB-serial connection via the
MCP2200 microchip for communication purposes, hence the
only viable method to establish a communication channel
between the two devices is through a wired connection.

Using USB-serial communication, data transmits through
the channel in the form of serial bits. This is now used to
send the coordinates of the centre of the detected face from
the Raspberry PI to the EasyLab, which will then be used to
assist in the face tracking algorithm. Assuming that the image
has been downsized to a resolution of 540×480 pixels in order
to enhance processing time as well as to reduce the amount of
graphical data to analyze.

The general idea is to encode the x- and y-coordinates
in pixels into 8 serial bits. The left most 4 bits will carry
information about the x-coordinate value while the right most
4 bits will store the y-coordinate data, as shown in Figure
9. Figure 8 meanwhile shows an example of converting a

(X,Y)
Coordinate

Example: (144,179)

0 -> 480
rescaled to

0 -> 15

0 -> 540
rescaled to

0 -> 15

Convert to
Binary

Convert to
Binary

Shift up
4 bits

Combine
bits to form

byte

Send for
transmission

179 6 0110

144 4 0100 01000000

01000110

Fig. 8. Encoding the coordinates into 8 bits for transmission.

0 1 0 0 0 1 1 0

x-coordinate y-coordinate

8 serial bits

Raspberry Pi EasyLab

Fig. 9. Coordinates of image represented by 8 serial bits.

coordinate in pixels from the image into 1 byte using this
method.

Assuming that the centre of the face is located at position
in pixels (144,179) in the frame, both values are scaled to
a maximum value of 15 in order to fit the data into 4 bits
respectively. Shifting the x-coordinate binary data by 4 bits
to the left, and then combining with the y-coordinate binary
value, will result in 01000110. This information will then
be sent to the EasyLab microcontroller. The decoding process
will then take place in the EasyLab to convert the binary data
back into coordinate positions.

This method however, has one disadvantage. During the
encoding and decoding process, the coordinates of the source
data at the Raspberry Pi are never exactly matched to the
decoded values at the EasyLab due to the scaling of the
coordinate values into their respective 4-bit representations.
As such, this causes a slight offset in the data with an average
of about 30 pixels for both axes, which is still insignificant
compared to the full resolution of the image. Therefore, this
method is still acceptable if not used for high definition
tracking applications.

VII. EXPERIMENTAL RESULTS

The system is assembled as shown in Figure 10. Figure
11 shows the success of the face detection algorithm in
recognizing subjects with different skin tones. Observe also
that the faces are successfully detected for non-single coloured
backgrounds as well as the presence of other objects that might
act as noise. The system has an accuracy of 90% detection
rate when the face is fully exposed with a maximum 15◦ of
tilt angle.

With a data sampling rate of 0.01s, the face tracking system
has a delay of approximately 0.5s. As the frame size of the

Fig. 10. Assembly of the experimental setup.

image has been scaled down to a resolution of 540×480 for
faster response time as well as less graphical pixels to evaluate,
the detection range for the human face is limited to about 1–
3m away from the webcam. As shown in both Figures 12 and
13, the system is able to track a moving human face within
the frame.

VIII. CONCLUSION

This paper has presented the real-time detection and mo-
torised tracking of the human face using Raspberry PI and
EasyLab. The detection algorithm is carried out via ScicosLab
on the Raspberry PI and the tracking algorithm is performed
on the EasyLab using SMCube. Given that the Raspberry PI is
only able to supply limited amount of current through its GPIO
pins, it might not be feasible to use it to power other hardware
if it is used to control the servomotors as well for tracking.
Furthermore, with the SMCube being able to provide precise
decision based on the current state of operation, it a more
preferred choice for the control of the servomotors to ensure
effective tracking of the human face. An overall tracking of
the human face could be achieved with a relatively short 0.5s
delay.

Fig. 11. Detection of the faces of multiple subjects.

Fig. 12. Tracking of a moving human face (1).

Fig. 13. Tracking of a moving human face (2).

REFERENCES

[1] M.-J. Seow and V. K. Asari, “Homomorphic processing system and
ratio rule for color image enhancement,” in IEEE International Joint

Conference on Neural Networks, vol. 4, 2004, pp. 2507–2511.
[2] L. Zou and S.-i. Kamata, “Face detection in color images based on skin

color models,” in IEEE Region 10 Conference TENCON 2010, 2010, pp.
681–686.

[3] R. A. Redner and H. F. Walker, “Mixture densities, maximum likelihood
and the EM algorithm,” SIAM Review, vol. 26, no. 2, pp. 195–239, 1984.

[4] W. Chen, T. Sun, X. Yang, and L. Wang, “Face detection based
on half face-template,” in 9th International Conference on Electronic
Measurement & Instruments, 2009 (ICEMI’09), 2009, pp. 4–54.

[5] H. Zhou and A. H. Sadka, “Combining perceptual features with diffusion
distance for face recognition,” IEEE Transactions on Systems, Man, and
Cybernetics, Part C (Applications and Reviews), vol. 41, no. 5, pp. 577–
588, 2011.

[6] H. Zhou, Y. Yuan, and A. H. Sadka, “Application of semantic features in
face recognition,” Pattern Recognition, vol. 41, no. 10, pp. 3251–3256,
2008.

[7] P. Viola and M. Jones, “Rapid object detection using a boosted cascade
of simple features,” in Proceedings of the 2001 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, vol. 1, 2001,
pp. I–511.

[8] M. Jiang, A. H. Sadka, and H. Zhou, “Automatic human face detection
for content-based image annotation,” 2008.

[9] M. G. Krishna and A. Srinivasulu, “Face detection system on AdaBoost
algorithm using Haar classifiers,” International Journal of Modern
Engineering Research, vol. 2, no. 5, pp. 3556–3560, 2012.

[10] R. Lienhart and J. Maydt, “An extended set of Haar-like features for
rapid object detection,” in Proceedings of International Conference on
Image Processing, 2002, vol. 1, 2002, pp. I–900.

[11] P. Viola and M. J. Jones, “Robust real-time face detection,” International
Journal of Computer Vision, vol. 57, no. 2, pp. 137–154, 2004.

[12] W. J. Palm, Modeling, analysis, and control of dynamic systems. Wiley
New York, 1983.

