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New Results in Disturbance Decoupled Fault Reconstruction in Linear 

Uncertain Systems Using Two Sliding Mode Observers in Cascade 
 

Kok Yew Ng, Chee Pin Tan*, Zhihong Man, and Rini Akmeliawati 

 

Abstract: This paper presents a disturbance decoupled fault reconstruction (DDFR) scheme using two 

sliding mode observers in cascade. Measurable signals from the first observer are found to be the out-

put of a fictitious system that is driven by the fault and disturbances. Then the signals are fed into a 

second observer which will reconstruct the fault. Sufficient conditions which guarantee DDFR are in-

vestigated and presented in terms of the original system matrices, and they are found to be less con-

servative than if only one single observer is used; therefore DDFR can be achieved for a wider class of 

systems using two sliding mode observers. A simulation example validates the claims made in this pa-

per. 
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1. INTRODUCTION 

 

Fault detection and isolation (FDI) is an important 

area of research activity. A fault is deemed to occur 

when the system being monitored is subject to an 

abnormal condition [2]. The fundamental purpose of an 

FDI scheme is to generate an alarm when a fault occurs 

(detection) and also to identify the nature and location of 

the fault (isolation). A special class of problem within 

the field of FDI is the problem of fault reconstruction 

[4,5,13], which not only detects and isolates, but 

provides an estimate of the fault so that its shape and 

magnitude can be better understood and more precise 

corrective action can be taken. However, most fault 

reconstruction schemes are designed about a model, 

which usually does not perfectly represent the system - 

as certain dynamics are either unknown or do not fit 

exactly into the framework of the model. These dynam-

ics are usually represented as a class of disturbances 

within the model [11] and could corrupt the reconstruc-

tion; producing a nonzero reconstruction when there are 

no faults, or worse, mask the effect of a fault. Therefore, 

schemes need to be designed so that the reconstruction is 

robust to disturbances.  

Edwards et al. [4,5] used a sliding mode observer [3] 

to reconstruct faults, in which there was no explicit 

consideration of the disturbances or uncertainty. Tan & 

Edwards [15] built on the work in [4,5] and presented a 

design algorithm for the observer, using Linear Matrix 

Inequalities (LMIs) [1], such that the 
2

L  gain from the 

disturbances to the fault reconstruction is minimized. 

Saif & Guan [13] aggregated the faults and disturbances 

to form a new ‘fault’ vector and used a linear unknown 

input observer to reconstruct the new ‘fault’ vector. 

Although this successfully decouples the disturbances 

from the fault reconstruction, it requires very stringent 

conditions to be fulfilled, and is conservative because the 

disturbance does not need to be reconstructed, only 

rejected/decoupled. Edwards & Tan later [6] compared 

the fault reconstruction performances of [5] and [13], and 

found that it was not necessary to reconstruct the 

disturbance in order to generate a disturbance decoupled 

fault reconstruction (DDFR). A counter example was 

presented in [6] to demonstrate this, but the conditions 

for disturbance decoupling were not formally investi-

gated. Ng et al. [8,9] built on the work of [6] and 

analyzed theconditions that guarantee DDFR using the 

sliding mode observer [3]. It was also found in [8,9] that 

the sliding mode observer can achieve DDFR with 

weaker conditions compared with the linear observer.  

This paper further builds on the work in [8,9] by using 

two sliding mode observers in cascade, where 

measurable signals from the first observer are found to 

be the output of a fictitious system that is driven by the 

faults and disturbance, and fed into a second sliding 

mode observer. The second observer then reconstructs 

the fault. The conditions that guarantee DDFR are then 

investigated, and it was found that the conditions are less 

conservative than those found in [8,9], which meant that 

the scheme proposed in this paper are applicable to a 

wider class of systems compared to if only one observer 

was used [8,9]. In addition, the sufficient conditions 

arefound to be easily testable in terms of the original 

system matrices, which means that the user can know 
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immediately from the outset whether the scheme propos-

ed in this paper can achieve DDFR or not.  

This paper is organized as follows: Section 2 outlines 

the problem statement, presents previous work as the 

basis of the work in this paper and states the main result; 

Section 3 presents the 2-observer DDFR scheme in this 

paper; Section 4 investigates thesufficient conditions in 

terms of the original system matrices; Section 5 presents 

a numerical example to validate the scheme and Section 

6 concludes the paper.  

 

2. PRELIMENARIES AND PROBLEM 

STATEMENT 

 

Consider the following system 

,x Ax Mf Qξ= + +�  (1) 

,y Cx=  (2) 

where nx∈�  are the states, py∈�  are the outputs 

and qf ∈�  are unknown faults. The signals hξ ∈�  

are uncertainties or dynamics that represent the mismatch 

between the linear model (1)-(2) and the real plant. 

Without loss of generality assume that ( )rank M q= ,  

( )rank C p=  and 
1

( ) .rank CQ k h= <  Assume also the 

following 

N1. ( ) ( ),rank CM rank M=  

N2. [ ]( ) ( ) ( ).rank C M Q rank CM rank CQ= +  

The objective is to generate a reconstruction of f that is 

not affected by .ξ  

Proposition 1: If Assumptions N1 - N2 hold, then 

there exists a change of coordinates 
1
,x T x�  ξ �  

1
Tξ ξ−  such that the matrices ( )A M Q C, , ,  have the 

structure 

1 2

3 4 2

0

, ,

n p p q

n p n p

p p

A A
A M

A A M

−

− −   
= =   

  

������ ���� ���

� �

� �
 (3) 

[ ] 1

2

2

0 ,
,

h
n p p

n p
p

p

Q
C C Q

Q

−

− 
= =  

 

���
������ ���� �

�
�

 (4) 

where 
2

M  can be further partitioned to be 

2

0

,

p q

qo

M
M

  −
 
 
  

=
�

�
 

1

1

1

11

0 0

0 ,

n p h k

h k
Q

Q

− − +

−

 
=  
 

�

�
 (5) 

1

12 22

0 0

0

0 0 ,

p q k

k

q

Q Q

− − 
 =  
  

�

�

�

 (6) 

where 
2

C ,
o

M ,
11

Q  and 
22

Q  are square and invertible. 

Proof: The proof is taken from [8,9] and is available 

in Appendix A.                                � 

In the coordinates of (3)-(4), further partition A to be 

1

1

1

31

32

33 ,

n p

k

k

q

A

A

A

A

− 
 
 
 
 
  

�

�

�

�

�

�

�

�

 (7) 

where �  are matrices with p  columns that play no 

role in the following analysis. Then further partition A  

in (7) as 

1

1

1

1

11 12

13 14

31 32

33 34

35 36
,

n p h k

h k

p q k

k

q

A A

A A

A A

A A

A A

∗ ∗
− − +

∗ ∗
−

∗ ∗
− +

∗ ∗

∗ ∗

 
 
 
 
 
 
 
  

�

�

�

�

�

�

�

�

�

�

 (8) 

where 
11
A
∗
,

14
A
∗  are square matrices. 

In [8,9], it is possible to generate a reconstruction of 

f  that is independent of ξ  (and achieve DDFR) using 

a sliding mode observer [3] if the following conditions 

are satisfied 

A1. [ ]( )A M Q C, ,  is minimum phase 

A2. 

12

32 32

36

( ) .

A

rank A rank A

A

∗ 
 
 ∗ ∗ 
 

∗ 
  

=  

 

2.1. Previous work 

A sliding mode observer [3] for the system (1)-(2) of 

the form 

x̂ =
� ˆ ,l y nAx G e G ν− +  (9) 

ˆ ˆy Cx= , (10) 

where ˆ
n

x∈�  is the estimate of the state x  and 

ˆ
y
e y y= −  is the output estimation error. The term ν  

is a nonlinear discontinuous term defined by 

if 0,
y

y

y

e

e

e

ν ρ= − ≠
|| ||

 (11) 

where the positive scalar function ρ  is an upper bound 

of f  and .ξ  The matrices n p
l nG G

×

, ∈�  are the 

observer gains to be designed. In the coordinates of (3) - 

(14), 
n

G  is assumed to have the structure 

[ ]1

2 1
( ) 0 ,

n o

p

L
G P C L L

I

 
− 

 
  

−

= , =  (12) 

where p p

o
P

×

∈�  is a symmetric positive definite 

(s.p.d.) matrix and ( ) ( )
1 .

n p p q
L

− × −

∈�  

Define the state estimation error as ˆ .e x x:= −  

Combining (1)-(2) and (9)-(10), results in 

( ) .
l n

e A G C e G Mf Qν ξ= − + − −�  (13) 
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Lemma 1 [15]: If there exists a value of 
l

G  that 

satisfies ( ) ( ) 0T

l l
P A G C A G C P− + − <  where 

11 12

12 22

0
T

P P
P

P P

 
 
 
  

= >  with [ ]12 121
0 n p

p q q

P P

↔ ↔

−

−

= �  

then if 1

22 12 11 12
,T

o
P P P P P

−

= −  and for a large enough 

choice of ,ρ  an ideal sliding motion takes place on 

{ }0e Ce= : =S  in finite time. 

Apply a change of coordinates such that 
1

(
L
e col e:= ,  

)y Le T e=  where 

2

.
0

n p

L

I L
T

C

 
− 

 
  

:=  (14) 

Then assume a sliding motion has taken place at ,S  

and therefore (13) in the new coordinates can be 

partitioned to be (see Section 2.2 of [15]) 

1 1 3 1 1 2
( ) ( ) ,A LA e Q LQe ξ= + − +�  (15) 

1

2 3 1 2 2 2 2
0 ,

o eq
C A e P C M f C Qν ξ

−

= + − −  (16) 

where 
eq

ν  is the equivalent output error injection term 

required to maintain the sliding motion [5] and can be 

approximated to any degree of accuracy [5] by replacing 

ν  with 

,

y

y

e

e

ν ρ
δ

= −
|| || +

 (17) 

where δ  is a small positive scalar. Since ey is 

measurable, 
eq

ν  can be computed online. See [5] for 

full details. 

In [8,9], a fault reconstruction f̂  was defined as 

1 1

2
ˆ ,

o eq
f WC P ν

− −

:=
1

1
0

o
W W M

− 
  

:=  where 
1

W ∈  

1( )q p q k× − −

�  is design freedom. Define 
1
,v e:= −  

ˆ ,fe f f:= −  pre-multiply (16) with 1

2
WC

−  and re-

arrange (15)-(16) to obtain the pair of equations 

,v v ξ= +� A B  (18) 

,fe v= C  (19) 

where 

1 2

1 3

3 4

,A LA

 
∗  

 
  

:= + ≡

A A

A

A A

 (20) 

212 22

1 2

3 411 14 22

00
,

L Q
Q LQ

Q L Q

 
 
 
  

 
:= + = ≡  

 

B

B

B B

 (21) 

1 1
1 31 35 1 32 36o o

W A M A W A M A
∗ − ∗ ∗ − ∗

  
:= + +C  (22) 

1 2
,

 
 ≡ C C  (23) 

where 
1 11 11 31 12 33

A L A L A
∗ ∗ ∗

= + + ,A  
2 12 11 32

A L A
∗ ∗

= + +A  

12 34
L A

∗
,

3 13 13 31 14 33
A L A L A
∗ ∗ ∗

= + +A  and 

4 14 13 32
A L A
∗ ∗

= +A  

14 34
.L A

∗
+  

If the system (18)-(19) is made zero, then ef 0≡  and 

disturbance decoupling fault reconstruction is achieved. 

Partition 
1

1

1

2

.

n p h k

h k

v

v

v

  − − +
 
 

−  

:=

�

�
 It can be seen that 

2
v  

will always be affected by ξ  because 
3

B  is full rank. 

However, 
1
v  can be decoupled from ξ  if 

2
B  and 

12
0;=A  this would require 

12
0L =  and 

12 11 32
A L A
∗ ∗
+  

0,=  which in turn requires 12

32

32

( ) .
A

rank A rank
A

∗ 
∗  

 ∗  

=  

Then ef can be decoupled from v2 (and therefore from 

)ξ  if 
2

0=C  which requires 1

1 32 36
0

o
W A M A

∗ − ∗
+ =  

which in turn requires 36

32

32

( ) .
A

rank A rank
A

∗ 
∗  

 ∗  

=  

Combining the rank requirements results in Condition 

A2. Then Condition A1 guarantees that the remaining 

degrees of freedom in L can be chosen such that A  is 

stable. 
 

2.2. Main result 

This paper proposes a scheme to achieve DDFR when 

Condition A2 is not satisfied. The main result of this 

paper is summarized in the following theorem: 

Theorem 1: DDFR can be achieved using a 2-

observer structure in Figure 1 if the following conditions 

are satisfied 

B1. ( [ ] )A M Q C, ,  is minimum phase 

B2. 
1 2

( ) ( ) ( )rank X rank X rank Q− =  where 

1

2

0 0 0 0

0 0 0 0 0
,

0 0 0

0

AQ Q

CQ
X

CAQ CQ CM

CA Q CAQ CQ CAM CM

 
 
 =
 
 
  

 

2

2

0 0 0 0

0 0 .

CQ

X CAQ CQ CM

CA Q CAQ CQ CAM CM

 
 

=  
 
 

 

 

 

Fig. 1. Schematic diagram of the scheme proposed in this paper. 
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The remainder of this paper provides a constructive 

proof of Theorem 1. 

 

3. DDFR USING TWO OBSERVERS 

 

For ease of analysis, a coordinate transformation is 

introduced as follows in the sequel. Define 
2
k rank:=  

32
( )A

∗  and 
2 31 32 1
p rank A A q k∗ ∗

  
:= + +  where 

2
p ≤  

.p  Then let 1 1( ) ( )
1

p q k p q k
R

− − × − −

∈�  be an orthogonal 

matrix such that 

2

2 1

1 1

1 31 32

31 32

0 0 p p

o o
p q k

n p h k h k

R A A

A A

↔ ↔

−∗ ∗
   − −

− − + −

 
=  

  

�

�
 (24) 

and 2 1 2 1( ) ( )
2

p q k p q k
R

− − × − −

∈�  and 1 1( ) ( )
3

h k h k
R

− × −

∈�  

to be orthogonal matrices such that 

2 1 2

2

1 2 2

2 32 3

322

0 0

0 ,

p q k ko

k

h k k k

R A R
A

↔ ↔

− − −

− −

 
=  

 

�

�
 (25) 

where 
322

A  has full rank, and assume the following 

general partitions: 

2 2 1

2 2 1

2

2121 122

12 3

123 124

36 3 361 362
.

k

n p p h k q k

p k q k

q

A A
A R

A A

A R A A

  − − − + + +∗  
 
  

∗  
  

↔

=

− − −

=

�

�

�

 (26) 

If Condition A2 is satisfied, then 
121
A ,

123
A  and/or 

361
A  will all be zero. However, in this paper, no such 

constraint is in place and 
121
A ,

123
A  and/or 

361
A  are 

general matrices. 

Then let 1 1( ) ( )
4

n p h k n p h k
R

− − + × − − +

∈�  be an orthogonal 

matrix such that 

2 1 2

2

2 2 1 2 1 2

3112

2 31 4

3121 3112

2

0

,

p q k ko

k

n p p h k q k p q k k

A
R A R

A A

↔ ↔

− − −

− − − + + + − − −

 
=  

 

�

�
 

 (27) 

where 
3112

A  is full rank. It is straightforward to show 

that 

2 4

1 31 32

32

0 0

00

p p
I R

R A A
RR

   
− ∗   ∗  

     
     

 

2 1 2 1 2 2

3112

3121 3122 322

0 0 0 0

0 0 0 .

0

p q k k h k k k

A

A A A

↔ ↔ ↔

 
 
 
 
 
  

− − − − −

=  

Define a coordinate transformation 
1 2 3

Z Z Z Z:=  

where 

2 2 1

1 2

2 2 1

2

2

3

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

n p p h k q k

h k k

p k q k

k

p

I

I

Z I

I

I

− − − + + +

− −

− − −

 
 
 
 :=
 
 
  

�

�

�

�

�

2 2 1

2 2 1

2

2

2 2

2 1

3121 322

0 0 0

0 0 0

0 0

0 0 0

n p p h k q k

p k q k h

k

p

I

I

Z

A A I

I

 
− − − + + + 

 
 − − − +
 
 −
 
 
 
  

:=  

2

1

1

4

1

3

3

1

2

0 0 0

0 0 0

0
0 0 0

0

0 0 0

p p

q k

R

R

Z I

R

R

I

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

−

−

 
− 

 
  

+

:=  

in order to obtain 

2

2 1

1

1

1 21

31

3 4

32

33

111 121 112 122

131 141 132 142

113 123 114 124

133 143 134 144

3112

3122 322

331 341 332 34

0

0 0 0 0

0 0 0

0 0

n p

p p
n p

p q k
p

k

q

A

A A
ZAZ A

A A
A

A

A A A A

A A A A

A A A A

A A A A

A

A A

A A A A

−

−

−

−

− −

 
 
  
 = = 
  
 
 
 

=

�

�

�

�

�

�

� �
� �

� �
� �

�

�

�

�

�

�

�

�

�

�

�

�

�

1 2

2 2 1

2

2

2 1 2

2

12

351 361 352 362
,

h k k

p k q k

k

p p

p q k k

k

k

qA A A A

− −

− − −

−

− − −

 
 
 
 
 
 
 
 
 
 
 
 
 
  

�

�

�

�

�

�

�

�

�

�

 (28) 

where �  are matrices with p columns and play no role 

in the following analysis. It is clear that 
31 312

[0 ]A A=

� �

 

where 
3112

312

3122 322

0A

A
A A

 
 
 
  

:=

�

 is square and invertible. In 

addition, Q and M are transformed to be 

111

112

1

2

22

0 0

0

0 0

0

,0 0

0 0

0 0

0

0 0

Q

Q
Q

ZQ
Q

Q

 
 
 
 
 
  
 = = 
  
 
 
 
 
 
  

�

�  (29) 
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2

0

0

0

0
0

0 ,

0

0

0

o

ZM

M

M

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

 
= = 
 
�

 (30) 

1

2
[0 ],CZ C

−

=

�

 (31) 

where 

111 1

3 11

112

,

Q
R Q

Q

 
− 

 
  

=  (32) 

2

1

1

1
1

2 2 2

0

0
.0

0

p p

q k

I

R
C C R

I

 
 
 
 
 
 
 
 
  

 
− −

 
− 

 

+

=

�

 (33) 

 

3.1. The system for the second observer 

Implement the first sliding mode observer as described 

in Section 2.1, except that the matrix L1 in L from (12) 

has a different dimension as follows 

1( ) ( )( )
1 1[ 0] .

n p p q kn p p
L L L

− × − −− ×

∈ = , ∈� �  (34) 

Choose a matrix 
1
L  such that 

1 1 31
A L A+

� �

 is stable. 

Define 
1

v e:= −  and 1

2
( )

o eq
w P C ν

−

:=

�

 and re-arrange 

(15) - (16) to respectively obtain 

1 3 1 2
( ) ( ) ,v A LA v LQ Q ξ= + + +

� � � �
�  (35) 

3 2 2
.w A v Q M fξ= + +

� � �

 (36) 

From the structures of 
3
,A

�

2
Q
�

 and 
2

M
�

 from (28)-

(30), it is clear that the top 
2

p p−  components of .w  

Hence w can be partitioned as follows 

2

2 2

2

1

2

3

0

.

p p

p k q

k

q

w

w

w

w

  −
 
 

− − 
 
 
 
   

=

�

�

�

�

 (37) 

Define 
2 122 ( ) 220
k h k

Q Q 
× −  

:=

�

 and substituting for 

3
,A

�

2
Q
�

 and 
2

M
�

 from (28)-(30) into (36), then 
1

w -
3

w  

in (37) can be expanded to be 

1 31
,w A v=

�

 (38) 

2 32 22
,w A v Q ξ= +

� �

 (39) 

3 33
.

o
w A v M f= +

�

 (40) 

Then define z1, z2 to be filtered versions of w2, w3 

representing 

1 21 1 1 2 2 2 2 3
,z w z wz zα α α α= − + , = − +� �  (41) 

where 
1 2

.α α
+

, ∈�  Substituting from (39)-(40) into 

(41) to get the following analytical expressions for z1 and 

z2: 

1 1 1 1 32 1 22
,z z A v Qα α α ξ= − + +

� �

 (42) 

2 2 2 2 33 2
.

o
z z A v M fα α α= − + +

�

 (43) 

Then equations (35), (38), (42) and (43) can be 

combined to form another system of order 
2
n n p:= −  

1
q k+ +  with a measurable output of dimension 

2
p  

,x Ax Q Mfξ= + +�  (44) 

,y Cx=  (45) 

where 

1

1 1

2 2

v w

x z y z

z z

   
   
   
   
   
      

:= , :=  and 

1

1 3 1

1 32 1 22

2 33 2

0 0

0 ,

00

k

q

A LA Q

A A I Q Q

A I

α α

α α

 
 
 
 
 
 
  

 +
 

= − , =  
 −  

� � �

� �

�

 (46) 

1

1
0 0 0

0 0 0 .

0 0

k

o q

A

M C I

M I

                     

= , =

�

 (47) 

Remark 1: Note that the system (44) - (45) is not a 

physical system; rather it is a ‘fictitious’ system that 

treats the faults ξ  and disturbances f  as its unknown 

inputs. The key point is that it possesses a measurable 

‘output’ which is ;y  hence an observer can be 

constructed for (44)-(45) to estimate f. This approach of 

estimating faults using a measurable output of a fictitious 

system is not new and has been used in [10,14]. 

Remark 2: The purpose of the filtering in (42)-(43) is 

to achieve the structure in (44) where the fault and 

disturbance vectors have been forced to be in the ‘state 

equation’ (44), which is the framework where the fault 

reconstruction technique can be applied to. This 

technique has been widely used in the published 

literature, for example [15,7]. If the filters have not been 

used and w1, w2 have been used directly as the output ,y  

then there will be faults and disturbances in the ‘output 

equation’ which is not the structure where the fault 

reconstruction technique can be applied to. 

Further expanding A, M , C, Q  using (28)-(31) and 

(34) to get 

2 2 1

1 2

2 1 2

2

1

2
111 121

131 141

113 123

133 143

331 341

351 361
,

n p p h k q k

h k k

p q k k

k

k

q

A A

A A

A A
A

A A

A A

A A

− − − + + +

− −

− − −

 
 
 
 

=  
 
 
 
  

�

�

�

�

�

�

�

�

�

�

�

�

 (48) 
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111

112

22

0 0

0
0

0 0
0 ,

0

0

0 0

o

Q

Q M
Q

M
Q

 
 
 
 
 
  

 
 
 
 

= , = 
 
 
 
  

 (49) 

2 1 2

2

1

3112

3122 322

0 0 0 0 0

0 0 0 0

0 0 0 0 0

0 0 0 0 0 .

p q k k

k

k

q

A

A A
C

I

I

− − − 
 
 =
 
 
  

�

�

�

�

 (50) 

Note that Q111, Q112 will form a square and invertible 

matrix. Therefore there exists a matrix T ξ ∈  

1 1( ) ( )h k h k− × −

�  such that 

1 2

2

111 1 11

112

0

,0

h k k

k
x

Q Q
T

Q Q
ξ

   − −−   
  

      

=

�

�
 

where 
11

Q ,
x

Q  are square and invertible. By perform-

ing the a transformation on 
1

0

0
k

T

I

ξ
ξ ξ

 
 
 
 
  

�  results in 

1

1

1

2

0

0
k

QT
Q Q

I Q

ξ
 
 
 
 
  

−

 
=  
 

�  (51) 

2 2 1 2

1 2

2 1 2

1 2

11

22

0 0

0

0 0

0

0 0 ,

n p h k k

h k k

p k k q

k k

q

Q

Q

− − + +

− −

− − −

+

 
 
 
 =
 
 
  

�

�

�

�

�

(52) 

22

22

0
.

0

x
Q

Q
Q

 
 
 
  

:=  (53) 

The matrices A, C, M  remain unaltered by the 

transformation, but can also be re-expressed so that they 

are partitioned conformably with Q  in (53), as follows 

2 2 1 2

1 2

2 1 2

1 2

111 121

131 141

1 2

113 123

3 4

33 34

351 361
,

n p h k k

h k k

p k k q

k k

q

A A

A A
A A

A A A
A A

A A

A A

− − + +

− −

− − −

+

 
 
  
 = = 
  
 
  

�

�

�

�

�

�

�

�

�

�
 

 (54) 

2 2

2 312

2

0
0

0 0 ,

n p

p q

q
o

M C A

M
M

  −
 
 

− 
 
  

 
 = = , =   

 

�

�

�

�

 (55) 

where �  are matrices of p2 columns that do not play 

any role in the following analysis. 

Notice that the structure of A, M , C, Q  in (53)-(55) 

is identical to the structure of A, M , C, Q  in (3)-(6). 

Therefore, using the results of [8,9], it is possible to 

achieve DDFR if the following conditions are satisfied 

C1. ( [ ] )A M Q C, ,  is minimum phase 

C2. 

121

123 123

361

( )

A

rank A rank A

A

 
 
 
 
 
  

=  

C3. The first observer has a stable sliding motion. 
 

Then a secondary sliding mode observer [3] can be 

implemented on the system (44)-(45) similar to what was 

done in Section 2.1. Let 
11 12

13 14

0

0

L L
L

L L

 
=  
 

 be such 

that 
1 3
A LA+  is stable (where 2 2 2( )

,

n p p
L

− ×

∈�  

1 2 2 1 2( ) ( )
13 ,

h k k p k k q
L

− − × − − −

∈� 1 2 1 2( ) ( )
14 )

h k k k k

L
− − × +

∈�  

and eqν  be the equivalent output error injection 

required to maintain sliding motion for the second 

observer. Then let there be a pair 2 2p p

oP
×

∈ ,�  

2 2n p
lG

×

∈�  such that the condition in Lemma 1 is 

satisfied. Then define the fault reconstruction signal 
1 1

312
ˆ

o
f WA P− −

:=  where 1
1[ 0 ]oW W M

−

:=  and do the 

necessary re-arrangements as in Section 2.1; it results in 

the fault reconstruction error (from the second observer) 

being excited through a state-space system with the triple 

( ), ,A B C  (in the same way as (18) - (23)), where 

1 2

1 3

3 4

,A LA
 

:= + ≡  
 

A A
A

A A

 (56) 

12 222

1 2

14 3 411 22

0 0
,

QL
Q LQ

Q QL

   
:= + = ≡   

  

B
B

B B

 (57) 

[ ]1 2 ,≡C C C  (58) 

where 1 2111 113 121 12311 12 1133
A A A AL L LA

∗
= + + , = +A A  

12 34L A+ , 3 131 11313 14 33
A AL L A= + + ,A 4 141

A= +A

12313 14 34
AL L A+ ,

1

1 113 3511 o
A M AW

−

= +C  and 2 =C  

1

123 3611
.

o
A M AW

−

+  

If Conditions C1-C3 are satisfied, then 
1W ,

11L ,  

12L ,
13L ,

14L  can be chosen such that the system 

( ), ,A B C  will be made zero (see [8,9]). 

 

4. EXISTENCE CONDITIONS IN TERMS OF 

ORIGINAL SYSTEM MATRICES 

 

This section seeks to recast Conditions C1-C3 in terms 

of the original system matrices so that it is easy for the 

user to immediately determine from the outset whether 

or not it is possible to achieve DDFR using the scheme in 

this paper. 

 

4.1. Condition C1 

Proposition 2: The systems ( [ ] )A M Q C, ,  and 

( [ ] )A M Q C, ,  have the same invariant zeros. 
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Proof: The Rosenbrock system matrix [12] of (A, [M 

Q],C) is as follows 

1
( )

0 0

sI A M Q
U s

C

− − − 
:=  

 
 

and the invariant zeros of a system are the values of s 

that make its Rosenbrock matrix lose rank [12]. 

Substituting for A, M, Q, C from (28)-(31) results in 

1 1

1

1 1

( ) ,
a b

c d

U U
U s

U U

 
 
 
  

=  

where 

111 121 112 122

131 141 132 142

113 123 114 124

133 143 134 144

1

3112

3122 322

331 341 332 342

351 361 352 362

0 0 0 0 ,

0 0 0

0 0

a

sI A A A A

A sI A A A

A A sI A A

A A A sI A

U

A

A A

A A A A

A A A A

− − − − 
 − − − − 
 − − − −
 

− − − − 
 =
 

− 
 − −
 
− − − − 

 
− − − −  

�

�

�

�

�

�

�

�

�

 

111

112

1

22

0 0 0

0 0

0 0 0

0 0

0 0 0 ,

0 0 0

0 0 0

0 0

0 0

b

o

Q

Q

U

Q

M

 
 − 
 
 

− 
 =
 
 
 
 

− 
 
−  

 

1 2
[0 0 0 0 ],

c
U C=

�

 
1

[0 0 0].
d

U =  

Since 
22

Q ,
o

M ,
2

C ,

�

111

112

Q

Q

 
 
 
  

 and 
3112

3122 322

0A

A A

 
 
 
  

 are 

square and invertible, then U1(s) loses rank if and only if 

U12(s) loses rank, where 

111 121

12

113 123

( ) .
sI A A

U s
A A

 
 
 
  

− −

:=

− −

 

Using (51)-(55), the Rosenbrock matrix of ( [A M,  

] )Q C,  is as follows 

1

111 121

131 141 11

113 123

33 34 22

351 361

322

( )

0 0 0

0 0

0 0 0
.

0 0

0 0

0 0 0 0 0

o

U s

sI A A

A sI A Q

A A

QA A

A A M

A

:=

− − 
 − − − 
 − −
 

− − − 
 − − −
 
  

�

�

�

�

�

�

 

Since 
11

Q ,

22
Q ,

o
M  and 

322
A
�

 are square and 

invertible, then 
2
( )U s  loses rank if and only if 

22
( )U s  

loses rank, where 

111 121

22

113 123

( ) .
sI A A

U s
A A

 
 
 
  

− −

:=

− −

 

Therefore, it is straightforward to show that 
21
( )U s  

22
( )U s=  and the proof is complete.               � 

Therefore, C1 can be recasted in terms of the original 

system matrices as ( [ ] )A M Q C, ,  being minimum 

phase, which is identical to Condition B1. 

 

4.2. Condition C2 

Proposition 3: Define ,
o

A A KC:= −  where K :=  

1

1 2
K C

−  with 
1

K  being the last p  columns of A  

(therefore A
o
 is identical to A except that the last p 

columns of A
o
 are all zero). Then it can be shown that 

1 10 2 20
( ) ( ) ( ) ( ),rank X rank X rank X rank X= , =  (59) 

where 

10

2

0 0 0 0

0 0 0 0 0
,

0 0 0

0

o

o o o

AQ Q

CQ
X

CA Q CQ CM

CA Q CA Q CQ CA M CM

 
 
 :=
 
 
  

 

20

2

0 0 0 0

0 0 .
o

o o o

CQ

X CA Q CQ CM

CA Q CA Q CQ CA M CM

 
 

:=  
 
 

 

Proof: Define the following square and invertible 

matrices 

10

0 0 0

0 0 0
,

0 0

0

n

p

p

p

I

I

T
CK I

CAK CK I

 
 
 
 
 
 
 
 
  

:=

−

− −

 

20

0 0

0 .

p

p

p

I

T CK I

CAK CK I

 
 
 
 
 
 
  

:= −

− −

 

It is straightforward to show that 
1 10 10

X T X=  and 

2 20 20
.X T X=  Since 

10
T  and 

20
T  are both square and 

invertible, then 
1 10

( ) ( )rank X rank X= ,
2

( )rank X =  

20
( )rank X                                    � 

Proposition 4: It can be shown that 

121

1 2 123

361

123

( ) ( )

( ) ( ).

A

rank X rank X rank A

A

rank A rank Q

 
 
 
 
 
  

− =

− +

 (60) 
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Proof: Using (28)-(33), the following can be 

established: 

1

1

2

2 22

0

,

0 0

0

0 0 ,

p q

qo

p k q

k

q

CM C
M

CQ C Q

  −
 
 
  

− −

=

 
 =  
  

�

�

�

�

�

�

�

 (61) 

322

32

341 342

361 362

0 0 0

0 0
,

0

0

o

A
CA Q XČ

A A

A A

 
 
 =
 
 
  

 (62) 

where 

1

1

3 11

3

0
.

0
k

R Q
X

I

 
 
 
 
  

−

=  

2

1

123 1242

2 312 3

143 144

0 0 0
0 0

0
0 0 ,

0
0 0

0

p p

o

q k

I
A A

CA Q C A X
A A

I

 
 
 
 
 
 
 
  

−

+

 
 
 =
 
 
 

� �

� �

  

 (63) 

where �  are matrices with 
1

q k+  rows that do not 

play any role in the following analysis. 

Then, define 

10 2 2
{ },

n
C diag I C C R:= , , ,

� � �

 

1 1

1 1

10 3 11 3 11 2 2
{ },k k h qQ diag R Q I R Q I I− −

+
:= , , , ,  

where 

2 12 312
{ }.p p q kR C diag I A I

− +
:= , ,

� ��

 It can be shown 

that X10 from Proposition 3 can be expanded to be 

10 10

0
,

0

a b

c d

C Q
 
 
 
  

X X

X X

 

where 

121 122

141 142

123 124

143 144

322

341 342

361 362

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0
,

0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

a

A A

A A

A A

A A

A

A A

A A

 
 
 
 
 
 =
 
 
 
 
 
  

�

�

�

�

�

�

�

�

X  

111

112

22

0 0

0

0 0

0
,

0 0

0 0

0

0 0

b

Q

Q

Q

 
 
 
 
 
 =
 
 
 
 
 
  

X  

22

322

341 342 22

361 362

123 124

143 144 322

341 342 22

361 362

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0
,

0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0

0 0 0

0 0 0 0

c

Q

A

A A Q

A A

A A

A A A

A A Q

A A

 
 
 
 
 
 
 
 
 

=  
 
 
 
 
 
 
 
   

� �

� �

X

0 0

0 0

0 0

0 0

0 0

0 0
.

0

0 0

0 0

0 0

0 0

0

d

o

o

M

M

 
 
 
 
 
 
 
 
 

=  
 
 
 
 
 
 
 
   

X  

Since C10, Q10 are square and invertible, and recalling 

that 

22 1
( ) ,rank Q k= ( ) ,

o
rank M q=

322 2
( )rank A k=  and 

111

1

112

,

Q
rank h k

Q

 
 
 
  

= −  then it can be shown that 

121

123

10 1 2

361

123

121

1 2 123

361

( ) 2 3 2

2 3 2 .

A

A
rank X q k k h rank

A

A

A

q k k h rank A

A

 
 
 
 
 
 
 
   

 
 
 
 
 
  

= + + + +

= + + + +

 (64) 

Then, define 

20 2 2
{ },C diag C C R:= , ,

� � �

 

1 1

1 1

20 3 11 3 11 2
{ }.k k h qQ diag R Q I R Q I I− −

+
:= , , , ,  

It can be shown that 
20

X  from Proposition 224 can 

be expanded to be 

20 20
.

c d
C Q 

 X X  

Since 
20

C ,
20

Q  are square and invertible, then it 

follows that 
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20 1 2 123
( ) 2 3 2 ( ).rank X q k k rank A= + + +  (65) 

Then from (64) and (65), using the result of 

Proposition 3, and recalling that ( ) ,rank Q h=  the proof 

is complete.                                   � 

Hence, from (60), 

121

123 123

361

( )

A

rank A rank A

A

 
 
 
 
 
  

= ⇔ rank 

1 2
( ) ( ) ( )X rank X rank Q− =  which is identical to 

Condition B2. 

 

4.3. Condition C3 

Proposition 5: A stable sliding motion exists for the 

first observer if [ ]( )A M Q C, ,  is minimum phase. 

Proof: From the structure of L  in (34), it is clear 

that 
1 3

( )A LA+

� �

 is stable if and only if the pair 

( )1 31
A A,
� �

 is detectable. 

From the Popov-Hautus-Rosenbrock (PHR) rank test 

[12], the unobservable modes of ( )1 31
A A,
� �

 are the 

values of s that make the following matrix pencil lose 

rank 

1

3

31

( ) .
sI A

U s
A

 −
=  
 

�

�  

Substituting for the pair ( )1 31
A A,
� �

 from (28) results 

in 

111 121 112 122

131 141 132 142

113 123 114 124

3 133 143 134 144

3112

3122 322

( ) .

0 0 0 0

0 0 0

0 0

sI A A A A

A sI A A A

A A sI A A

U s A A A sI A

A

A A

 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

− − − −

− − − −

− − − −

= − − − −

−

− −

 

It is then clear that 
3
( )U s  loses rank if and only if 

32
( )U s  loses rank, where 

111 121

131 141

32

113 123

133 143

( ) .

sI A A

A sI A
U s

A A

A A

 
 
 
 
 
 
 
   

− −

− −

=

− −

− −

 

It is easy to see that if 
12
( )U s  is full rank, then 

32
( )U s  is also full rank. If ( )1 31

A A,
� �

 is minimum phase, 

then 
12
( )U s  is full rank (and 

32
( )U s  will also be full 

rank) when s
+

∈�  which implies that any values of s  

that make 
32
( )U s  lose rank will be stable, resulting in 

the detectability of ( )1 31
,A A,

� �

 and as a consequence a 

stable sliding motion existing for the first observer.    � 

Therefore, the results in this section show that 

Conditions C1-C3 (which guarantee DDFR using the 2-

observer structure in this paper) are guaranteed by 

Conditions B1 - B2. Hence Theorem 1 is proven.     � 

Remark 3: Notice that Condition B2 is less restrictive 

than Condition A2 because Condition A2 implies that 

121
0A = ,

123
0A = ,

361
0A =  whereas Condition B2 

implies that 
123 121 123 361

( ) [ ]T T T T
rank A rank A A A=  which 

is obviously a weaker condition. Recall that for the work 

that uses only one observer [8,9], DDFR can be 

guaranteed if A2 is satisfied. Therefore, the 2-observer 

algorithm in this paper is able to achieve DDFR for a 

wider class of systems compared to using only one 

observer as in [8,9]. 

Remark 4: The ability of the second observer to 

achieve DDFR does not depend on the design of the first 

observer, namely 
l

G  and 
1
.L  This is seen from the 

fact that the conditions B1 and B2 are in terms of the 

original system matrices. Therefore, it is possible for the 

designer to know from the outset whether DDFR can be 

achieved using the 2-observer method in this paper, 

without having to a-priori design the first observer. 

 

5. SIMULATION EXAMPLE 

 

The method described in this paper will be 

demonstrated using a simulation example. Consider a 3rd 

order general nonlinear system described as: 

3 2

1 2 33 2
,

d d d
a a a u

dtdt dt
θ θ θ θ ξ+ + + + =  (66) 

where θ  is the position and u  is the measurable 

control input. For simplicity, let 0.u ≡  Without loss of 

generality, the term ξ  will encapsulate any 

disturbances or nonlinearities present in the system. For 

example, for a nonlinear uncertain system represented by 
3 2

3 2

2

1 2 3
sin( )d d d

dtdt dt

a a a d uθ θ θ θ θ θ+ + + + + + =  where 

d  is an external disturbance, then 2sin( ) .dξ θ θ= + +  

Let 
1

2,a =
2

3,a =
3

4.a =  Assume that θ θ θ, ,
� ��  are 

measurable. However, let the sensors of θ θ,� ��  be 

assumed to be faulty. Hence the sensor equations can be 

written as  

1 2 3
.

heta
y f y f y

θ
θ θ θ= + , = + , =�
�� �  

Filter the signals 
1
y ,

2
y  to respectively generate 

1fy ,

,  

2fy ,

 as follows: 

1 1 11
,f ff

y y y fy
θ

θ
, ,,

= − + = − + + ��
���  (67) 

2 2 22
.f ff

y y y fy
θ

θ
, ,,

= − + = − + + �
��  (68) 

Combine (67), (68) and (69) to obtain the following 

state-space system in the framework of (1)-(2) where 
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2 1 3

0 1 0 0 0 0 0

0 0 0 0

,1 0 0 0 0 0 0

0 1 0 1 0 1 0

1 0 0 0 1 0 1

a a a

A M

   
   − − −   
   = , =
   

−   
   −   

� �

 (69) 

0

0 0 1 0 01

0 0 0 1 0 .0

0 0 0 0 10

0

Q C

 
       = , =       
  

� �

 (70) 

Notice that (69)-(70) is already in structure of (3)-(6). 

From the parameters given above, it can be established 

that 5n = , 3p = , 2q = , 1h = ,
1

0 0.CQ k= ⇒ =  Com-

paring with (7), it is clear that 
32 36

0 [1 0]
T

A A
∗ ∗
= , =  

hence Condition A2 is not satisfied and it is not possible 

to guarantee DDFR using one observer as described in 

Section 2.1. Besides, by further analyzing the work in 

[9,8], it is found that when 
32

0A
∗
= ,

36
0A

∗
≠ ∞  it is 

impossible to achieve DDFR using one observer. 

However, Conditions B1 and B2 are satisfied, hence it is 

possible to achieve DDFR using the 2-observer method 

in this paper. The following choice of coordinate 

transform Z  

3

0 1 0

1 0 0

0 0

Z

I

 
 =  
  

 

will cause A to have the structure in (28) with 
322

A =  

(empty matrix)φ  and 
3112

1,A =  which is full rank. 

 

5.1. Design of observer 1 

It is desired that 
1 3

( ) 2 3,A LAλ + = − ,−
� �

 hence the 

appropriate choice of 
1
L  is 

1

3
.

3
L

 
=  − 

 The observer 

gains 
l o

G P,  are designed using the method in [3] where 

1 3
( )A LAλ +

� �

 are a subset of ( ).
l

A G Cλ −  From [3], by 

choosing the remaining eigenvalues of 
l

A G C−  to be 

3 4 5,− ,− ,−  the gain 
l

G  can be obtained, and a suitable 

choice of 
o
P  was found to be 

3
.

o
P I=  From the 

values of 
o
P  and L  obtained, the gain 

n
G  can be 

determined from (12). The following are the calculated 

values of the gains (that will guarantee sliding motion of 

the first observer): 

16 0 0 3 0 0

6 0 0 3 0 0

.6 0 0 1 0 0

3 3 0 0 1 0

3 0 4 0 0 1

l n
G G

− −   
   
   
   = , =
   
−   

      

 

5.2. Design of observer 2 

Choosing 
1 2

1α α= =  results in the following 

matrices 

2 0 0 0 0 0

1 3 0 0 0 0
,

1 0 1 0 1 0

0 1 0 1 0 1

A M

−   
   −   = , =
   −
   

−   

 (71) 

0
0 1 0 0

1
0 0 1 0 .

0
0 0 0 1

0

C Q

 
   
   = , =   
    

 

 (72) 

Comparing A, M , C, Q  with (53)-(55), it can be 

seen that 
11

1Q = ,
22

empty matrixQ φ= ,
32
IC =  and 

2
,

o
IM =  hence resulting in A123=1 which has full 

column rank. As a consequence, Condition C2 is 

satisfied, which verifies the earlier fact that 2 observers 

are sufficient to achieve DDFR. 

In designing the second observer, 
1
L L= = [ 1−  0 0] 

is chosen so that the reduced order sliding motion for the 

second observer has a pole at 3.−  (See [8] on how the 

matrix 
1
L  is designed to achieve DDFR for the second 

system (71)-(72)). The gains 
lG  and 

oP  are designed 

using the algorithm in [3]; the remaining eigenvalues of 

l
A G C−  are specified to be 4, 5, 6,− − −  and 

3o
IP =  

is an appropriate choice. The following gains are the 

resulting appropriate gains to guarantee a sliding motion: 

1 0 0 2 0 0

1 0 0 2 0 0
.

0 1 0 1 4 0

0 0 1 1 0 5

n lG G

   
   
   = , =
   
   
   

 

Then choosing [ ]1
1 0

T

W = −  to get 
1 1 0

0 0 1
W

− 
=  
 

 

results in DDFR being achieved. 

 

5.3. Simulation results 

Faults were injected into the faulty sensors, together 

with the disturbance .ξ  The left subfigure of Figs. 2 

and 3 show the faults, and Fig. 4 shows the disturbance 

.ξ  The middle subfigure of Figs. 2 and 3 shows the 

reconstructions of the fault which are visually identical 

to the fault despite the presence of the disturbance ,ξ  

confirming the achievement of DDFR. The right 

subfigures of Figs. 2 and 3 shows the fault reconstruction 

error ˆ ,f f−  though non-zero1, is very small. 

                                                           
1This is due to the sigmoidal approximation to obtain veq in (17) 

which will result in a small phase lag between the fault and the 

fault reconstruction. The bigger the value of δ  in (17), the 

bigger will the phase lag be. 
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Fig. 2. The left subfigure is the fault in sensor 1, the 

middle subfigure is its reconstruction, and the 

right subfigure is the fault reconstruction error. 

 

 

Fig. 3. The left subfigure is the fault in sensor 2, the 

middle subfigure is its reconstruction, and the 

right subfigure is the fault reconstruction error. 

 

 

Fig. 4. The disturbance .ξ  

6. CONCLUSION 

 

This paper has presented new results in DDFR using 

two sliding mode observers in cascade. Measurable 

signals from the first observer are treated as the output 

for a second observer which will reconstruct the fault. It 

was found that by using two observers, DDFR could be 

achieved for a wider class of systems compared when 

just only one observer being used. This paper also 

investigated the conditions that guarantee the success of 

the scheme, which are found to be easily testable in 

terms of the original system matrices. This is very useful 

because the user can know from the outset whether the 

scheme in this paper is applicable to a particular system 

or not. A simulation example validates the claims made 

in this paper. The usage of a higher and general number 

of observers for further enhanced DDFR is under the 

authors’ investigation. 

 

APPENDIX A 

A.1. Proof of Proposition 1 

From [3], since N1 holds, then there exists a change of 

coordinates such that ( , , )M C Q  can be written as 

[ ] 1

2

2 2

0 0
, 0 ,

,

n p

p
o

Q
M C T Q M

MQM

 −
 
 
  

  
= = = =  
   

�

�

�
� �� �

��

 (A.1) 

where T is orthogonal and M
o
 is square and invertible. 

Let 21

2

22

.

p q

q

Q
Q

Q

− 
=  
 

�

�

�
�

�
 Since 

1
( ) ,rank CQ k=
� �  then 

12
( )rank kQ =�  as T  is orthogonal. From the structure 

of C�  in (A.1), it results in 

21

22

0
.

o

Q
C M Q T

M Q

 
  =   

  

�
� ��

�
 (A.2) 

Assumption N2 then results in 
121

( )rank kQ =�  and 

hence 

21
21

22

( ) .
Q

rank rankQ
Q

 
=  

 

�
�

�
 (A.3) 

Therefore, there exists a matrix 
†

21Q�  such that 

1

†

2121

0 0

0
T

k

Q R RQ
I

 
 
 
 
  

=�  where R  is an orthogonal 

matrix. It then follows that 

†

22 21 21 22
0.Q Q Q Q− + =� � � �  (A.4) 

Hence, applying the following change of coordinates 

pre
x T x�  where 

†

22 21

0 0

0 0

0

n p

p q
pre

q

I

T I

IQ Q

−

−

 
 

:=  
 

−  

�

�

�� �

 (A.5) 
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and the structures in (3)-(4) are achieved. 

Since 

121
( ) ,rank kQ =�

 there exists orthogonal matrices 

( ) ( )
1 ,

n p n p
N

− × −

∈�
( ) ( )

2
p q p q

N
− × −

∈�  such that 

1

1

1

1

12

1 11 1311

2 21

22

0

0

0 0 0

0 ,

n p h k

h k

p k q

k

Q

N Q QQ
T

N Q

Q

ξ

  − − +
 
   − − 
  

− −   
 
   

 
= 

 

�

�

�

�

�

�
 

where 
11

Q ,
22

Q  are square and invertible. 

Then define 

1 1 1 1
,

a b c
T T T T=  

where 

1

1

1

1

1

12 22

1

13 22

1

0 0 0

0 0 0

,0 0 0 0

0 0 0 0

0 0 0 0

n p h k

h k

a p k q

k

q

I Q Q

I Q Q

T I

I

I

− 
 − − +
 

− 
 −
 
 

− − 
 
 
 
 
   

−

−

=  

1

1 2

0 0

0 0 ,

0 0

b

q

N

T N

I

 
 
 
 
 
 
  

=  

1

†

22 21

0 0

0 0 ,

0 0

n p

c p q

I

T I

Q Q

−

−

 
 
 =
 
 − 

� �

 

and performing the transformations 
1
,x T x�  Tξξ ξ�  

results in 1

1
,Q TQTξ

−

�
1

,M T M�
1

1
C CT

−

�  and the 

structures in (3)-(6) are achieved.                  � 
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