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Abstract— The detection of brain responses at the single-trial
level in the electroencephalogram (EEG) such as event-related
potentials (ERPs) is a difficult problem that requires different
processing steps to extract relevant discriminant features. While
most of the signal and classification techniques for the detection
of brain responses are based on linear algebra, different pattern
recognition techniques such as convolutional neural network
(CNN), as a type of deep learning technique, have shown some
interests as they are able to process the signal after limited
pre-processing. In this study, we propose to investigate the
performance of CNNs in relation of their architecture and in
relation to how they are evaluated: a single system for each
subject, or a system for all the subjects. More particularly,
we want to address the change of performance that can be
observed between specifying a neural network to a subject, or
by considering a neural network for a group of subjects, taking
advantage of a larger number of trials from different subjects.
The results support the conclusion that a convolutional neural
network trained on different subjects can lead to an AUC above
0.9 by using an appropriate architecture using spatial filtering
and shift invariant layers.

I. INTRODUCTION

In machine learning, the methods based on deep learning
have gained a great success in classification problems, opti-
mization control, and time series analysis. More particularly,
deep learning methods for pattern recognition using prior
information about the problem for the creation of their archi-
tecture, such as the number of main dimensions in the input
signal, and the type of variations that can occur across trials,
have won a large number of competitions [1]. Convolutional
neural networks (i.e., conv nets or CNN) have been initially
proposed and evaluated for handwritten character recognition
during the 90s, providing state-of-the-art results, and they
have been popular in the research community of document
analysis and recognition [2]–[4]. Because the architecture of
a conv net must be set in relation to a particular problem,
with specific connections between units in the network,
its implementation must be specific as each hidden layer
includes more characteristics than a fully connected hidden
layer in a multi-layer perceptron (MLP). Thanks to graphical
processing units and recent open-source libraries that allow
to focus only on the choice of the architecture, and not the
implementation of the conv net itself, more architectures
and deeper architectures can be tested rapidly on various
databases [5].

While conv nets have been successfully used in com-
puter vision, they have not been fully exploited in elec-
troencephalograhy (EEG) signal processing, for applications
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such as brain-computer interface. First, the low number of
available trials to train a model and the low signal-to-noise
ratio do not allow to easily capture the manifold where lies
the data. Most of the signal processing and classification
techniques rely on linear algrebra, e.g. linear classifiers, for
the classification of ERPs. Some studies using conv nets have
been proposed for the detection of event-related potentials
(ERPs) in the EEG signal, e.g. the P300 [6], with applications
to the P300 speller and rapid serial visual presentation tasks
for target detection [7]. These architectures typically include
a first convolutional layer that acts as a spatial filtering layer,
then the next layers decrease the number of features through
filtering in the time domain and/or subsampling functions.
Finally, the last hidden layers may include a fully connected
hidden layer. It is worth noting that as linear discriminant
analysis provides relevant results for ERP detection, it is
not necessary to use a fully connected hidden layer at the
last stage of the architecture, i.e., such as a multi-layer
perceptron after the extracted features through a succession
of convolution and pooling functions. Special architectures
have also been proposed for the detection of steady-state
visual evoked potentials (SSVEP), where spatial filtering
was achieved through a convolutional layer and then the
Fourier transform was inserted between two hidden layers
to transfer the power spectrum of the signal to higher levels
in the network [8]. In all these cases, these architectures
used sigmoid functions as activation units as opposed to the
most recent rectified linear unit function (ReLU) [9], which
provides a reduced likelihood of vanishing gradient.

In this paper, we propose to compare different archi-
tectures of conv nets by using state-of-the-art functions
that are readily available online with current libraries and
toolboxes (e.g. Matlab). This paper focuses therefore on the
choice of the architecture, and it does not aim at providing
new convolution or pooling functions. The performance is
evaluated on a database of healthy participants who had
to search a target image during a rapid serial presentation
task [10], [11]. We propose to investigate the performance
of CNNs in relation of their architecture, and also in relation
to the evaluation method: a single system for each subject,
or for all the subjects. More particularly, we want to address
the change of performance that can be observed between
specifying a neural network to a subject, or by considering a
neural network for a group of subjects, taking advantage of
a larger number of trials from different subjects. The extent
to which it is better to have a subject-specific system or not
is important in the field of brain-computer interface (BCI)
because the user experience must be enhanced for patients
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who would need to use a BCI daily by removing the need of a
calibration session. The remainder of this paper is as follows.
The inputs and the convolutional layers are described in
Section II. The results are presented in Section IV. Finally,
the impact of the results are discussed in Section V.

II. METHODS

We consider inputs of size Nt × Nc where Nt and Nc

represent the number of time points and the number of chan-
nels, respectively. The architecture of a conv net contains
several hidden layers, including at least one convolutional
layer. In this type of network, the weights of the layer are
shared across the different inputs. The weight sharing model
reduces the number of parameters to learn in the network,
making a conv net faster to train. The convolution on a
2D signal such as an image behaves like the application
of a linear filter, follows by an activation function (e.g.
sigmoid or ReLU function). The architecture of a conv net
depends on the problem and the type of variations across
trials. With images, it is easy to get a good feeling about
the geometric deformations that can be applied on the signal
and keep the same label. For the choice of the architecture
with images, it is also possible to get inspired by the visual
system in the human brain. However, for the classification
of brain responses, it is more difficult to determine what
type of features must be extracted. For the detection of
ERPs, the experimental protocol has a central role as it
will determine what will be the ERP components and their
characteristics that can vary between two conditions (i.e.,
target vs. non-target). For the classification of ERPs for BCI
that include the P300, a large ERP component, it is important
to determine the type of changes that can occur over time.
A first assumption is the stationarity of the spatial location
of the brain responses of interest. We assume that there
exists a finite subset of spatial distribution where we can
find discriminant information for the task. This first stage
can be achieved by spatial filtering, where the input signals
acquired from different channels is then projected to one or
several “virtual” channels. Spatial filtering can be achieved
through a convolutional layer of size [1 × Nc]. It is worth
noting that the spatial filtering stage can include more layers,
e.g. by grouping sensors that are close, taking into account
the spatial location of each sensor. In such a case, weight
sharing may not be the ideal choice as each neighborhood
may rely on a specific function. The next processing step
can deal with the reduction of the number of time points.
This stage is necessary if the signal has a high sampling
rate and the signal has not beeen downsampled. In recent
BCI competitions related to ERPs detection, the signal was
often bandpassed to frequencies that are limited to the delta,
theta, and alpha bands [0.1-12 Hz], suggesting the number of
time points could be limited if the main ERP component is
the P300. Other signal processing steps that can be included
through the architecture of the conv net include the extraction
of shift invariant features.

III. EXPERIMENTAL PROTOCOL

The EEG database was previously used in [12], [13]. The
experimental protocol is described thereafter. Participants
were seated 75 cm from a Dell P2210 monitor. They viewed
a series of simulated images from a desert metropolitan
environment using a rapid serial visual presentation (RSVP)
paradigm. Images (960 × 600 pixels, 96 dpi, subtending
36.3 × 22.5) were presented using E-prime software on a
Dell Precision T7400 PC. Images were presented with a
stimulus onset asynchrony of 0.5 s, with no inter-stimulus
interval. Images contained either a scene without any people
(non-target) or a scene with a person holding a gun (tar-
get). 110 target images and 1346 non-target images were
presented to each participant. Scenes in which a target
appeared were also presented without the person in the non-
target condition. All stimuli appeared within 6.5 degrees
of center of the monitor. The purpose of the task was to
discriminate target images from non-target images. In the
considered data, 16 participants responded to targets by
silently counting the number of targets. Electrophysiological
recordings were digitally sampled at 1024 Hz from 64 scalp
electrodes arranged in a 10-10 montage using a BioSemi
Active Two system (Amsterdam, Netherlands). Impedances
were kept below 25 kΩ. External leads were placed on
the outer canthus of both eyes, and above and below the
right orbital fossa to record the electrooculogram signal.
The signal was then bandpassed between 0.1 and 21.33 Hz
using a 4th order Butterworth filter. Finally, the signal was
downsampled to 64 Hz. For each stimulus, we selected the
signal corresponding to 800 ms after the stimulus onset, i.e.,
51 time points. Hence, each example in the database is a
matrix of size 51 × 64, which is about the same size of the
images in computer vision problems.

A. Conv nets

We propose 6 neural networks architectures in order to
highlight the effect of some hidden layers. In all the models,
the activation unit is a ReLU function (f(x) = max(0, x)),
the number of neurons in the output layer is set to 2, i.e.,
the number of classes, and the outputs are normalized with a
softmax function. The first architecture CNN1 has no hidden
layers: the inputs are directly connected to the output layer. In
CNN2, there is a single hidden layer with 10 neurons. With
CNN3, we consider a first convolutional layer with 8 maps,
the convolution window is set to [1×64], it corresponds to a
spatial filtering function. In the second convolutional layer,
the layer has only a single dimension (in time). We use 16
maps with a convolution window set to [48 × 1], hence this
layer is almost a classification layer as it considers most of
the inputs. Thanks to this convolution, we obtain a set of
outputs that corresponds to different shifts of a part of the
input features. Finally, this layer is fully connected to the
output layer. For CNN4, CNN5, and CNN6, we use only a
single convolutional layer with spatial filtering purpose ([1×
64]) with 4, 8, and 16 maps, respectively. The selection of
the best model is based on the maximization of the area
under the ROC curve (AUC) by using a validation dataset.



Fig. 1. Description of the different architectures.

Because the number of target trials is significantly inferior
to the number of non-target trials, the target trials have been
replicated in the training dataset for each epoch.

B. Performance evaluation

For the performance evaluation, we consider two con-
ditions. In the first condition, a model is trained for each
participant. We consider a 5-fold cross validation procedure,
where 1 fold is used for the test, 1 fold is used for the
validation, and the 3 remaining folds are use for training
the model. In the second condition, a model is trained for
all the participants. We consider a 16-fold cross validation
procedure where 1 fold, i.e. 1 subject, is dedicated to the test,
1 fold is used for the validation, and the other blocks are used
to train the model. With the last condition, the trials from
different subjects are not mixed, hence the classifier is never
trained on data from a subject that is used for the test or the
validation. The system was implemented with Matlab2016b
and its deep learning toolbox using an Intel i7-6700K, 32Gb,
and an NVidia GTX1080 graphic card.

IV. RESULTS

The results for the models that were trained for each
subject are presented in Table I. The mean and standard
deviation across the 5 folds are given for each subject and
architecture. The worst results are obtained with CNN1 that
is the simplest architecture, as there is no hidden layer. While
the results are inferior to other architectures, the AUC is
0.831, which is significantly above chance level, confirming
that a simple method, with no prior information about the
problem can lead to an efficient solution. Between CNN4,
CNN5, CNN6, the variation of the number of spatial filters
does not have a fundamental impact on the overall perfor-
mance, with an AUC of 0.897 ± 0.041, 0.894 ± 0.039, and
0.891±0.043. With pairwise comparisons using a Wilcoxon
signed rank test, the performance obtained with CNN1 is
significantly lower than with the other methods. However,
there is no statistically significant difference between the
other methods, showing that a deep architecture does not
have a significant effect.

The results for the models that are trained with several
subjects are presented in Table II. The best performance is
obtained with CNN3 with an average AUC of 0.905. With
a Wilcoxon signed rank test, pairwise comparisons reveal
that CNN3 provides better performance than CNN1, CNN2,
and CNN4. As there is no difference between CNN3 and
CNN5, it indicates that the second convolutional layers has
no key impact on the performance. Overall, based on the
results from both conditions, the results indicate the need of
a special architecture for the features extraction in the ERPs.

V. DISCUSSION AND CONCLUSION

Methods based on linear algebra such as xDAWN [14]
for spatial filtering and LDA and its variant for classifi-
cation have offered in different applications state-of-the-art
performance. With the recent availability of tools that allow
biomedical engineers to focus only on the architecture, conv
nets provide now a reliable alternative to linear algebra
based techniques. In the present paper, we have focus on
the evaluation of artificial neural networks, more particularly
convolutional neural networks. We have shown that it is
possible to achieve a better performance by training a model
with a large number of subjects, instead of learning a model
for each individual, by taking advantage of a high number of
training samples. A key problem in BCI and in many human-
computer interaction applications is the need of a calibration
session to model the characteristics of the user. A calibration
session before each use of the system can significantly
decrease the users comfort. Thanks to a model that is able to
capture a large variability across trials, it is then possible to
model a multi-subject classifier. We have shown that while
the type of system requires a long time for the estimation
of the model, i.e., to train the classifier, the performance
can be robust enough for the creation of a generic classifier.
Different preprocessing steps can be included within the
architecture of a conv net, such a spatial filtering, and the
extraction of shift invariant features. Surprisingly, the results
on the chosen ERP database suggest that a deep architecture
is not necessary and that the convolutional layers, i.e. the
decomposition of the different dimensions of the input signal,



TABLE I
SINGLE-TRIAL PERFORMANCE (AUC) FOR DIFFERENT CNN ARCHITECTURES (EACH CNN MODEL IS TRAINED FOR EACH SUBJECT).

Subject CNN1 CNN2 CNN3 CNN4 CNN5 CNN6

1 0.888± 0.027 0.854± 0.026 0.846± 0.035 0.859± 0.025 0.849± 0.026 0.844± 0.030
2 0.771± 0.089 0.817± 0.046 0.831± 0.090 0.807± 0.056 0.830± 0.050 0.777± 0.063
3 0.949± 0.026 0.967± 0.017 0.969± 0.014 0.966± 0.010 0.965± 0.015 0.963± 0.009
4 0.862± 0.076 0.878± 0.057 0.885± 0.029 0.896± 0.046 0.872± 0.023 0.879± 0.034
5 0.854± 0.063 0.873± 0.070 0.871± 0.045 0.879± 0.051 0.873± 0.052 0.877± 0.063
6 0.831± 0.072 0.835± 0.057 0.881± 0.044 0.874± 0.052 0.866± 0.040 0.862± 0.052
7 0.903± 0.023 0.929± 0.021 0.929± 0.031 0.942± 0.023 0.928± 0.032 0.932± 0.024
8 0.454± 0.149 0.706± 0.083 0.832± 0.040 0.846± 0.031 0.826± 0.036 0.819± 0.045
9 0.911± 0.038 0.965± 0.023 0.944± 0.046 0.946± 0.037 0.945± 0.041 0.950± 0.037
10 0.600± 0.141 0.719± 0.064 0.801± 0.078 0.816± 0.050 0.832± 0.056 0.805± 0.062
11 0.812± 0.083 0.896± 0.051 0.892± 0.073 0.892± 0.074 0.884± 0.062 0.884± 0.078
12 0.951± 0.022 0.953± 0.025 0.952± 0.037 0.955± 0.028 0.956± 0.020 0.956± 0.027
13 0.930± 0.073 0.974± 0.021 0.969± 0.024 0.977± 0.010 0.970± 0.025 0.970± 0.027
14 0.941± 0.028 0.938± 0.058 0.953± 0.039 0.942± 0.031 0.963± 0.029 0.964± 0.030
15 0.775± 0.067 0.841± 0.062 0.894± 0.052 0.876± 0.071 0.857± 0.095 0.882± 0.066
16 0.860± 0.078 0.880± 0.050 0.873± 0.027 0.873± 0.055 0.893± 0.024 0.888± 0.040
Mean 0.831± 0.066 0.876± 0.046 0.895± 0.044 0.897± 0.041 0.894± 0.039 0.891± 0.043
SD 0.134± 0.039 0.081± 0.021 0.053± 0.021 0.053± 0.019 0.052± 0.020 0.061± 0.019

TABLE II
SINGLE-TRIAL PERFORMANCE (AUC) FOR DIFFERENT CNN

ARCHITECTURES (EACH CNN MODEL IS TRAINED WITH 14 SUBJECTS).

Subject CNN1 CNN2 CNN3 CNN4 CNN5 CNN6

1 0.897 0.886 0.915 0.909 0.917 0.914
2 0.801 0.797 0.855 0.796 0.797 0.815
3 0.959 0.961 0.972 0.972 0.969 0.960
4 0.907 0.910 0.901 0.901 0.921 0.921
5 0.907 0.879 0.935 0.894 0.916 0.904
6 0.866 0.860 0.857 0.844 0.838 0.843
7 0.903 0.915 0.948 0.921 0.945 0.949
8 0.780 0.705 0.787 0.791 0.742 0.777
9 0.925 0.955 0.956 0.961 0.948 0.962
10 0.694 0.721 0.803 0.755 0.780 0.720
11 0.909 0.900 0.920 0.894 0.904 0.907
12 0.958 0.957 0.975 0.972 0.974 0.983
13 0.944 0.923 0.950 0.927 0.932 0.946
14 0.928 0.915 0.930 0.933 0.937 0.922
15 0.848 0.860 0.845 0.857 0.870 0.859
16 0.920 0.936 0.924 0.918 0.918 0.937
Mean 0.884 0.880 0.905 0.890 0.894 0.895
SD 0.072 0.078 0.058 0.065 0.070 0.073

are not necessary either.
Further work will be dedicated to the optimization of the

architecture and the addition of artificial trials to extend
the training database. Finally, while very deep architectures
could provide better results than the results presented in
this paper, the choice of the architecture should be ideally
justified and its performance could help to better understand
the variations that occur across trials during an experimental
task.
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