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ABSTRACT 

 

The objective of this study is to assess the relevance of several multi-step reaction mechanisms to describe 

the mass loss and the mass loss rate of pine needles in TGA at different heating rates in inert and oxidative 
atmospheres. The kinetic parameters of the different reactions were optimized using the Shuffled complex 

evolution (SCE) technique. Model results show that both mass loss and mass loss rate should be considered 

in order to evaluate properly the mechanism. The drying process is described accurately by a single 

reaction with a well-established set of kinetic parameters. The conversion of dry pine into char requires a 

five-step reaction mechanism that is combined of three reactions to describe the pyrolysis under inert 

atmosphere and another two reactions to describe the oxidative process. Less detailed mechanisms were 

found to be unable to reproduce the mass loss rate. In particular, the one-step reaction mechanism, widely 

used to model the pyrolysis process in wildland fire simulations, should be used with care. Finally, the char 

oxidation process can be described with a single step-reaction mechanism. The final complex mechanism is 

comprised of one reaction for drying, five reactions for the conversion of dry pine into char, and one 

reaction for the char oxidation, is promising. Further studies are required for its validation in large-scale 

experiments.  
 

KEYWORDS: Forest fires; pine needles, Gpyro, Thermal degradation, Thermogravimetric analysis, 

Shuffled complex evolution (SCE), Multi-step reaction mechanism. 

NOMENCLATURE LISTING  

A Pre-exponential factor (s-1) 𝜌 density 

Ea activation energy (J.mol−1) τ dummy variable of integration 

m Mass (g) 𝛹 porosity 

p pressure ώ" reaction rate 

R Universal gas constant  subscripts 
t time g gas 
T Temperature i Condensed phase species i 

Y mass fraction j Gaseous species j 
z distance f formation 

∆z Grid size DWF Dry wildland fuel 

  GA Genetic algorithms 

Greek MLR TGA 

β Heating rate (°C.min-1) PP Pinus Pinaster 

n Reaction order SCE Shuffled complex evolution 

T Temperature (°c) TGA Thermo-gravimetric analysis 

t Time (s) WWF Wet wildland fuel 

υ stoichiometric factor ◦ At time t 
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1. INTRODUCTION  

Forest fire represents a major environmental threat to the Mediterranean region. The statistics showed that 

more than 50.000 fires occur per year [1-2]. An average of 600,000-800,000 ha, is being burnt annually.  

Ignition and propagation of forest fires are complex phenomena involving several scales whose ranges go 

from micrometer to several kilometers. Using the scales nomenclature of Séro-Guillaume and Margerit [3], 

four scales can be defined from the smallest to the largest: 1) the microscopic scale. This scale is that a 
vegetation particle, and the main physical effects involved at this scale are the drying and the thermal 

degradation. 2) The mesoscopic scale where all the elements of vegetation and air form a porous medium. 

3) The macroscopic scale where the forest fuel is considered as a locally homogeneous medium composed 

of vegetal and air. This scale is the first relevant scale to develop a fire spread model. 4) The “gigascopic” 

scale where the vegetation appears as a boundary layer and the flame front as a line. Wildland fire spread 

models can be divided into three classes, namely statistical, semi-empirical and physical [4]. The two first 

classes of models operate generally at the “gigascopic” scale whereas the latter is developed at the 

macroscopic scale. Physically-based models, initiated by Grishin [5], differ from statistical and empirical 

models in what they account for each mechanism of heat transfer individually and predicts not only the 

spread rate of the fire but also its complete behavior. The thermal degradation of the solid phase as well as 

the combustion of the gaseous pyrolysis products are described, requiring the development of specific 

kinetic models for the vegetation fuels. Most of the physically-based models have considered a simplified 
three-step reaction mechanism for the thermal degradation of wildland fuel [6-11]. The first reaction is 

related to the drying process with the wet wildland fuel (WWF) being converted into dry wildland fuel 

(DWF) and water vapor, the second reaction is related to the pyrolysis process with the DWF being 

converted into char and gaseous pyrolysis product while the third reaction is related to the char oxidation.  

The degradation model implemented in Wildland Urban Interface Fire Dynamics Simulator (WFDS) [12] is 

also based on a simplified degradation mechanism with a two stage endothermic decomposition process 

including water evaporation followed by solid fuel volatilization. On the other hand, FIRETEC [13] does 

not consider explicitly a degradation model. FIRETEC was initially dedicated to simulate wildfires at 

relative large scale, requiring relatively coarse grids. As a consequence, pyrolysis and gas-phase 

combustion were assumed to take place at the same location and a single-step reaction accounting for the 

two processes was developed. 
The validity of this simple description as well as the development of more complex kinetic mechanisms for 

the wildland fuel is challenging due to the complexity of the fuel composition. One way to develop and 

calibrate kinetic mechanism for wildland fuel is to use Thermogravimetric Analysis (TGA) [14-18]. The 

concept of TGA is that it measures the amount of weight change of a material, either as a function of 

increasing temperature, or isothermally as a function of time, in an atmosphere of nitrogen, helium, air, 

other gas, or in vacuum. Examples of kinetic models on pyrolysis and combustion of pine needles and 

cones were introduced [15, 17] Many works used thermogravimetric analysis to determine the kinetic of 

thermal decomposition of fuel beds [16, 19]. Most of the previous studies focus only on one single step 

reaction mechanism to determine the thermal degradation process of wildland fuels [19-20], which lacks a 

detailed description of the thermal degradation of the wildland fuels. Therefore, in this work, several multi-

step reaction mechanisms will be used to derive a detailed description of the thermal degradation of 

wildland fuels. In a recent study, TGA data, obtained at an inert and oxidative atmosphere, were coupled to 
a genetic Algorithm to determine the kinetic of degradation of pine needles [18]. A complex mechanism 

was established and the corresponding kinetic parameter providing the best fit between data and model 

results were determined. This model includes the following reactions: 

 

𝑅1: 𝑊𝑊𝐹 → 𝜈𝐻2𝑂𝐻2𝑂 + (1 − 𝜈𝐻2𝑂)𝐷𝑊𝐹       (1) 

𝑅2: 𝐷𝑊𝐹 → 𝜈1(𝛼 − 𝑃𝑖𝑛𝑒) + (1 − 𝜈1)𝐺𝑎𝑠       (2) 

𝑅3: (𝛼 − 𝑃𝑖𝑛𝑒) → 𝜈2(𝛽 − 𝑃𝑖𝑛𝑒) + (1 − 𝜈2)𝐺𝑎𝑠      (3) 

𝑅4: (𝛽 − 𝑃𝑖𝑛𝑒) → 𝜈3𝐶ℎ𝑎𝑟 + (1 − 𝜈3)𝐺𝑎𝑠       (4) 

𝑅5: (𝛼 − 𝑃𝑖𝑛𝑒) → 𝜈4(𝛽 − 𝑃𝑖𝑛𝑒) + (1 − 𝜈4)𝐺𝑎𝑠      (5) 

𝑅6: (𝛽 − 𝑃𝑖𝑛𝑒) → 𝜈5𝐶ℎ𝑎𝑟 + (1 − 𝜈5)𝐺𝑎𝑠       (6) 

𝑅7: 𝐶ℎ𝑎𝑟 → 𝜈6𝐴𝑠ℎ + (1 − 𝜈6)𝐺𝑎𝑠        (7) 

 

Reactions (R5) to (R7) were found to complement reactions (R2) to (R4) under oxidative atmosphere.  



Due to their detailed description of the fire phenomena, physically based models require a large amount of 

computational resources and removing the widely used three step mechanism by a complex mechanism to 

describe the thermal degradation of the vegetal fuel will add to the complexity. The aim of this study is 

then to assess the capability of different thermal degradation models, ranging from the simplest to the more 

complex. The corresponding kinetic parameters will be determined from TGA data obtained by considering 

several heating rates under both inert and oxidative atmospheres.  
The Shuffled Complex Evolution (SCE) optimization algorithm [21], which is similar to the Genetic 

Algorithm [22-26], is used to optimize these kinetic parameters. Different optimization tools are available 

in literature such genetic algorithm (GA), shuffled complex evolution (SCE), and stochastic hill climber 

SHC. GA is widely used [22-26], it can be also coupled with nonlinear fitting algorithm as in [27] to obtain 

rapid convergence. However, according to a study done on optimization tools [14, 28] while using Gpyro, 

it was found that SCE technique is more suitable to be used since it is capable of reproducing material 

pyrolysis properties within approximately 1% of the actual data value. Therefore, in this work, the 

parameters optimization has been carried out using Shuffled complex evolution (SCE) technique [28].  

2. METHODS 

2.1. Experimental Setup  

The experiments were conducted on pine needles with type of Pinus pinaster collected from the 

Mediterranean basin in Marseille city located in France. The experimental data generated from TA-
Instrument TGA Q50 apparatus, its sample masses varies between 5±1 mg. Two atmosphere air conditions 

(nitrogen and air) were used while conducting the experiments. The experiments were conducted at 

different heating rates (5, 10, 15 and 20 °C/min) with temperature range of room temperature to 1000°C. 

More details about the experiment setup and the building of the 7-steps chemical mechanism can be found 

elsewhere [18]. 

2.2. Numerical Model  

In this work, Gpyro [29-34] version 0.8 was used to examine thoroughly the thermal degradation of pine 

needles under multi-step reaction mechanisms. In 0D simulation that is used in this study where quantities 

of particle temperature and mass vary only temporally but not spatially. Gpyro is able to solve 0D transient 

equations [33] that represent the mass and species evolution of a “lumped” particle having negligible 

gradients of temperature species as occurs in idealized thermal analysis experiments. For the applied 
equations in 0D are presented elsewhere [33]. It is also worth noting that the governing equations presented 

in [33] of 0D can be used to estimate differential thermogravimetric curves (  0dd mmt ) and 

thermogravimetric curves (m/m0). A differential thermogravimetric curve is calculated as: 
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Integrating the differential thermogravimetric curve gives the thermogravimetric curve:  
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3. RESULTS AND DISCUSSIONS 

3.1. Drying process 

The drying process is represented by reaction 1 in the introduction. For a given reaction, the reaction rate is 

given by:  

ώ"̇
𝑖 = 𝐴𝑒𝑥𝑝(− 𝐸𝑎 𝑅𝑇⁄ )𝑚𝑖

𝑛        (10) 

Where A is the pre-exponential factor, Ea the activation energy, n the reaction order, and mi the mass of the 

reactant (here WWF). The optimized kinetic parameters are provided in Table 1.  

 



Table 1. Estimated kinetic parameters for Dehydration. 

Reagent Product 
Kinetic parameters values 

𝐋𝐨𝐠𝐀(𝐬−𝟏) 𝑬𝒂(𝐤𝐉. 𝐦𝐨𝐥−𝟏) n(-) 𝜐(-) 

Wet pine Dry pine 9.71 78.6 4.29 0.9 

 

In the following, the focus will now be only on reactions that occur after dehydration under different 

atmosphere conditions (N2 and air), and the kinetic parameters reported in Table 1 will be used to model 
the drying process. Figure 1 depicts both experimental and predicted evolution of the mass loss (a) and 

mass loss rate (MLR) (b) as a function of the temperature at four different heating rates (5, 10, 15 and 20 

°C/min).  

 

  
(a) (b) 

Figure 1: Evolution of the mass loss (a) and mass loss rate (b) as a function of temperature for dehydration 

at four different heating rates. 

 

The total mass decreases as a function of temperature when water is released from pine needles. The mass 

of the wet wildland fuel decrease gradually whereas the mass of the dry wildland fuel increases.  It should 

be noted that at a temperature of 100 °C about one-half of the wet pine has been converted into dry pine 
and water vapor. At the end of the drying process, the mass of the sample has been reduced of 

approximately 10%wt, indicating that the initial moisture content was approximately 10%wt (see Fig. 1a). 

Figure 1b shows that the MLR increases with the heating rate. The prediction using the optimized kinetic 

parameters appears to be in very good agreement with the experimental data.  

3.2. Results under inert atmosphere 

In this section, several kinetic mechanisms, with increased level of complexity, are assessed to determine 

their capability to describe the pyrolysis process under inert atmosphere. 

a. One-step reaction mechanism 

The one-step reaction mechanism where DWF is converted into char and gaseous pyrolysis products is first 

considered. As mentioned in the introduction, this mechanism is currently used in physically based models 

of wildland fires.  

𝐷𝑊𝐹 → 𝜈𝑐ℎ𝑎𝑟𝐶ℎ𝑎𝑟 + (1 − 𝜈𝑐ℎ𝑎𝑟)𝐺𝑎𝑠        (11) 

Where the coefficient 𝜐 (-) [29] is estimated based on the bulk density ratio as:  

 υchar=ρchar/ρDWF                                                  (12)       

After the drying process, the first reaction under nitrogen occurs, converting dry pine into char and gaseous 

pyrolysis products as shown in Fig. 2. As an attempt to study the influence of the reaction’s order, the 



parameter n was either fixed to n=1 or to let free in the optimization process. The results are depicted in 

(Fig. 2a, Fig. 3a and Fig. 3b) and (Fig. 2b, Fig. 3c and Fig 3d) respectively. The optimized values of the 

kinetic parameters are summarized in Table 2 in the case where n is fixed to 1 and when n is let free in the 

optimization process. Figure 2 displays the numerical mass loss of condensed species as a function of 

temperature under a heating rate of 10 °C/min. Figure 2a presents the results in the case n = 1 whereas Fig. 

2b presents the results for an optimized order of reaction. 

Figure 2a and Fig. 2b show that, in both cases, the mass loss of the material is decreasing to around 370°C. 

In the case where n = 1(see Fig 2a), the decrease stops at this temperature whereas it keeps on slowly in the 

case of the non-fixed order of reaction where n = 5(see Fig. 2b). Another remarkable difference is related to 

the char formation. In the case where n = 1(see Fig 2a), all the dry pine is converted to char, whereas in 

case where n = 5(see Fig 2a), the char formation keeps on increasing. More insight concerning the 

differences between these two approaches is given in Fig. 3 that shows the cumulative mass loss and mass 

loss rate for the two cases. It can be clearly observed that mass loss is in good agreement with the 

experimental data in the case of the optimized reaction order (Fig. 3c), whereas with the fixed reaction 

order noticeable discrepancies are noticed (Fig 3a). Figure 3 indicates that the mass loss alone cannot be 

used to assess the quality of the fit as it was presented in other study as main factor in fire modeling [16]. In 

the case of the optimized reaction order, the kinetic mechanism with the set of parameters in Table 2 

reproduces well the mass loss but is unable to reproduce accurately the mass loss rate (see Fig 3c and Fig 
3d respectively). Therefore, in this case of pine needles thermal degradation, it seems that the pyrolysis 

process is not a first order reaction. 

  
(a) (b) 

Figure 2: Numerical mass loss of condensed species as function of temperature (°C) under a heating rate of 
10 °C/min for one-step reaction mechanism under nitrogen (a) fixed reaction order (n=1) and (b) for an 

optimized reaction order. 

Indeed, a first order reaction model is unable to capture correctly the right increase rate and decay rate of 

the total mass loss rate. Otherwise, when the reaction order is greater than 1, the decay rate of the mass loss 

rate at the higher temperature is quite well capture but the increase rate of the mass loss rate at lower 

temperatures is still not well captured. Therefore, as it can be observed from Fig. 3, the single step reaction 

mechanism failed to reproduce the experimental mass loss rate. Hence, mechanism that is more detailed 

will be introduced. 

 



  
(a) (b) 

  
(c) (d) 

Figure 3: Evolution of cumulative mass loss and mass loss rate of one-step reaction mechanism under 

nitrogen (a and b) for fixed reaction order (n=1) and (c and d) for the optimized reaction order at four 

different heating rates. 

b. Two-step reaction mechanism 

After demonstrating that single-step mechanism cannot be sufficient to represent the thermal degradation of 

pine needles under inert atmosphere, a two-step reaction mechanism is introduced.  

𝐷𝑊𝐹 → 𝜈1(𝛼 − 𝑃𝑖𝑛𝑒) + (1 − 𝜈1)𝐺𝑎𝑠       (13) 
(𝛼 − 𝑃𝑖𝑛𝑒) → 𝜈𝑐ℎ𝑎𝑟𝐶ℎ𝑎𝑟 + (1 − 𝜈𝑐ℎ𝑎𝑟)𝐺𝑎𝑠     (14) 

The first reaction concerns the conversion of Dry-Pine into α-Pine and gaseous pyrolysis products. Next, 

the α-Pine condensed specie is converted into char. The values of estimated kinetic parameters are 

presented in Table 2. Figure 4 displays the numerical mass loss of condensed species as a function of 

temperature under heating rate of 10 °C/min. Between 250-450 °C the total mass decreases tremendously 

around 60% after the dry pine needles is formed from wet pine needles to result in char formation.  The 

cumulative Mass Loss (a) and mass loss rate (b) are depicted in Fig. 5. It can be clearly observed that mass 

loss (see Fig. 5a) is in good agreement with the experimental data. In an opposite way, Fig. 5b shows that 

the peaks of MLR are not well reproduced. In this case, the production of alpha Pine around 200°C allows 

to reduce the increase rate of the total mass loss rate. Indeed, for the low temperatures, the mass lost is less 

important in case of two pyrolysis reactions that in the case there is only one pyrolysis reaction. If we look 

at the reaction rates of the two pyrolysis reactions on Fig. 4, the first reaction converting dry pine into alpha 
pine begins around 200°C and the one converting alpha pine into char begins around 300°C. 



 

Figure 4: Numerical mass loss of condensed species as function of temperature (°C) under a heating rate of 
10(°C/min) for two-step reaction mechanism under nitrogen. 

 

  
(a) (b) 

Figure 5: Evolution of the cumulative mass loss (a) and mass loss rate (b) of two-step reaction mechanism 
under nitrogen at four different heating rates. 

 

The intensity of the reaction rates peaks and the delay between the beginnings of the two reactions are due 

to the set of kinetic parameters of the two reactions optimized. The set of kinetic parameters is also the 

reason that more than the good prediction of the increase rate of the mass loss rate, the two stages (the two 

first peaks) of the total mass loss rate occurring around 280 and 350°C are also quite well captured. 

Nonetheless, the combination of these two reactions does not allow capturing the correct intensity of the 

second peak (at around 350°C) of the total mass loss rate (see Fig. 5b). At the end of the mass loss rate 

evolution, even if the global decay rate is well captured, the stage (peak) around 400°C is not properly 

captured. More complex mechanism on thermal degradation of pine needles is then investigated in 

following section to reproduce the right intensity of the biggest peak of the total mass loss rate, and also to 

capture the last stage of the total mass loss rate occurring around 400°C. 

c. Three-step reaction mechanism 

This mechanism is based on the reaction 2 to 4 in the introduction. The first step reaction is related to the 

conversion of the Dry-Pine into α-Pine and gaseous pyrolysis products. Next, another reaction converts     

α-Pine to β-Pine. Finally, the β-Pine goes into final reaction to form char. The values of estimated kinetic 

parameters are presented in Table 2. Figure 6 displays the numerical mass loss of condensed species as a 

function of temperature under heating rate of 10 (°C/min). The formation α-Pine starts around a 



temperature of 200 °C. This reaction induces a significant reduction in the total mass to peak at around 300 

°C where α-Pine starts decreasing leading to the appearance of the β-Pine. These two products decrease 

afterword enabling the formation of char. 

 

Figure 6: Numerical mass loss of condensed species as function of temperature (°C) under a 

heating rate of 10(°C/min) for three-step reaction mechanism under nitrogen. 

  
(a) (b) 

Figure 7: Evolution of the cumulative mass loss (a) and mass loss rate (b) of three-step reaction mechanism 

under nitrogen at four different heating rates. 

The cumulative mass loss (a) and mass loss rate (b) are depicted in Fig. 7. It can be clearly observed that 

mass loss is in good agreement with the experimental data.  Moreover, the mass loss rate Fig. 7b is also in 

good agreement with the experimental data under the different heating rates. This three-step mechanism 

was shown to be more accurate in predicting the pyrolysis process under inert atmospheres. If we look at 

the reaction rate (Fig. 6) the third reaction converts alpha pine into beta pine, the intensity of this reaction 

rate is quite large comparing to other reaction rate. The consequence of this high reaction rate results in the 

good prediction of the highest peak of the total mass loss rate. Moreover, the last reaction that converts beta 

pine into char allows capturing the last peak of the total mass loss rate occurring around 400°C. 

Table 2. Estimated kinetic parameters of different mechanisms under nitrogen. 

mechanism 
Atmosphere Reagent Product 

Kinetic parameters values 

𝐋𝐨𝐠𝐀(𝐬−𝟏) 𝑬𝒂(𝐤𝐉. 𝐦𝐨𝐥−𝟏) n(-) 𝜐(-) 

One single reaction mechanism 

Fixed n=1 

N2 Dry pine Char 6.08 94 1 0.34 

One-step reaction mechanism 

Optimized reaction order 

N2 Dry pine Char 11.2 153 5 0.3 



Two-step reaction mechanism 
N2 Dry pine α-Pine 7.68 107 4.83 0.53 

N2 α-Pine Char 12 167 2.38 0.5 

Three reaction mechanism 

N2 Dry pine α-Pine 8 108 2.8 0.69 

N2 α-Pine β- Pine 7.6 116 0.692 0.70 

N2 β- Pine Char 5.04 98.3 2.5 0.64 

 

3.3. Results under oxidative atmosphere 

In this section, TGA experiments are performed under air. The same approach is used as in the previous 

approach under nitrogen, considering a simple mechanism, an intermediate mechanism and the more 

complex mechanism described in the introduction.  

a. Simple mechanism 

This mechanism is the thermal degradation mechanism used in wildland fire simulations. The first step 
reaction considers the conversion of Dry-Pine into char and gaseous pyrolysis products (Eq. 11). Then, the 

char is oxidized to form ash and CO2. 

𝐶ℎ𝑎𝑟 → 𝜈𝑎𝑠ℎ𝐴𝑠ℎ + (1 − 𝜈𝑎𝑠ℎ )𝑔𝑎𝑠        (15) 

 

Figure 8: Numerical mass loss of condensed species as function of temperature under 10(°C/min) 

for simple mechanism (1 reaction under nitrogen and the other under air). 

  
(a) (b) 

Figure 9: Evolution of the cumulative mass loss (a) and mass loss rate (b) of simple reaction mechanism 

(one reaction under nitrogen and the other under air) at four different heating rates. 



Table 3 summarizes the values of the estimated kinetic parameters under oxidative atmosphere conditions. 

Figure 8 displays the numerical mass loss of condensed species as a function of temperature under a 

heating rate of 10°C/min. Notice that between 300-475 °C, the dry pine begins to convert to char resulting 

in 80% of the total mass loss. The remaining quantity of the char turns into a residue leaving around 2% 

from the total mass. Cumulative mass loss (a) and mass loss rate (b) are depicted in Fig. 9. It can be clearly 

seen that mass loss Fig. 9a is in good agreement with the experimental data. On the contrary, the mass loss 
rate does not reproduce well the experimental data under different heating rates. Modeling the oxidation 

process by only one reaction seems to give an unrealistic reaction. Indeed, the decay rate of the reaction 

rate of char oxidation is very abrupt that is questionable in term of physical meaning concerning solid 

oxidation. More complex mechanism on thermal degradation of pine needles is investigated in this 

following section in order to see if such oxidation reaction is characteristic to oxidation process of pine 

needles or if it could be a bias of the inverse modeling technique. 

b. More detailed mechanism 

The implementation of the mechanism developed in Ref. [30] was tested. The mechanism is based on the 

following reactions: 

 

𝐷𝑊𝐹 → 𝜈𝑐ℎ𝑎𝑟1𝐶ℎ𝑎𝑟 + (1 − 𝜈𝑐ℎ𝑎𝑟)𝑔𝑎𝑠       (16) 

𝐷𝑊𝐹 + 𝜈𝑂2𝑂2 → 𝜈𝑐ℎ𝑎𝑟2𝐶ℎ𝑎𝑟 + (1 − 𝜈𝑐ℎ𝑎𝑟2)𝑔𝑎𝑠      (17) 

𝐶ℎ𝑎𝑟 + 𝜈𝑂2,𝑐ℎ𝑎𝑟𝑂2 → 𝜈𝑅 𝐴𝑠ℎ + (1 − 𝜈𝑅 )𝑔𝑎𝑠      (18) 

 

The first step reaction is about the conversion of Dry-Pine to char under nitrogen. The second reaction 

concerns the oxidative pyrolysis where the dry wildland fuel is converted into char and gaseous products.   

Finally, the char passes by final reaction to form the residue. Table 3 summaries the values of the estimated 

kinetic parameters at air condition. Figure 10 presents the numerical mass loss of condensed species as a 

function of temperature under a heating rate of 10 °C/min. At 200 °C, the total mass of the dry pine is 

around 90%. Around 300 °C dry pine decreases tremendously causing an instant increase in the mass of the 

char, which will turn, into residue around 500 °C. The cumulative mass loss (a) and mass loss rate (b) are 

depicted in Fig. 11. As it can be seen, the predicted mass loss (see Fig. 11a) is in good agreement with the 

experimental data. However, the experimental mass loss rate (see Fig. 11b) is not well reproduced by the 
model. However, the addition of 2 reactions, the first produced char through oxidation of dry pine and the 

second oxidized the char produced allows to match better the decay rate of the second peak of the total 

mass loss rate. 

 

 

Figure 10: Numerical mass loss of condensed species as function of temperature under 10(°C/min) for more 

detailed mechanism (1 reaction under nitrogen and two under air). 

 



  
(a) (b) 

Figure 11: Evolution of the cumulative mass loss (a) and mass loss rate (b) of more detailed reaction 

mechanism (1 reaction under nitrogen and two under air) at four different heating rates. 

c. Complex mechanism 

The complex mechanism was developed [18] based on the analysis of the gases emissions that was 
recorded after coupling the outlet of TGA apparatus with the FTIR spectrometer (Thermo-Nicolet 6700 

equipped with a MCT-A detector). The basis of this reaction mechanism includes the drying process (R1) 

and the three-step mechanism established for the pyrolysis of dry pine under inert atmosphere (R2 to R4). 

Three reactions have been added to account for the effects of the oxygen: R5 and R6 to model the oxidative 

pyrolysis and R7 to model the char oxidation. The values of the estimated kinetic parameters under 

atmosphere conditions are presented in Table 3. Figure 12 displays the numerical mass loss of condensed 

species as a function of temperature under heating rate of 10 °C/min. It should be pointed out that the mass 

of the dry pine decreases along with the total mass to form the α-Pine, which will cast the formation of the 

β-Pine to get reduced afterword by the appearance of the char and residue. It is recommended that a 

sensitivity analysis should be carried out to investigate the effect of the presence of the oxygen in the 

mechanisms of thermal degradation.  Cumulative Mass Loss (a) and mass loss rate (b) are depicted in Fig. 

13. It can be clearly seen that the predicted mass loss (see Fig. 13a) is in good agreement with the 
experimental data. In addition, the predicted mass loss rate (see Fig. 13b) is also in good agreement with 

the experimental data.  Therefore, the complex mechanism was found to be the more reliable mechanism 

among all different investigated mechanisms under different atmosphere conditions (N2 and air).  

 

  
(a) (b) 

Figure12 Numerical mass loss of condensed species as function of temperature under 10(°C/min) for 

complex mechanism (3 reactions under nitrogen and three under air). 



Table 3. Estimated kinetic parameters of different mechanisms (under nitrogen and air). 

mechanism 
Atmosphere Reagent Product 

Kinetic parameters values 

𝐋𝐨𝐠𝐀(𝐬−𝟏) 𝑬𝒂(𝐤𝐉. 𝐦𝐨𝐥−𝟏) n(-) n𝐎𝟐 (-) 𝜐(-) 

Simple 

Mechanism 

N2 Dry pine Char 11.2 153 5 - 0.23 

Air Char Residue 11.6 189 0.1 1.48 0.04 

Detailed 

mechanism 

N2 Dry pine Char 6.99 114 2.15 - 0.39 

Air Dry pine Char 8.06 114 3.12 2.37 0.39 

Air Char Residue 10 171 0.851 2.64 0.12 

Complex 

mechanism 

N2 Dry pine α-Pine 8 108 2.8 - 0.69 

N2 α-Pine β- Pine 7.6 116 0.692 - 0.92 

Air α-Pine β- Pine 7.53 104 1 1.18 0.92 

N2 β- Pine Char 5.04 98.3 2.5 - 0.63 

Air β- Pine Char 10.3 136 2.7 1.10 0.63 

Air Char Residue 10.5 172 0.926 1.24 0.11 

 

  
(a) (b) 

Figure13: Evolution of the cumulative mass loss (a) and mass loss rate (b) of complex reaction mechanism 

(3 reactions under nitrogen and three under air) under at four different heating rates. 

4. CONCLUSIONS 

The thermal degradation of pine needles was investigation under different heating rates with two different 

atmosphere conditions (N2 and Air). Several mechanisms by increasing level of complexity have been 

assessed. The following conclusions can be drawn: 

1) The mass loss is often used as an indicator to assess the quality of a mechanism. This study shows that 

this quantity alone is not sufficient and that the mass loss rate should also be considered.  

2) The drying process can be described by a single-step reaction with well-established kinetic parameter.  
3) The description of the pyrolysis of dry pine by a single-step mechanism, as usually done in wildland fire 

simulators, can reproduce only the mass loss but is unable to reproduce accurately the mass loss rate. 

Consequently, this simplified mechanism should be considered with care in future works.  

4) A complex mechanism with 3 reactions to describe the pyrolysis under inert atmosphere and 2 other 

reactions to describe the oxidative pyrolysis, is required to reproduce the conversion of dry pine into char. 

Less detailed mechanisms are unable to capture accurately the mass loss rate.  

5) The char oxidation can de described by a single-step mechanism. 

Further validation of the final complex mechanism on large scale experiments is required before 

application in wildland fire simulator. 
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