
Abnormal Event Detection Based on Deep Autoencoder Fusing
Optical Flow

Meina Qiao1, Tian Wang ∗1, Jiakun Li1, Ce Li2, Zhiwei Lin3, Hichem Snoussi4

1. School of Automation Science and Electrical Engineering, Beihang University,Beijing 100191, P. R. China
E-mail: meinaqiao@buaa.edu.cn, wangtian@buaa.edu.cn, lijiakun@buaa.edu.cn

2. College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou 730050, P. R. China
E-mail: xjtulice@gmail.com

3. School of Computing, Ulster University, BT37 0QB, United Kingdom
E-mail: z.lin@ulster.ac.uk

4. Institute Charles Delaunay-LM2S-UMR STMR 6279 CNRS, University of Technology of Troyes 10004, France
E-mail: hichem.snoussi@utt.fr

Abstract: As an important research topic in computer vision, abnormal detection has gained more and more attention. In order
to detect abnormal events effectively, we propose a novel method using optical flow and deep autoencoder. In our model, optical
flow of the original video sequence is calculated and visualized as optical flow image, which is then fed into a deep autoencoder.
Then the deep autoencoder extract features from the training samples which are compressed to low dimension vectors. Finally, the
normal and abnormal samples gather separately in the coordinate axis. In the evaluation, we show that our approach outperforms
the existing methods in different scenes, in terms of accuracy.
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1 Introduction

Abnormal detection has attracted more and more atten-
tion in recent years as it is one of the key components in
video surveillance applications. There have been various ap-
proaches to the abnormal detection. From the point of cate-
gories of abnormal events, a camera parameter independent
and perspective distortion invariant approach was proposed
to detect two types of abnormal crowd behavior: people
gathering and running [1]. For different range of abnormal
events, Zhang et al proposed an efficient approach to iden-
tify both local and long-range motion interactions for activ-
ity recognition [2]. Similar to abnormal detection, some of
recent work focuses on event summarization and rare event
detection together by transforming them into a graph edit-
ing framework [3], which is different from the conventional
methods. In recent two years, novel approaches have been
proposed for this detection. The work in [4] proposed to
search for spatiotemporal paths, which correspond to event
trajectories in the video space compared to spatiotemporal
sliding windows. In [5], an anomaly detector using a joint
representation of video appearance and dynamics and glob-
ally consistent inference, spanning time, space, and spatial
scale, was proposed. By extending the conventional anomaly
detection notions such as outlier or distribution drift alone,
the study in [6] developed a unified framework for anomaly
detection.

In order to improve abnormal event detection, this paper
proposes to use deep learning autoencoder so that meaning
features can be extracted. As a key part of deep learning, the
autoencoder, and its variants, have been applied in many ar-
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eas for video and image processing [7][8], including dimen-
sionality reduction[11, 12], feature extraction[14, 16, 20],
face parsing [15, 19], 3D human pose recognition [13, 17,
18], object detection[9, 10].

In object and abnormal detection areas, autoencoder has
been applied to build generic object detectors to learn dis-
criminative and compact features [9]. This semi-supervised
model is a generative representation so that the input images
can be reconstructed, and at the same time, it is discrimina-
tive so that the predictions of image labels are of high accu-
racy. Xu, et al proposed a moving object detection model
from dynamic background based on two deep autoencoders,
where one of them is for background extraction, the other
is for background learning [10]. Autocoder is also used for
dimensionality reduction [11] and the study extended the tra-
ditional autoencoder to explore the data relationship in order
to discover the underlying effective manifold structure. Dif-
ferent from the traditional autoencoder, the proposed model
reconstructed a set of instances instead of the input itself and
minimized the reconstruction error of each instance for di-
mensionality reduction [12]. It has been shown that autoen-
coder approaches are different from other dimensionality re-
duction methods as the number of the hidden layer nodes is
directly related to the dimensionality of the features for the
best results.

The rest of the paper is organized as follows. We intro-
duce the method of scene representation: optical flow and
autoencoder in Section 2. Section 3 shows the abnormal de-
tection model in detail. We conduct experiments with the
datasets of lawn, indoor and plaza in Section 4. Finally, this
paper is concluded in Section 5.

2 Scene Representation

Scene representations, also called features of images of a
video [21], have great impact on abnormal event detection.
For accurate detection, we combine the optical flow and deep
autoencoder to learn features. First of all, the optical flow of

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ulster University's Research Portal

https://core.ac.uk/display/287021724?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


an original image is calculated and visualized as optical flow
image. Then the optical flow image is used as input to a deep
autoencoder for training and testing.

2.1 Optical flow image
Optical flow, proposed by Gibson in 1950, has been used

to represent the motion information of objects between ad-
jacent frames [22–24], and is of great importance in motion
image analysis. Optical flow is the instantaneous velocity of
pixel of moving objects projected to observing plane. The
idea of optical flow for moving objects detection is to as-
sign a velocity vector to each pixel in the whole image so as
to forming the motion field of the image. On one hand, if
no moving objects exist in the image, then the optical flow
of the whole image area is continuous. On the other hand,
when there is relative motion between the foreground and the
background, the velocity vectors of moving object and the
background are obviously different. As a result, the moving
objects can be detected between adjacent frames.

There are two types of optical flow methods used widely:
the first one is Lucas–Kanade (LK), a global optical flow
method and the other one is Horn–Schunck (HS), a whole
optical flow method. The latter HS method is employed
in this paper. HS is developed based on two hypothesizes:
brightness constancy constraint and the optical flow field of
the whole image is smooth, which can be formulated as:
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∂x
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)2 + (

∂v

∂x
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where u = dx/dt , v = dy/dt express the velocity vector
along X axis and Y axis.

In addition, according to the optical flow fundamental
constraint equation that the gray value of pixel before mov-
ing is the same as the one after moving, just as brightness
constancy, we can get the formula as follows:

Ec =

∫∫
(Ixu+ Iyv + It)
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where I is the gray value of the pixel point at time t, Ix ,
Iy and It are the derivatives of the gray value at x, y and t.

So the solution to the optical flow field can be transformed
into the solution of the following problem:
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According to the characteristics of the velocity vector of
each pixel, the dynamic analysis of the image can be carried
out. When there are moving objects in the image, there is rel-
ative motion between the object and the background. Figure
1 is an instance of optical flow image.

2.2 Autoencoder
Autoencoder is an unsupervised model whose output is to

approximate the input. Figure 2 shows autoencoder.
In Figure 2, the left part of the structure is encoder, the

input of which is X = {x1, x2, · · ·xn} and the output
is Z = {z1, z2, · · · zm} (m � n). The encoder is de-
signed to represent the input vector by a compressed vector
whose dimension is much smaller than the original dimen-
sion, like PCA, finding the main components to represent

(a) Original video image

(b) Optical flow image

Fig. 1: Optical flow image. (a) The image in the original
video frame. (b) The corresponding optical flow image

the input. The second part is decoder, the input of which is
Z = {z1, z2, · · · zm} and the output is Y = {y1, y2, · · · yn}.
It is designed to reconstruction the input from the com-
pressed vector.

From the point of the whole structure of deep autoencoder,
the input layer is X , the output layer is Y , other layers are
hidden layers. The deep autoencoder is a neural network that
is a repetition of the input with error as small as possible.
That is to say, different layers are different representations
of the input. In other words, each hidden layer is a kind of
feature extracted from the input.

Since the connection between the layers is fully con-
nected, the structure of the left part can be formulated as:

Z = f(wX + b) (2)

where f is an activation function of the neuron, which can
be sigmoid function, hyperbolic tangent, rectified linear unit
(ReLU) and so on. In this paper, we use ReLU. This is just
the formula of the encoder, the role of which is dimension
reduction of the input.

The process of the right part is formulated as:

Y = f(w′Z + b′) (3)
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Fig. 2: Structure of deep autoencoder

The formula above is just the explanation of the decoder, the
role of which is reconstruction from the compressed vector.
So the whole structure of the deep autoencoder is formulated
as:

Y = f(w′(f(wX + b)) + b′) (4)

3 Abnormal detection model

The abnormal detection model is divided into 2 parts: the
training of deep autoencoder and test for abnormal detection.
The flowchart of the whole process is shown as Figure 3.

3.1 Training of deep autoencoder
In this section, a deep autoencoder is trained to reconstruct

the input with minimal loss so that we can employ the trained
encoder to extract features from the input.

Before training, optical flow features are extracted from
the original video sequence images and visualized as optical
flow image. Then the raw pixel of the optical flow image
from the top left to bottom right are connected in series into
vectors, which is used as the input of the deep autoencoder.

As the size of the original image and the optical flow im-
age is 240× 320, the number of the input neurons is 76800.
The dimension of the compressed vector is 3, namely the
output of the encoder. Therefore, the structure of the deep
autoencoder is, the encoder compressed the dimension of
76800 to 3, then the decoder reconstructs the 76800 neurons
from 3 compressed neurons. In conclusion, the compressed
3 neurons contain all of the feature information of the 76800
neurons, the transformation of optical flow image, original
video sequence image.

To gain better performance, we use ReLU as activation
function, which is defined as:f(x) = max(0, x) It is more
in line with the principle of neuron signal excitation than
used widely sigmoid or hyperbolic tangent.

In order to reconstruct the input as accurate as possible,
the weights ought to be modified by some algorithm, which
is achieved by Error Back Propagation (BP) in this paper.
BP algorithm combined with an optimization method such
as gradient descent has been widely used in multi-layer neu-
ral network training. It consists of 2 parts: one is the forward
propagation of the signal through the network, the other is
the back propagation of the error. Since BP algorithm re-
quires the determined output for the calculation of loss func-
tion, it is usually regarded as supervised algorithm. How-
ever, since the output of the deep autoencoder equals to its
input, that is to say, the output is input. The BP algorithm

can also be used in deep autoencoder.
Apart from the BP algorithm, appropriate reconstruction

error such as cross entropy loss and mean square loss need
to be determined and should be minimized. For facilitative
calculation, mean square loss (MSE) is used in this paper,
which is defined as:

L(X,Y ) = ‖X − Y ‖2 = ‖X − f(w′(f(wX + b)) + b′)‖2

So the deep autoencoder is trained by BP algorithm until
convergence, and the deep autoencoder can reconstruct the
input with minimized error by then.

3.2 Test for abnormal detection
After the training of deep autoencoder, the encoder has

gained a very comprehensive representation of the high-
dimension input by low dimension. For the process of test-
ing, encoder, the part of the trained deep autoencoder, is
adopted to represent the input original video sequence. The
treatment to the input is the same as training. What is differ-
ent is that, the image in the test is the image for training and
testing, not training, and only the encoder network is used.

Therefore, the testing images are transformed into optical
flow images and connected in series into vectors as the input
of encoder. The trained encoder compress the vectors into
3 vectors to be the representation of the image, respectively.
Then the 3 vectors are used as the value of X , Y , Z coor-
dinates of the point in space. In the end, we can draw the
points in three-dimension coordinate axis of the correspond-
ing images both normal and abnormal.

For abnormal detection, since we can only get the nor-
mal scenes in training, we employ the training image to find
out the range of the coordinates of the points correspond-
ing to the normal samples. We can use a cube to draw the
range, which is shown in Figure 3. And the normal and ab-
normal points gather in different areas judging from the re-
sults of experiments. The trained normal (the green square)
and tested normal samples (the blue circle) almost gather to-
gether while the tested abnormal samples (the red upward-
pointing triangle) have no intersection with both trained nor-
mal samples and tested normal samples. So we can detect
the abnormal samples from the normal ones. In other words,
the features, that is each 3 dimension vectors extracted from
the original video images, are comprehensive and represen-
tative.

4 Experimental results

We conduct experiments to evaluate the precision of the
proposed algorithm. In our model, optical flow of the orig-
inal video image sequence is calculated and visualized as
optical flow image, which is then as the input of the deep
autoencoder. Then the deep autoencoder is trained and the
weights are optimized using Error Back Propagation (BP)
algorithm. Finally, the image can be compressed to 3 vec-
tors using encoder, a part of trained deep autoencoder. The
3 vectors can be drawn in 3-dimension coordinate axis.
Since the normal and abnormal samples gather separately,
we can distinguish between normal and abnormal ranges in
3-dimension coordinate axis, obviously.

To verify the accuracy of the model for abnormal detec-
tion, we make experiments on the datasets of indoor, plaza
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Fig. 3: The flowchart of abnormal detection.

Algorithm 1: Abnormal event detection based on deep
autoencoder fusing optical flow

Data: Video image sequences {Xi}N+1
i=1 , where Xi is a

240× 320 image
Result: The abnormal images

1 Calculate the optical flow of the original video image Xi

sequences then visualized as optical flow image Oi:
{X1, X2, . . . , XN+1} → {O1, O2, . . . , ON}.

2 Use {O1, O2, . . . , ON} to train the deep autoencoder by BP
algorithm until convergence, update the weights.

3 Calculate optical flows {Ot
j}mj=1 for the test images {Yj}m+1

j=1 ,
and use {Ot

j}mj=1 as input to the trained encoder to obtain
3-dimension vectors Zj , where Zj are the features of the test
images. The size of the result Zj is 3.

4 Draw the 3 vectors corresponding to normal and abnormal
images as the value of X, Y, Z coordinates of the point in
space. Draw the range of the coordinates of the points of the
trained normal images using a cube.

5 The abnormal images are the points out of the cube.

and lawn. The results prove that the algorithm is accurate
enough for abnormal detection.

4.1 Experiment on indoor scene
In the scene of indoor, the first 492 frames are normal,

used for train and the following 275, 452, 105 are abnormal,
normal, abnormal frames, respectively. One of the represen-
tation of normal and abnormal frame are shown in figure 4.In
our experiment, we first use the 492 frames for training the

autoencoder. Then the three part frames are as the input of
the encoder of the trained autoencoder, which can be com-
pressed to 3 vectors. Finally, the 3 vectors of every frame
are calculated and visualized in three-dimension coordinate
axis, which is shown in Figure 4. We use a cube to repre-
sent the range of 492 frame as the normal area. As a result,
the area out of the cube is regarded as abnormal, the task for
abnormal detection is achieved in this way.

4.2 Experiment on plaza scene
In the scene of plaza, the first 543 frames are normal, used

for train and the following 114, 570, 85 are abnormal, nor-
mal, abnormal frames, respectively. One of the representa-
tion of normal and abnormal frame are shown in figure 5. In
our experiment, we first use the 543 frames for training the
autoencoder, updating the weights by BP until convergence.
Then the experiment is made the same way as indoor scene.
The result of the 3 vectors of every frame and the cube of
normal range are visualized as Figure 5.

4.3 Experiment on lawn scene
In the scene of lawn, the first 480 frames are normal, used

for train and the following 136, 673, 142 are abnormal, nor-
mal, abnormal frames, respectively. One of the representa-
tion of normal and abnormal frame are shown in figure 6. In
our experiment, we first use the 480 frames for training the
autoencoder, updating the weights by BP until convergence.
Then the experiment is made the same way as above exper-
iments. The result of the 3 vectors of every frame and the
cube of normal range are visualized as Figure 6.



(a) Normal indoor scene (b) Abnormal indoor scene

(c) Visualization of 3 vectors

Fig. 4: Example of scenes and the results of indoor scene
dataset.

(a) Normal plaza scene (b) Abnormal plaza scene

(c) Visualization of 3 vectors

Fig. 5: Example of scenes and the results of plaza scene
dataset.

The ROC curves of these 3 datasets are shown in Figure
7, and the comparison between our algorithm and other algo-
rithms are shown in Table 1. From the results of experiments
on indoor, plaza, and lawn datasets, the model proposed can
distinguish the abnormal scenes from the normal scenes with
high accuracies.

5 Conclusions

In this paper, we proposed a novel algorithm for abnormal
event detection, which combines optical flow and autoen-
coder. Optical flow of the original video image sequence is
firstly calculated and visualized as optical flow image, which

(a) Normal lawn scene (b) Abnormal lawn scene

(c) Visualization of 3 vectors

Fig. 6: Examples of scenes and the results of lawn scene
dataset.

Table 1: Area under ROC curve

Methods
Area under ROC

Lawn Indorr Plaza
Social Force [25] 0.96
Optical Flow [25] 0.84

NN [26] 0.93
SRC [26] 0.995 0.975 0.964

STCOG [27] 0.9362 0.7759 0.9661
Ours 0.9833 0.9956 0.9895

is then as the input of the deep autoencoder. Then the deep
autoencoder is trained and the weights are modified using
Error Back Propagation (BP) algorithm until convergence.
Finally, the image can be compressed to 3 vectors using the
trained encoder and the 3 vectors are drawn in 3-dimension
coordinate axis, by which we can distinguish abnormal area
and normal area. From the point of the result, our model is
proved to be effective and accurate.
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