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ABSTRACT 22 

Inflammatory bowel diseases (IBD) are a group of common and debilitating chronic intestinal 23 

disorders for which currently-available therapies are often unsatisfactory. The naturally-24 

occurring secondary bile acid, ursodeoxycholic acid (UDCA), has well-established anti-25 

inflammatory and cytoprotective actions and may therefore be effective in treating IBD. 26 

Here, we aimed to investigate regulation of colonic inflammatory responses by UDCA and to 27 

determine the potential impact of bacterial metabolism on its therapeutic actions. The anti-28 

inflammatory efficacy of UDCA, a non-metabolisable analogue, 6-methyl-UDCA (6-29 

MUDCA), and its primary colonic metabolite, lithocholic acid (LCA), were assessed in the 30 

murine DSS model of mucosal injury. The effects of bile acids on cytokine release (TNF-α, 31 

IL-6, Il-1β, IFN-γ) from cultured colonic epithelial cells and mouse colonic tissue in vivo 32 

were investigated. Luminal bile acids were measured by GC-MS. UDCA attenuated release 33 

of proinflammatory cytokines from colonic epithelial cells in vitro and was protective against 34 

the development of colonic inflammation in vivo. In contrast, although 6-MUDCA mimicked 35 

the effects of UDCA on epithelial cytokine release in vitro, it was ineffective in preventing 36 

inflammation in the DSS model. In UDCA-treated mice, LCA became the most common 37 

colonic bile acid. Finally, LCA treatment more potently inhibited epithelial cytokine release 38 

and protected against DSS-induced mucosal inflammation than did UDCA. These studies 39 

identify a new role for the primary metabolite of UDCA, LCA, in preventing colonic 40 

inflammation and suggest that microbial metabolism of UDCA is necessary for the full 41 

expression of its protective actions.  42 

 43 

NEW AND NOTEWORTHY 44 

Based on its cytoprotective and anti-inflammatory actions, the secondary bile acid, 45 

ursodeoxycholic acid (UDCA), has well-established uses in both traditional and Western 46 

medicine. Here, we identify a new role for the primary metabolite of UDCA, lithocholic acid, 47 

as a potent inhibitor of intestinal inflammatory responses and we present data to suggest that 48 

microbial metabolism of UDCA is necessary for the full expression of its protective effects 49 

against colonic inflammation.  50 

 51 
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INTRODUCTION  53 

Inflammatory bowel diseases, such as ulcerative colitis (UC) and Crohn’s disease (CD), are 54 

chronic, relapsing inflammatory disorders of the gastrointestinal tract affecting approximately 55 

1% of the adult population of Western countries. While the pathogenesis of inflammation 56 

associated with IBD is still not well-defined, it is widely accepted that a combination of 57 

genetic, environmental, and immunological factors are involved, which drive an 58 

inappropriate mucosal inflammatory response (17). With this in mind, current therapeutic 59 

options employ anti-inflammatory drugs, including glucocorticoids, immunosupressants, 60 

aminosalicylates, and biologics to inhibit mucosal immune responses and production of 61 

proinflammatory cytokines (6). While each of these treatment approaches can be of benefit, 62 

they also have significant drawbacks in terms of the occurrence of side effects, lack of 63 

efficacy, and high cost (42). Thus, more effective, and safer, drugs to treat colitis are much 64 

needed. 65 

Epithelial cells lining the colonic lumen play a key role in IBD pathogenesis (28, 36). One of 66 

the primary physiological roles of the epithelium is to act as an innate barrier against the 67 

uptake of luminal toxins and pathogens. There are several components to this barrier, 68 

including the physical barrier posed by the epithelium itself, along with numerous secreted 69 

factors, such as mucus and cytokines. A hallmark feature of IBD is dysregulation of epithelial 70 

barrier function with associated increases in permeability and induction of cytokine release 71 

(2, 30). Many endogenous and exogenous components of the luminal contents have been 72 

shown to have the capacity to promote epithelial cytokine release, including bacterial toxins 73 

and cell wall components, viral RNA, and bile acids, all of which are altered in the setting of 74 

gut inflammation (8, 26, 27). Thus, given its central role in the development of colitis, the 75 

epithelium is currently receiving a great deal of interest as a target for the development of 76 

new treatments (28, 42).  77 
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Ursodeoxycholic acid (UDCA) is a naturally-occurring secondary bile acid, produced in the 78 

colon by bacterial metabolism of the primary bile acid chenodeoxycholic acid (CDCA). 79 

UDCA is considered to be unique among bile acids as it has long been recognized to have 80 

broad-ranging protective actions. Indeed, UDCA is often referred to as the “therapeutic” bile 81 

acid as it has been used for centuries in Traditional Chinese Medicine, as a component of 82 

bear bile, to treat diverse maladies, such as failing eyesight, intestinal malaise, impotency, 83 

and fever (10). More recently, in Western medicine, UDCA has been used to treat liver 84 

inflammation and cholestasis (24, 47), and currently it is also under investigation for a 85 

number of conditions, including neurological, ocular, cardiovascular, and metabolic disorders 86 

(45). Importantly, unless it is used at high doses (9), UDCA is a safe drug with few side 87 

effects. While its mechanisms of action are not well-defined, it is believed that the therapeutic 88 

properties of UDCA are largely due to its anti-inflammatory and cytoprotective actions (5, 89 

45). The biological actions of UDCA have been mostly studied in the liver, where it has been 90 

shown to exert immunomodulatory and anti-apoptotic actions, and to prevent cytokine release 91 

(7, 33, 34, 37). In the current study, we hypothesised that by virtue of its anti-inflammatory 92 

and cytoprotective properties, UDCA is a represents a promising target for development of 93 

new treatments for diseases associated with intestinal inflammation. However, when 94 

considering UDCA as a potential therapeutic for intestinal disease, it is also important to 95 

consider that in vivo, it is extensively metabolised by the colonic microbiome and the effects 96 

that this has on its therapeutic activity are not known. Thus, in the current study we used in 97 

vitro and in vivo models to investigate the anti-inflammatory effects of UDCA in the colon 98 

and the potential consequences of bacterial metabolism on its therapeutic actions. 99 

 100 

  101 
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MATERIALS AND METHODS: 102 

Ethical Approval: All experiments carried out on mice conformed to the Animal Research: 103 

Reporting of In Vivo Experiments (ARRIVE) guidelines and were approved by the RCSI 104 

Research Ethics Committee (REC739) and by the Irish Department of Health and Children 105 

(B100/4159).  106 

Animal Studies: All experiments carried out on mice conformed to the Animal Research: 107 

Reporting of In Vivo Experiments (ARRIVE) guidelines and were approved by the RCSI 108 

Research Ethics Committee (REC739) and by the Irish Department of Health and Children 109 

(B100/4159). Male C57Bl/6 mice were used between 10 – 12 weeks of age. Colitis was 110 

induced in mice by addition of 2.5 % DSS (MP Biomedicals, Solon, OH) to their drinking 111 

water for 5 days. Disease activity index (DAI) was used as a measure of disease progression 112 

and was calculated by the addition of scores designated to body weight, faecal blood and 113 

stool consistency/diarrhoea, as previously described (39). Starting 24 hrs before 114 

administration of DSS, and once daily thereafter, animals received by intraperitoneal 115 

injection, either endotoxin-free PBS as vehicle control, Na+-UDCA (30 or 100 mg/kg),  Na+-116 

6-MUDCA or Na+-LCA (30 mg/kg) dissolved in PBS. Mice were sacrificed on day 6, the 117 

length of their colons was recorded, caecal contents were kept for analysis, and colonic tissue 118 

was processed for H&E staining, or for analysis of cytokine expression. For histological 119 

scoring, approximately 1 cm sections of colonic tissue were fixed in 10% paraformaldehyde 120 

(pH 7.4; PBS buffered) and embedded in paraffin. Sections (4 μm) were cut and stained with 121 

H&E. All sections were examined in a blinded fashion independently by 2 observers and 122 

histologic scoring was carried out, as previously described (39). Blood was collected at time 123 

of sacrifice by cardiac puncture. Serum was obtained by centrifugation (2,000 x g for 10 124 

minutes, 4oC), aliquoted, and stored at -80oC until use. Serum creatinine and ALT were 125 
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measured using the RXL Dimension Autoanalyser platform (Siemens Healthcare 126 

Diagnostics, Munich, Germany). 127 

Cytokine Measurements: T84 or HT29Cl19A cells were cultured on 96-well plates until they 128 

reached approximately 80% confluence. Cells were serum-starved for 1hr prior to stimulation 129 

with polyinosinic:polycytidylic acid (poly I:C) (25 μg/ml) or TNF-α (10 ng/ml) in the 130 

presence or absence of UDCA or LCA (24 hr, 37°C). Mouse colons were homogenised in 131 

liquid N2 on dry ice, re-suspended by vortexing in lysis buffer (1% Nonidet P-40, 150 m 132 

NaCl, 50 mmol/L Tris Base, 1 x Complete mini EDTA free protease inhibitor tablet, 0.1 133 

mg/1mL PMSF, 1 mmol/L Na3VO4) in a m/v ratio of 1:5, lysed (45 minutes on ice), 134 

sonicated (3 x 10s pulses), centrifuged (15,294 x g, 20 mins, 4°C) and supernatants were 135 

retained for analysis. For measurements of TNF-α, IL-1β, IL-6, IFN-γ, IL-12p70, and GM-136 

CSF cell culture supernatants or colonic lysates were then added to a pre-coated V-Plex 137 

Multi-array and Multi-sport Human Cytokine Assay plates (Catalogue #: K15007B-1) and 138 

assayed as per the manufacturer’s protocol (Meso Scale Diagnostics; Rockville, MD). 139 

Measurements of IL-8 release from T84 cells were carried out by ELISA (Beckton Dickinson, 140 

San Diego, CA). 141 

Caecal bile acid analysis: Caecal contents were collected from treated and control animals 142 

and stored in isopropanol at −20°C. Caecal bile acid levels were measured by HPLC-ES-143 

MS/MS, as previously described (38). 144 

Acid Phosphatase Assay: T84 cells grown to confluency on 96-well plates were serum-145 

starved for 1hr prior to treatment with LCA.  Cells were then washed in warm PBS, incubated 146 

in sodium acetate buffer (0.1M C2H3NaO2, pH 5.5, 0.1% Triton x-100) protected from light 147 

at 37°C for 30 mins, following which absorbance was recorded at 404 nm. 148 
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Statistical Analysis:  Results are expressed as mean ± SEM for a series of n experiments.  149 

Data were assumed to be normally distributed and statistical analyses were carried out using 150 

GraphPad Instat software (GraphPad, San Diego, CA). Paired t-test were used for 151 

comparisons of paired treatments between 2 groups, unpaired t-tests for comparisons of 152 

unpaired treatments between 2 groups, and one way ANOVA using Tukey multiple 153 

comparisons test for treatments of 3 groups or more.  p values ≤ 0.05 were considered to be 154 

significant. 155 

 156 

RESULTS 157 

UDCA inhibits pro-inflammatory cytokine release from colonic epithelial cells: First, we 158 

investigated the effects of UDCA on release of pro-inflammatory cytokines from T84 colonic 159 

epithelial cells.  For these studies, we used the TLR-3 agonist, poly I:C (25 μg/ml), as a 160 

stimulus and cytokines released into the bathing media were analysed using validated 161 

multiplex arrays. We found that Poly I:C induced secretion of TNF-α from T84 cells and that 162 

UDCA significantly attenuated this response in a concentration-dependent manner, with a 163 

maximal effect occurring at 200 μM (Figure 1A). UDCA (200 μM) also attenuated Poly I:C-164 

induced secretion of IL-1β, and IL-6 (Figures 1B and C).  In contrast, UDCA did not alter 165 

Poly I:C-stimulated IFN-γ release (Figure 1D), or that of IL-12p70 and GM-CSF (data not 166 

shown).  167 

UDCA exerts protective effects in the DSS model of mucosal inflammation: Next, we 168 

went on to examine the effects of UDCA in the DSS mouse model of mucosal inflammation. 169 

The DSS model is considered to be a particularly good model for studying mucosal 170 

inflammation occurring as a consequence of disrupted epithelial barrier function (31, 48). 171 

Inclusion of 2.5% DSS in the drinking water of C57/BL6 mice led to a reduction in body 172 
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weight and increased DAI over the 5 day experimental period. Both effects were significantly 173 

attenuated by daily treatment with UDCA (30 mg/kg) (Figures 2A-B). UDCA at a higher 174 

dose of 100 mg/kg (Day 5 DAI = 5.8 ± 0.5) did not confer additional protection when 175 

compared to its effects at 30 mg/kg (Day 5 DAI = 6.8 ± 0.9; n = 6). Mice treated with DSS 176 

also had significantly shorter colons (60.8 ± 2.1 mm) and lack of faecal pellet formation 177 

compared to controls (87.2 ± 2.1 mm, n = 6 – 12, p ≤ 0.001), whereas treatment with UDCA 178 

(30 mg/kg) prevented shortening of the colon (69.0 ± 1.5 mm, n = 6 – 12, p ≤ 0.05) and 179 

restored faecal pellet formation (Figures 2 C). Histological studies revealed that UDCA 180 

reduced inflammatory cell infiltration and prevented epithelial damage, leading to a reduction 181 

in overall inflammation score (Figure 2D-E). As shown in Figure 3, UDCA also tended to 182 

reduce levels of TNF-α, IL-1β, and IL-6, although none of these effects achieved statistical 183 

significance. Similar to its effects in T84 cells, UDCA did not attenuate IFN-γ levels and, in 184 

fact, tended to enhance DSS-induced release of this cytokine.  185 

6-MUDCA is not protective against DSS-induced colonic inflammation: In humans, 186 

UDCA is known to be metabolised to LCA in the colon and GC-MS analysis of the caecal 187 

contents revealed that this is also the case in mice (Figure 4A). Thus, we hypothesised that 188 

bacterial metabolism of UDCA likely limits its therapeutic effects. To test this, we employed 189 

a 6-methylated derivative of UDCA, 6α-methyl-UDCA (6-MUDCA), which cannot be 190 

metabolised by bacteria to LCA or other metabolites (32). We have previously shown 6-191 

MUDCA not to be metabolised to LCA in mice, but to retain the biological activity of UDCA 192 

in vitro (16). Here, we confirmed that 6-MUDCA also retains the activity of UDCA in 193 

preventing poly I:C-induced TNF-α release from T84 cell monolayers (Figure 4B). 6-194 

MUDCA was also active in HT29Cl19A cells, reducing Poly I:C (25 µg/ml)-induced TNF-α 195 

release from 378 ± 108 pg/ml in controls to 236 ± 59 pg/ml (n = 3; p ≤ 0.01), indicating its 196 

effects are not cell line-specific.  However, despite its capacity to prevent colonic epithelial 197 
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cytokine secretion in vitro, in contrast to UDCA, 6-MUDCA was not protective against DSS-198 

induced mucosal inflammation in vivo, as assessed by DAI measurements (Figure 4C). 199 

Similarly, 6-MUDCA did not prevent weight loss or colon shortening in response to DSS 200 

treatment. Body weight was reduced to 94.8 ± 0.5% of controls in response to DSS-treatment, 201 

compared to 90.0 ± 2.1% in 6-MUDCA-treated mice, whereas colon length in DSS-treated 202 

mice was 59.3 ± 1.5 mm compared to 57.7 ± 1.5 mm in those co-treated with 6-MUDCA. 203 

This lack of efficacy of 6-MUDCA was contrary to our original hypothesis, and suggest that 204 

bacterial metabolism of UDCA is necessary for it to exert its protective effects in vivo. 205 

LCA inhibits pro-inflammatory cytokine release from colonic epithelial cells: Since 206 

metabolism of UDCA appears to be required for it to exert protective actions, we went on to 207 

investigate the effects of its major colonic metabolite, LCA, in regulating colonic 208 

inflammatory responses. First, we examined LCA effects on cytokine release from colonic 209 

epithelial cells in vitro. T84 cells were treated with poly I:C, either in the absence or presence 210 

of LCA (0.1 – 10 μM) and TNF-α secretion into the bathing medium was measured. 211 

Interestingly, we found that LCA treatment was considerably more effective than UDCA, 212 

practically abolishing poly I:C-induced TNF-α release (Figure 5A and c.f. Figure 1A). 213 

Furthermore, the effects of LCA were not specific to TLR3 activation by Poly I:C, since the 214 

bile acid also inhibited IL-8 cytokine secretion in response to another pro-inflammatory 215 

stimulus, TNF-α (Figure 5B). Use of the acid phosphatase activity assay, as a direct index of 216 

the number of cells present, revealed only a slight reduction associated with this effect of the 217 

bile acid (Figure 5C). To further assess potential LCA toxicity on colonic epithelial cells, we 218 

examined its effects on transepithelial resistance (TER), a sensitive index of epithelial 219 

monolayer integrity. After 24 hrs treatment, the TER of LCA (10 µM)-treated T84 cells was 220 

94 ± 2.6% (n = 5) of that in controls, indicating that, at concentrations which abolish cytokine 221 

secretion, LCA does not alter monolayer integrity. 222 
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LCA is protective against DSS-induced colonic inflammation and cytokine release: We 223 

next examined the effects of LCA on DSS-induced colonic inflammation in vivo. Daily 224 

treatment with LCA (30 mg/kg; IP) significantly increased caecal LCA levels from 6.1 ± 0.5 225 

to 15.7 ± 3.1 μM in controls and from 2.0 ± 0.3 to 11.5 ± 2.1 μM in DSS-treated mice (n = 5, 226 

p ≤ 0.05). We noted that treatment with LCA alone induced a significant loss of body weight 227 

by day 5 to 89.3 ± 1.0 % of that before LCA treatment (Figure 6A), consequently causing a 228 

slight, non-significant, increase in DAI (Figure 6B). Interestingly, LCA almost completely 229 

prevented the onset of inflammation, as measured by DAI, which in DSS-treated animals was 230 

11.2 ± 0.9 compared to 5.2 ± 0.6 in LCA-treated mice (n = 5, p ≤ 0.001) (Figure 6B).  LCA 231 

alone caused a slight shortening of the colon but prevented that caused by DSS treatment and 232 

restored the appearance of normal stool pellets (Figures 6C). Furthermore, LCA completely 233 

reversed DSS-induced changes in mucosal histology and increases in inflammation score 234 

(Figure 6D-E). An analysis of the effects of LCA on levels of proinflammatory cytokines 235 

revealed that it was even more effective than UDCA in reducing mucosal levels of TNF-α, 236 

IL-6, and IL-1β in DSS-treated mice (Figure 7). Interestingly, in contrast to UDCA, 237 

administration of LCA also inhibited Poly I:C-induced increases in IFN-γ. Mice treated with 238 

LCA actions were not associated with any apparent signs of systemic toxicity, as determined 239 

by measurements of serum creatinine and ALT. Serum creatinine levels were 35.7 ± 1.2, 29.0 240 

± 2.0 and 31.3 ± 1.8 mM/L in control, DSS, and DSS + LCA-treated mice, respectively (n = 241 

3), while ALT levels  were determined to be < 6 U/L in all treatment groups.  242 

 243 

  244 



11 
 

DISCUSSION 245 

By virtue of its potent anti-inflammatory and cytoprotective properties, UDCA is recognised 246 

as a drug with great therapeutic potential (45), and our current studies add to a growing body 247 

of evidence that suggest it may also be useful in treatment of intestinal inflammation. Our 248 

studies also show that the protective effects of UDCA are likely to be due, at least in part, to 249 

inhibition of epithelial cytokine production and point to an important role for bacterial 250 

metabolism in determining its efficacy in vivo.   251 

An early step in intestinal inflammatory responses is the production of cytokines from the 252 

epithelium in response to various luminal factors, such as bacteria and their toxins and 253 

metabolites. Viruses are also present and their importance in IBD pathogenesis has recently 254 

been highlighted (27). Viruses promote cytokine secretion through the release of double-255 

stranded RNA which activates epithelial Toll-like receptors (TLRs), in particular TLR3 (1, 256 

11), and here we found that such responses are inhibited by UDCA treatment. These findings 257 

are particularly interesting in the context of recently published data, where the effects of the 258 

conjugated derivative of UDCA, tauro-UDCA (TUDCA) were investigated in the DSS model 259 

(21). Although, significantly higher doses were required, similar to UDCA, TUDCA 260 

prevented the development of mucosal inflammation, an effect that was closely associated 261 

with inhibition of epithelial apoptosis. Also similar to our own studies, UDCA was found to 262 

prevent colonic inflammation in TNBS-treated rats, a model of intestinal inflammation 263 

distinct to that used in the current studies (25). Thus, UDCA has the capacity to prevent both 264 

the elevated cytokine levels and increased epithelial permeability associated with intestinal 265 

inflammation, suggesting it should be of therapeutic benefit in patients with IBD.   266 

However, when considering the use of UDCA for treatment of colonic disease, it important to 267 

consider the potential impact of the colonic microbiota on its actions. Bile acids entering the 268 
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colon undergo rapid metabolism by resident bacteria by deconjugation, dehydroxylation and 269 

epimerisation and therefore, the fate of UDCA in the colon is determined by the relative 270 

expression of bacterial hydrolases, dehydratases, and epimerases (20, 22). How UDCA 271 

administration changes the makeup of the colonic bile acid pool is not well-defined but 272 

studies in humans show that after UDCA treatment, LCA becomes the most prominent 273 

colonic bile acid (44). This is supported by our current studies which showed extensive 274 

metabolism of UDCA to LCA in the cecum of normal mice. It was also interesting to note 275 

that in DSS-treated mice, despite the fact that it prevented inflammation, levels of UDCA in 276 

the colon did not increase appreciably after administration of the bile acid, while those of 277 

LCA increased approximately 4-fold. Also notable in these studies was the effect of DSS 278 

treatment in reducing cecal levels of UDCA and LCA. These data are in line with a previous 279 

study demonstrating fecal LCA levels to be decreased in DSS-treated mice (3), and a more 280 

recent study demonstrating that levels of both UDCA and LCA are reduced in this model of 281 

colonic inflammation. Furthermore, such changes were found to be associated with 282 

significant alterations in the colonic microbiota and were partially restored by UDCA 283 

treatment (43). Further studies to more precisely determine how changes in the microbiota 284 

and related alterations in the colonic bile acid signature contribute to the onset of 285 

inflammation and how UDCA administration influences such processes warrants further 286 

investigation. 287 

LCA is the most lipophillic of the secondary colonic bile acids and is classically considered 288 

to be relatively toxic, particularly in the liver (15). Increased levels of hepatic LCA, which 289 

occur in conditions of cholestasis, are thought to contribute to liver damage though induction 290 

of apoptotic cell death. Indeed, several studies have demonstrated that supraphysiological 291 

levels of LCA, cause oxidative stress, DNA damage and induce apoptosis in both hepatocytes 292 

and colonic epithelial cells (4). Thus, since UDCA is normally metabolised to LCA in the 293 
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colon, we hypothesised that this may be a factor that limits its therapeutic actions. To test this 294 

hypothesis we used 6-MUDCA, a non-metabolizable derivative of UDCA, which we have 295 

previously shown to not be metabolised to LCA either in mouse colon or by the human fecal 296 

microbiota (16, 32). To our surprise we found that, even though, similar to UDCA, it inhibits 297 

epithelial cytokine production in vitro, 6-MUDCA did not confer protection in the DSS 298 

model. These findings were contrary to our hypothesis and suggest that, rather than limiting 299 

its therapeutic actions, bacterial metabolism of UDCA is actually required for it to fully exert 300 

its protective effects. 301 

While most previous studies have focussed on the cytotoxic actions of LCA at high 302 

concentrations, few have investigated whether it might also have more physiological roles to 303 

play. Interestingly, one recent study showed that administration of LCA to mice by enema 304 

can prevent colonic epithelial apoptosis, and therefore presumably promote barrier function 305 

(18). In the current studies, we found that even at concentrations as low as 10 µM, which 306 

approximates its normal physiological range in the colon (13), LCA was even more effective 307 

than UDCA in preventing TNF-α release from colonic epithelial cells in vitro. Even more 308 

remarkably, we found that when administered to mice, LCA was also more effective than 309 

UDCA in preventing DSS-induced inflammation. Further analysis showed that cytokine 310 

release from mucosal tissues was practically abolished in LCA-treated mice, compared to the 311 

partial inhibition observed with UDCA treatment. Notably, while UDCA tended to increase 312 

mucosal levels of IFN-γ in DSS-treated mice, LCA inhibited accumulation of this cytokine.  313 

While we were concerned that the effects of LCA might be due to toxicity, this does not 314 

appear to be the case, as indicated by a lack of effect of the bile acid on TER across epithelial 315 

monolayers and only a modest effect on cell number at concentrations that abolish cytokine 316 

release. Furthermore, no overt toxicity was apparent in histological sections of colonic tissue 317 

from LCA-treated mice, nor were serum levels of creatinine or ALT altered by the bile acid. 318 
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However, it was notable that LCA treatment significantly reduced body weight over the 319 

course of the experiment. Given the lack of apparent local or systemic toxicity, we speculate 320 

that this could either be due to reduced food intake in the LCA-treated mice, or alternatively, 321 

might reflect effects of the bile acid on energy expenditure and fat metabolism. This latter 322 

hypothesis seems is possible since previous studies have shown that bile acids prevent weight 323 

gain in mice on a high fat diet (46), and that this effect is mimicked by the TGR5-selective 324 

agonist, INT-777 (19, 41).  TGR5 is now accepted to play an important role in regulating 325 

metabolism (23), suggesting that LCA, as a natural agonist of the receptor, could be an 326 

endogenous regulator of metabolism, energy expenditure and body weight. Separating such 327 

dual actions on metabolism and inflammation is an important issue to consider when 328 

developing bile acids, or synthetic agonists, as therapeutics for IBD. However, it is notable 329 

that studies by Harach and co-workers indicate that agonists of TGR5 influence metabolism 330 

only when they are present in the systemic circulation, suggesting that colonic or rectal 331 

delivery of such drugs may be the optimal approach for their use in treating colitis, while 332 

minimising effects on weight (14).  333 

Although UDCA shows excellent potential for therapeutic development in treating intestinal 334 

inflammation, there is still much work to be done to elucidate mechanisms underlying its 335 

effects. While our current studies suggest that its metabolism to LCA may be important, it is 336 

also possible that other metabolites may be involved. For example, 7-keto-LCA, formed by 337 

the action of 7β-hydroxysteroid dehydrogenase, is the major metabolic intermediate of 338 

UDCA and LCA and its actions on colonic epithelial physiology are not yet known. 339 

Similarly, how sulfation of UDCA and LCA alter their physiological/pathophysiological 340 

actions remains to be determined. It is also important to develop our understanding of the role 341 

of the microbiota in modulating bile acid actions on colonic epithelial barrier function. This is 342 

particularly important in the setting of inflammation, where the microbiome is known to be 343 
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significantly altered (8). Such alterations would undoubtedly influence metabolism of UDCA, 344 

the generation of its metabolites, and consequently, its therapeutic actions. Finally, the 345 

molecular pathways underlying the anti-inflammatory effects of UDCA and its metabolites 346 

and their differential effects on epithelial cytokine secretion remain to be fully elucidated. In 347 

this regard, several bile acid receptors are expressed in the colonic epithelium, including 348 

TGR5 and the nuclear receptors, farnesoid x receptor, pregnane x receptor, and vitamin D 349 

receptor, each of which has been shown to protect against colonic inflammation in animal 350 

models (12, 29, 35, 40). Although structurally similar, UDCA and LCA have very different 351 

actions at these receptors, likely underlying different responses to the bile acids. Future work 352 

should aim to elucidate how expression of these receptors is altered in conditions of colonic 353 

inflammation and how this impacts the effects of UDCA and its metabolites on epithelial 354 

function.  355 

In conclusion, our studies support the hypothesis that UDCA may be useful as a new therapy 356 

for alleviating or preventing chronic intestinal inflammation but that bacterial metabolism of 357 

the bile acid is necessary for its full therapeutic benefit to be apparent. We also demonstrate a 358 

new anti-inflammatory role for the primary UDCA metabolite, LCA, in the colon, which 359 

suggests it may be an important mediator of UDCA effects. Further studies are necessary to 360 

more completely understand how the colonic microbiome and bile acids interact in order to 361 

regulate epithelial barrier function in health and disease.  362 

  363 
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FIGURE LEGENDS 364 

Figure 1. UDCA attenuates proinflammatory cytokine release from colonic epithelial 365 

cells. T84 cells grown on 96-well plates were serum-starved for 1hr prior to stimulation with 366 

poly I:C (25 μg/ml) in the presence or absence of UDCA. After 24 hrs, supernatants were 367 

collected and analysed for A) TNF-α (n = 6), B) IL-6, C) IL-1β, and D) IFN-γ (n = 4). *p < 368 

0.05, **p < 0.01, ***p < 0.001 compared to control cells; #p < 005,  ##p < 0.01 compared to 369 

cells treated with poly I:C alone. 370 

Figure 2. UDCA exerts protective effects in the DSS model of mucosal inflammation. 371 

Starting 24 hrs prior to administration of DSS (2.5% in the drinking water), and daily 372 

thereafter, separate groups of male C57BL6 mice received either endotoxin-free PBS or Na+-373 

UDCA (30 mg/kg or 100 mg/kg, dissolved in PBS) by IP injection.  A) Disease activity index 374 

(DAI) and B) body weight were assessed daily to monitor disease progression (n = 6 - 12 375 

throughout). C) Mice were sacrificed on day 6 and their colons were removed and measured. 376 

D) Sections of colon from control, DSS-treated, UDCA-treated, and DSS+UDCA-treated 377 

C57BL6 mice were taken and processed for H&E staining. Sections were visualised by light 378 

microscopy under 10x magnification. E) Inflammation score was assessed as described in 379 

Materials and Methods. *** p < 0.001 compared to controls (no DSS treatment); # p < 0.05,  380 

## p < 0.01, ## p < 0.001  compared to DSS-treated mice. 381 

Figure 3. UDCA modulates expression of pro-inflammatory cytokines in the DSS model 382 

of mucosal inflammation. Sections of colon from control, DSS-treated, UDCA-treated, and 383 

DSS+UDCA-treated C57BL6 mice were homogenised in lysis buffer and were analysed by 384 

MSD assay for A) TNF-α, B) IL-6, C) IL-1β, and D) IFN-γ. n = 6 – 12; **p < 0.01, ***p < 385 

0.001 compared to controls (no DSS treatment). n.s. = not significant. 386 
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Figure 4. A metabolically stable analogue of UDCA, 6-MUDCA, is not protective 387 

against DSS-induced colonic inflammation: A) Caecal contents were collected from treated 388 

and control mice and bile acid levels were measured by HPLC-ES-MS/MS. B) T84 cells were 389 

stimulated with poly I:C (25 μg/ml) in the presence or absence of UDCA or 6-methyl-UDCA 390 

(200 μM; bilateral). After 24 hrs, supernatants were collected and analysed for TNF-α. Data 391 

are expressed as fold change with respect to cells treated with poly I:C alone (n = 5; ***p < 392 

0.001). C) Starting 24hrs prior to administration of DSS (2.5% in the drinking water), and 393 

daily thereafter, separate groups of male C57BL6 mice received either endotoxin-free PBS or 394 

Na+-6-MUDCA (30 mg/kg) by IP injection. DAI was assessed daily to monitor disease 395 

progression. (n = 3 - 9).  396 

Figure 5. LCA exerts anti-inflammatory effects in vitro. A) T84 cells were stimulated with 397 

poly I:C (25 μg/ml) in the presence or absence of LCA (1 nM - 10 μM). After 24 hrs, 398 

supernatants were collected and analysed for TNF-α. Data are expressed as fold change with 399 

respect to cells treated with poly I:C alone (n = 7; ***p < 0.001). B) T84 cells were treated 400 

with TNF-α (10 ng/ml) and LCA (10 µM) alone or in combination. After 24 hrs apical media 401 

were collected and analysed for IL-8 levels bu ELISA. Data are expressed as fold change 402 

with respect to cells treated with TNF-α alone (n = 4; ***p < 0.001). C) T84 cells grown on 403 

96 well plates were serum starved for 1 hr prior to treatment with LCA (1 nM to 1 mM) for 404 

24 hrs (n = 4), after which acid phosphatase activity was measured (**p < 0.01, ***p < 0.001 405 

compared to untreated cells).   406 

Figure 6. LCA exerts protective effects in the DSS model of mucosal inflammation. 407 

Starting 24 hrs prior to administration of DSS in the drinking water, and daily thereafter, 408 

separate groups of male C57BL6 mice received either endotoxin-free PBS or Na+-LCA (30 409 

mg/kg) by IP injection.  A) Body weight and B) disease activity index (DAI) were assessed 410 
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daily to monitor disease progression (n = 5). C) Mice were sacrificed on day 6 and their 411 

colons were removed and measured (image is representative of n = 5). D) Sections of colon 412 

from control, DSS-treated, LCA (30 mg/kg)-treated, and DSS+LCA-treated C57BL6 mice 413 

were taken and processed for H&E staining. Sections were visualised by light microscopy 414 

under 10x magnification. E) Inflammation score was assessed as described in Materials and 415 

Methods (n = 3 – 5). *p < 0.05, **p < 0.01, ***p < 0.001 compared to controls (no DSS 416 

treatment); #p < 0.05,  ##p < 0.01, compared to DSS-treated mice 417 

Figure 7. LCA modulates the expression of pro-inflammatory cytokines in murine 418 

colon. Sections of colon from control, DSS-treated, LCA (30 mg/kg)-treated, and DSS+LCA-419 

treated C57BL6 mice were homogenised in lysis buffer and were analysed for A) TNF-α, B) 420 

IL-6, C) IL-1β, and D) IFN-γ. n = 3 – 10; **p < 0.01, ***p < 0.001 compared to controls (no 421 

DSS treatment). 422 

 423 

  424 
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