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ABSTRACT

We focus on feature extraction and selection td bewresent
texture and shape properties of plant diseasesiimage-

based leaf monitoring system implemented in a mreedibud

environment. A number of textural and region-batetures
are aggregated from previous studies; also wedotre mean
and peak indices of histogram-of-shape as diseaspegy

representations along with the proposed and enbaskepe
features based on diseased regions. A total ofca&fur-based
attributes and 163 shape attributes are searchiadt¢the best
potential features based on different aspects: gitity of

feature error, correlation, targeted-class releyaaod the
separability quality of a feature. Experimentalulesshow that
the best selected feature set which combines ctlased and
shape features yields high classification accuracywheat
disease images captured by a smartphone cameralsod
provides insights into potential sets of featuresbé further
implemented as a lightweight standalone mobileiagfbn.
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1. INTRODUCTION

Plants play a fundamental role in supporting aildii of life on
the planet, particularly through food and medicifdant
diseases affect human society in terms of econdosis and
public health, including insufficient nutrition. &@ely and
continuously monitoring plant health is required pgeevent
such damage. For many diseases, plant pathologsilidr
with the appearance and characteristics of unhegldnts are
required to identify diseases [1]. However, this labour-
intensive and cost-ineffective, especially in lasgale
agricultural business or in remote areas. Alsealis detection
in its late stages might indicate severe and image loss.
When crops are infected, characteristic symptomsvésible
which differ from healthy crops in recognizable wayhus, an
automated detection imaging system can be a usiefud local
farmers for early detection. Mobile capture deviaesrecently
ubiquitous and affordable, and cloud computing medbgies
have been rapidly developed. This work leverageaging
techniques to integrate with mobile image captureé aobile
cloud computing, resulting in an accurate plant Ithea
monitoring application.

features and shape characteristics of diseasernmtte

The challenges of crop disease identification gsin
imaging techniques include the variety of plantd diseases,
the high degree of similarity between differentedises, the
differences in grading of a disease, and the waétimage
capture conditions. Previous research studies 32]-Have
developed an automated system through data acdguisihder
constrained conditions to accurately extract teltur
information from the diseased image. The potergiats of
features resulted in combinations of basic firsteorstatistical
features, features derived from co-occurrence pesriand
shape features to describe different types of dessaAlthough
the combinations offered accurate classificatiomdividual
sub-features contribute to the system differerfiin et al. [4]
empirically selected some sub-features from thelipation,
whereas, Sarayloo et al. [5] deployed minimal-retiuncy-
maximal-relevance to evaluate sub-features and téekn
before selecting the best features to represertisieases.

We propose an automated disease recognition system
summarised in Figure 1. The cloud-based classificagystem
uses the previously studied sub-featurgsluding textural
features derived from a co-occurrence matrix, arst-6érder
statistical features, including visual perceptieattires. Also,
we introduce peak and mean representation of agnan of
shape regarding the natural distribution of diseaBmally, the
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contributions of sub-features are evaluated acdifferent
aspects, including individual classification penf@ance,
separability quality, and redundancy-relevance. Feature
evaluation methods, we use minimal-redundancy-makxim
relevance (mMRMR) [6], ReliefF [7] and probability error
combined with feature correlation [8]. Then seqigrbrward
selection is employed to retain only a small setthaf best
features. These flexible feature selection techeggmaintain
the original features, so we can still select thpseential
features as the lightweight features for a furtmeobile-
standalone application. For the current cloud-bagggication,
an image of a leaf is captured using an overlaypteta (we
can alter the leaf template in figure 1), and ttelivered over
a network via HTTP. Only the selected potentiatess are
calculated and passed through an SVM classifieorbethe
output result is returned to the smartphone. Tosoeathe
performance of the system, we have experimented weial-
world datasets of wheat diseases captured by adasihn
smartphone and acquired by the UK Food and Enviemah
Research Agency (FERA) [9]. The final selected sthof
textural features and shape are combined to denatagtigh
classification accuracy from the system experintéra
Additionally, when these sets are employed in tlobite-cloud
computing environment, experimentation on differemtbile
capture devices yields promising outcomes.

2. FEATURE GENERATION

Many features derived from co-occurrence matricekyur and
shape have been shown in previous research [2}g[She
robust representational attributes for plant dissadn this
section we discuss aggregation of a range of festuvhich are
categorized into two groups: colour-based featares region-
based features. We also introduce peak and meaceinof
histograms of region-based features to represergpesh
characteristics for each leaf and propose two tyfenodified
principal axis ratios.

2.1. Colour-based features

Textural features and statistical attributes rely selected
colour components. The relevant features in thiskviaclude
13 textural features, 4 first-order statisticalribtites and 3
visual perception features which are detailed below

Textural features are developed through a grey-level co-
occurrence matrix which computes frequencies of puels
with quantized intensity leveisandj and separated by distance
d and orientatior® [10]. These features include, but are not
limited to, homogeneity, correlation, contrast, rgiyeetc.

First-order satistical features (or colour features)
measure basic information of colour distribution,t bare
powerful properties in many applications. Mean,ndtad
deviation, skewness and kurtosis are consideredrisystem.

Visual perception features: Tamura [11] proposed 6
computational features including coarseness, dineality,
contrast, line-likeness, regularity and roughné&se three first
features are considered in the system; while thterlahree
which are derived from the three former featuresraglected.

2.2. Region-based features

To segment the disease region, Otsu’s binary tobidsty is
applied on the Cb and Cr colour components (of ¥ Cr
colour model) which are shown to be robust to défe
lighting condition [12]. Figure 3 illustrates segmed disease
samples of three types of wheat leaves, where ntizidual
disease patch (spot) is computed for 15 differbape features.

Shape features Fifteen different shape features are used to
represent diseases (1) principal axis ratio idia td major axis
length {,,) and minor axis lengthL() of a disease patch. (2)
Area ratio is a ratio of disease arelg ) by leaf area4,). (3)
Circularity is the distance between foci of theipsié shape
(D) divided by major axis lengthLf). (4) Compactness
measures a ratio of, and convex areadf) of the diseases.
Since a captured leaf is in a template overlay,|¢ages will
have consistent orientation. (5) Orientation is suead as the
direction of the particular disease patch. (6) Clexipy
measures the ratio of square of the disease pexirtig) and
disease arealf). (7) Equivalent diameter is also calculated to
specify the radius of a circle that could have shene area as
the disease spot. (8) Hydraulic radius computesdtie of 4,
andPp. (9-15) Seven Hu’'s moment invariants [13] of getrine
shape were demonstrated to be independent to eefigsize,
orientation, or position.

Two more region-based features, modified principeb
ratios, are introduced based on the distributedraaif disease
structure. The first modified principal axis rafBAR+AR) is
weighted by disease area; the larger the diseassh,pthe
higher the impact on the histogram of the featétéhough
morphological techniques are applied to the segecdediseases
they still are unable to be segmented accuratelghasvn in
Figure 2(b) segmented from 2(a). Thus, another figadi
principal axis ratio is weighted by disease ared #ve degree
of solidity of the disease patch (PAR+AR+SLD); thwre
compact the disease; the higher the impact onithedgnam.
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Fig 2. Two main disease patches (b) and (c) are segmented
from (a) where (c) is the expected segmented rbsitiitb) is
not segmented properly.

Histogram of Shape Disease segmentation in Figure 3
(middle row) results in more than one of the disepatches
including noise. Noise removal is performed by @tiating the
patch which has an area less than {Area Cut fa@@@) x
Largest Patch Area}. Then, a histogram of shapggt@s is
constructed from the shape features of the renmidisease
patches. Instead of using histogram values as regtuwve
introduce peak and mean indices to represent thi®dram.
The histogram of principal axis ratio of 6 wheaaJes is
shown in Figure 3 (bottom row). The red arrows painhthe
peak index of each histogram. It can be roughlctated that
the ratio of the yellow rust leaves have the higipesik index
value, whereas Septoria diseased patches has jpmakrindex
and non-diseased patches containing mostly noise lize
lowest peak ratio index.
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Fig. 3 Examples of healthy green leaves (a) and (b)owetlist diseased leaves (c) and (d), and Septméased leaves (e) and (f)
(Top row). The middle row shows the disease reg&gmentation results corresponding to the leavésitop row. The histogram
of principal axis ratio is shown in the bottom raith the the red arrows pointing to the peak indéthe histograms.

3. FEATURE SELECTION

Prior to feature selection feature evaluation ipligg to rank
the main twenty colour-based features and fiftesgion-based
features. Then, the ranked features are selectgpdesgally
using a forward selection technique to eliminate tless
important features.
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our experimentation were captured in a wheat figdihg a
standard smartphone by a FERA researcher [14]. détiaset
comprises 160 labelled images (816x612 pixels) bictw 50
are healthy green leaves (GL), 55 display Sep{@Tg disease
and 55 display yellow rust (YR) disease. The pririaaves or
main leaf in each image is analysed in our systemnlabelled
by Gibson et al. in [14]. The testing scheme ilg-fcross-

Feature Evaluation: Three methods are considered in thevalidation using SVM classifier (with a linear keth The

system with the aim of improving the overall cléissition
accuracy rate. (1) The weighted sum of Probabilitirror rate
(POE) and average correlation coefficient (ACC) applied to
assess each feature. POE is first used to seledirsh feature
and the following feature on the rank is based @% ®f POE

same testing scheme is employed in POE+ACC feature

evaluation and sequential forward feature selection

Two sets of features to be selected include cdbaged
features and shape features. Thirteen co-occurrefoe
statistical and three visual perception featuresteansformed

and 10% of ACC measures; the weight values werénto thirteen colour components (Grey, RGB, YCbCia*b*,

demonstrated in [8]. (2) ReliefF measures ‘distisgability’ in
a feature by considering the differences of theendrinstance

and HSV), giving a total of 260 ((13+4+3)x13) caldased
features to be selected. There are fifteen disesisape

with the K nearby instances from the same class and ankther features including two modified principal axis catvarying

nearby instances from different class. Although idREl
exploits the information locally, the combined caxit will
provide a global view of the information [7]. (3) aw
relavance-min-redundancy (mRMR) considers the aegre
relevance between a feature and a targeted classlan the
redundancy between features based on mutual infanmgb].
The difference in the two aspects of relevance raddndancy

four different noise removal factors (AC = 0, 0.@105, 0.1)
which are represented by peak index or mean vahues, 136
(17x4x2) region-based features are to be selentéukisystem.
A bin size of 50 for the shape histogram is setbcieliefF
feature evaluation is based oK=5 neighbours to be
considered.

Figure 4 shows the average testing error rate Grein

is maximized for the top ranked features from mRMRnumber of features from 5-fold cross-validation.lyYdess than
assessment. From a complexity aspect, although MOE 20 features out of 260 colour-texture features emmeugh to

calculated from an individual feature, the POE+A&Gture
assessment method has higher computation cost cethpa
others as it requires learning and testing of assifi@r to
calculate an error rate of a feature.

represent the diseases and at some folds it meetewest 0%
error rate by ReliefF and POE+ACC feature selecthanshape
features rely on disease segmentation, the lowest mte is
only less than 10% using ReliefF. The number oftuies

Feature Selection: The selected number of feature to berequired to meet the lowest error rate for shamgufes is

used in training a classifier is critical. Afterateres are ranked,
the sequential forward selection (SFS) method iglieg to
select features from the rank sequentially thattrtreecriteria.
The first feature in the rank is an initial set 8FS to be
evaluated and the next selected feature is thefaature in the
rank that when combined with the first one improues
classification rate. The selection search technihas lower
time complexity (O(N)) compared to exhaustive skarc

4. EXPERIEMENTATION RESULTS

The performance of our proposed system is evaluatetthe
server-side of the system environment. The wheaigés in

around 20 features out of 136. Considering théopmance of
each selection scheme, mMRMR+SFS reached its |eanest at

less required number of features; for this datdReliefF+SFS
selection provides the least error rate at sondsfdalhe results
show that the combination of shape features anoucdlased
features increase overall accuracy. However, tise dmmbined
features are selected by mMRMR+SFS feature seleatigiown
by the ROC curves in Figure 5; AUC values for Healjreen

leaf (GL) shows 100%, and 99.31% for Yellow rustedise and
98.79% for Septoria disease. The selected feaiorpsoved

the performance given in [14]; however, the primiagves we
considered are perfectly segmented.
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Figure 6 displays the top-10 selected features féefold
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scheme selection (~50 selected features per smiectethod).
For colour-based features in Fig. 6(a), generatlyromatic
components (R, H, Cb, a) are selected more thamgity
components (Y, Grey, V). Homogeneity and entropseloa
textural features are frequently presented (#3B#1®1,
#229,#241 #251). Other potential features inclutendard
deviation, and contrast (#195) from Tamura’s fesgu@199).
For shape features in 6(b), hydraulic radius (#3®#45,#75),
principal axis ratio (#1,#16,#46) and some Hu's reata are
selected by three evaluation aspects with highuieagies. The
mean representations are selected more than peskx in
especially at #1-#15. No noise removal (AC = Ojhie most
chosen in general. The higher AC factor, the lesduires are
selected. Mean of PAR+AR+SLD distribution is choserte
based on error rate and correlation (POE+ACC).

5. CONCLUSION

The analysis of plant disease recognition systeswskhhat the
combined colour-based and shape features are pavieature
sets to represent plant disease patterns and actievhigh
classification accuracy. These potential colourcdageatures
includes homogeneity and entropy-based
occurrence matrix), standard deviation of coloumponents
and visual perception contrast features which ar®ngst
commonly selected features regarding feature quatitrget
relevancy and accuracy aspects. The best selediages
features include hydraulic radius and principakasitio which
describe how complicated and how elongated of tkeade
shape respectively. The combined optimal sets afutal
colour and shape features is implemented in thedetide of

features- (c

Fig 6. Top-10 selected features (5-fold) from (a) 260 colour-
based features from three feature selection methods (featurexnde
(1) homogeneity, (2) contrast, (3) energy, (4) elation, (5) sum
of squares, (6) sum average, (7) sum varianceu@®)entropy, (9)
entropy, (10) diff variance, (11) diff entropy, ¢13) information
of correlation measures #1&#2, (14) mean, (15)ddeshdeviation,
(16) skewness (17) kurtosis (18) coarseness (19frasi (visual-
based), (20) directionality for greyscale, (21-B))41-60) G, (61-
80) B, (81-100) Y, (101-120) Cb, (121-140) Cr, (1480) H, (161-
180) S, (181-200) V, (201-220) L, (221-240) a, (6D) b colour
components; andb) 136 shape features (feature index (1)
principal axis ratio, (2) area ratio, (3) compas®g4) circularity,
(5) orientation, (6) complexity, (7-13f"Hu’s invariant moments,
(14) equivalent diameter, (15) hydraulic radiusrespnted by
mean of shape values with AC = 0 (all disease pajcH16-30)
peak index of shape histogram with AC = 0, (31-8@) = 0.01,
(61-90) AC = 0.05, (91-120) AC = 0.1, (121-122) PHR,
PAR+AR+SLD represented by mean value at AC = 03{124)
peak index at AC = 0, (125-128) AC = 0.01, (1293182 = 0.05,
(133-136) AC=0.1)

the system cooperating with the automatic leaf sgation
erformed on a mobile phone and captured usingrgplége
verlay; initial testing shows promising resultessible from
a smartphone. The top potential sets of featumasbe further
implemented as a lightweight feature set on a stiane-
mobile application.
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