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ABSTRACT 
 
We focus on feature extraction and selection to best represent 
texture and shape properties of plant diseases in an image-
based leaf monitoring system implemented in a mobile-cloud 
environment. A number of textural and region-based features 
are aggregated from previous studies; also we introduce mean 
and peak indices of histogram-of-shape as disease property 
representations along with the proposed and enhanced shape 
features based on diseased regions. A total of 260 colour-based 
attributes and 163 shape attributes are searched to find the best 
potential features based on different aspects: probability of 
feature error, correlation, targeted-class relevancy and the 
separability quality of a feature. Experimental results show that 
the best selected feature set which combines colour-based and 
shape features yields high classification accuracy on wheat 
disease images captured by a smartphone camera and also 
provides insights into potential sets of features to be further 
implemented as a lightweight standalone mobile application.  
 

Index Terms— histogram of shape features, textural 
features, feature selection, pathological plant monitoring 
 

1. INTRODUCTION 
 
Plants play a fundamental role in supporting all kinds of life on 
the planet, particularly through food and medicine. Plant 
diseases affect human society in terms of economic loss and 
public health, including insufficient nutrition. Closely and 
continuously monitoring plant health is required to prevent 
such damage. For many diseases, plant pathologist familiar 
with the appearance and characteristics of unhealthy plants are 
required to identify diseases [1]. However, this is labour-
intensive and cost-ineffective, especially in large-scale 
agricultural business or in remote areas. Also, disease detection 
in its late stages might indicate severe and irreparable loss. 
When crops are infected, characteristic symptoms are visible 
which differ from healthy crops in recognizable ways. Thus, an 
automated detection imaging system can be a useful aid to local 
farmers for early detection. Mobile capture devices are recently 
ubiquitous and affordable, and cloud computing technologies 
have been rapidly developed. This work leverages imaging 
techniques to integrate with mobile image capture and mobile 
cloud computing, resulting in an accurate plant health 
monitoring application. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1. Plant Disease Monitoring System based on colour-based 
features and shape characteristics of disease patterns 
  
 The challenges of crop disease identification using 
imaging techniques include the variety of plants and diseases, 
the high degree of similarity between different diseases, the 
differences in grading of a disease, and the variety of image 
capture conditions. Previous research studies [2]–[5] have 
developed an automated system through data acquisition under 
constrained conditions to accurately extract textural 
information from the diseased image. The potential sets of 
features resulted in combinations of basic first-order statistical 
features, features derived from co-occurrence matrices and 
shape features to describe different types of diseases. Although 
the combinations offered accurate classification, individual 
sub-features contribute to the system differently. Tain et al. [4] 
empirically selected some sub-features from the combination, 
whereas, Sarayloo et al. [5] deployed minimal-redundancy-
maximal-relevance to evaluate sub-features and rank them 
before selecting the best features to represent the diseases.  
 We propose an automated disease recognition system as 
summarised in Figure 1. The cloud-based classification system 
uses the previously studied sub-features, including textural 
features derived from a co-occurrence matrix, and first-order 
statistical features, including visual perception features. Also, 
we introduce peak and mean representation of a histogram of 
shape regarding the natural distribution of diseases. Finally, the 
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contributions of sub-features are evaluated across different 
aspects, including individual classification performance, 
separability quality, and redundancy-relevance. For feature 
evaluation methods, we use minimal-redundancy-maximal-
relevance (mRMR) [6], ReliefF [7] and probability of error 
combined with feature correlation [8]. Then sequential forward 
selection is employed to retain only a small set of the best 
features. These flexible feature selection techniques maintain 
the original features, so we can still select these potential 
features as the lightweight features for a further mobile-
standalone application. For the current cloud-based application, 
an image of a leaf is captured using an overlay template (we 
can alter the leaf template in figure 1), and then delivered over 
a network via HTTP. Only the selected potential features are 
calculated and passed through an SVM classifier before the 
output result is returned to the smartphone. To measure the 
performance of the system, we have experimented with real-
world datasets of wheat diseases captured by a standard 
smartphone and acquired by the UK Food and Environmental 
Research Agency (FERA) [9]. The final selected subsets of 
textural features and shape are combined to demonstrate high 
classification accuracy from the system experimentation. 
Additionally, when these sets are employed in the mobile-cloud 
computing environment, experimentation on different mobile 
capture devices yields promising outcomes.  
 

2. FEATURE GENERATION 
 

Many features derived from co-occurrence matrices, colour and 
shape have been shown in previous research [2]–[5] to be 
robust representational attributes for plant diseases. In this 
section we discuss aggregation of a range of features, which are 
categorized into two groups: colour-based features and region-
based features. We also introduce peak and mean indices of 
histograms of region-based features to represent shape 
characteristics for each leaf and propose two types of modified 
principal axis ratios. 
 
2.1. Colour-based features 
 
Textural features and statistical attributes rely on selected 
colour components. The relevant features in this work include 
13 textural features, 4 first-order statistical attributes and 3 
visual perception features which are detailed below. 
 Textural features are developed through a grey-level co-
occurrence matrix which computes frequencies of two pixels 
with quantized intensity levels � and � and separated by distance 
� and orientation � [10]. These features include, but are not 
limited to, homogeneity, correlation, contrast, energy, etc. 
 First-order statistical features (or colour features) 
measure basic information of colour distribution, but are 
powerful properties in many applications. Mean, standard 
deviation, skewness and kurtosis are considered in our system.  
 Visual perception features: Tamura [11] proposed 6 
computational features including coarseness, directionality, 
contrast, line-likeness, regularity and roughness. The three first 
features are considered in the system; while the latter three 
which are derived from the three former features are neglected.  
 

2.2. Region-based features 
 
To segment the disease region, Otsu’s binary thresholding is 
applied on the Cb and Cr colour components (of the YCbCr 
colour model) which are shown to be robust to different 
lighting condition [12]. Figure 3 illustrates segmented disease 
samples of three types of wheat leaves, where the individual 
disease patch (spot) is computed for 15 different shape features.  
 Shape features Fifteen different shape features are used to 
represent diseases (1) principal axis ratio is a ratio of major axis 
length (��) and minor axis length (��) of a disease patch. (2) 
Area ratio is a ratio of disease area (�	) by leaf area (�
). (3) 
Circularity is the distance between foci of the ellipse shape 
(��) divided by major axis length (��). (4) Compactness 
measures a ratio of �	 and convex area (�) of the diseases. 
Since a captured leaf is in a template overlay, the leaves will 
have consistent orientation. (5) Orientation is measured as the 
direction of the particular disease patch. (6) Complexity 
measures the ratio of square of the disease perimeter (�	

�) and 
disease area (�	). (7) Equivalent diameter is also calculated to 
specify the radius of a circle that could have the same area as 
the disease spot. (8) Hydraulic radius computes the ratio of �	 
and �	. (9-15) Seven Hu’s moment invariants [13] of geometric 
shape were demonstrated to be independent to a figure’s size, 
orientation, or position.  
 Two more region-based features, modified principal axis 
ratios, are introduced based on the distributed nature of disease 
structure. The first modified principal axis ratio (PAR+AR) is 
weighted by disease area; the larger the disease patch, the 
higher the impact on the histogram of the feature. Although 
morphological techniques are applied to the segmented diseases 
they still are unable to be segmented accurately as shown in 
Figure 2(b) segmented from 2(a). Thus, another modified 
principal axis ratio is weighted by disease area and the degree 
of solidity of the disease patch (PAR+AR+SLD); the more 
compact the disease; the higher the impact on the histogram.     

    
 (a) (b) (c) 
Fig 2. Two main disease patches (b) and (c) are segmented 
from (a) where (c) is the expected segmented result but (b) is 
not segmented properly. 
  
 Histogram of Shape Disease segmentation in Figure 3 
(middle row) results in more than one of the disease patches 
including noise. Noise removal is performed by eliminating the 
patch which has an area less than {Area Cut factor (AC) x 
Largest Patch Area}. Then, a histogram of shape properties is 
constructed from the shape features of the remaining disease 
patches. Instead of using histogram values as features, we 
introduce peak and mean indices to represent the histogram. 
The histogram of principal axis ratio of 6 wheat leaves is 
shown in Figure 3 (bottom row). The red arrows point at the 
peak index of each histogram. It can be roughly concluded that 
the ratio of the yellow rust leaves have the highest peak index 
value, whereas Septoria diseased patches has lower peak index  
and non-diseased patches containing mostly noise have the 
lowest peak ratio index.  



         

       

      
 (a) (b) (c) (d) (e) (f) 
Fig. 3 Examples of healthy green leaves (a) and (b), yellow rust diseased leaves (c) and (d), and Septoria diseased leaves (e) and (f) 
(Top row). The middle row shows the disease region segmentation results corresponding to the leaves in the top row. The histogram 
of principal axis ratio is shown in the bottom row with the the red arrows pointing to the peak index of the histograms. 
 

3. FEATURE SELECTION 
 
Prior to feature selection feature evaluation is applied to rank 
the main twenty colour-based features and fifteen region-based 
features. Then, the ranked features are selected sequentially 
using a forward selection technique to eliminate the less 
important features. 
 Feature Evaluation: Three methods are considered in the 
system with the aim of improving the overall classification 
accuracy rate. (1) The weighted sum of Probability of Error rate 
(POE) and average correlation coefficient (ACC) are applied to 
assess each feature. POE is first used to select the first feature 
and the following feature on the rank is based on 90% of POE 
and 10% of ACC measures; the weight values were 
demonstrated in [8]. (2) ReliefF measures ‘distinguishability’ in 
a feature by considering the differences of the current instance 
with the � nearby instances from the same class and another � 
nearby instances from different class. Although ReliefF 
exploits the information locally, the combined context will 
provide a global view of the information [7]. (3) Max-
relavance-min-redundancy (mRMR) considers the degree of 
relevance between a feature and a targeted class and also the 
redundancy between features based on mutual information [6]. 
The difference in the two aspects of relevance and redundancy 
is maximized for the top ranked features from mRMR 
assessment. From a complexity aspect, although POE is 
calculated from an individual feature, the POE+ACC feature 
assessment method has higher computation cost compared to 
others as it requires learning and testing of a classifier to 
calculate an error rate of a feature.  
 Feature Selection: The selected number of feature to be 
used in training a classifier is critical. After features are ranked, 
the sequential forward selection (SFS) method is applied to 
select features from the rank sequentially that meet the criteria. 
The first feature in the rank is an initial set of SFS to be 
evaluated and the next selected feature is the next feature in the 
rank that when combined with the first one improves the 
classification rate. The selection search technique has lower 
time complexity (O(N)) compared to exhaustive search.  

 
4. EXPERIEMENTATION RESULTS 

 
The performance of our proposed system is evaluated at the 
server-side of the system environment. The wheat images in 

our experimentation were captured in a wheat field using a 
standard smartphone by a FERA researcher [14]. This dataset 
comprises 160 labelled images (816x612 pixels) of which 50 
are healthy green leaves (GL), 55 display Septoria (ST) disease 
and 55 display yellow rust (YR) disease. The primary leaves or 
main leaf in each image is analysed in our system as  labelled 
by Gibson et al. in [14]. The testing scheme is 5-fold cross-
validation using SVM classifier (with a linear kernel). The 
same testing scheme is employed in POE+ACC feature 
evaluation and sequential forward feature selection.  
 Two sets of features to be selected include colour-based 
features and shape features. Thirteen co-occurrence, four 
statistical and three visual perception features are transformed 
into thirteen colour components (Grey, RGB, YCbCr, L*a*b*, 
and HSV), giving a total of 260 ((13+4+3)x13) colour-based 
features to be selected. There are fifteen diseased-shape 
features including two modified principal axis ratio varying 
four different noise removal factors (AC = 0, 0.01, 0.05, 0.1) 
which are represented by peak index or mean value, thus 136 
(17x4x2) region-based features are to be selected in the system. 
A bin size of 50 for the shape histogram is selected. ReliefF 
feature evaluation is based on �=5 neighbours to be 
considered. 
 Figure 4 shows the average testing error rate at a certain 
number of features from 5-fold cross-validation. Only less than 
20 features out of 260 colour-texture features are enough to 
represent the diseases and at some folds it meets the lowest 0% 
error rate by ReliefF and POE+ACC feature selection. As shape 
features rely on disease segmentation, the lowest error rate is 
only less than 10% using ReliefF. The number of features 
required to meet the lowest error rate for shape features is 
around 20 features out of 136.  Considering the performance of 
each selection scheme, mRMR+SFS reached its lowest error at 
less required number of features; for this dataset, ReliefF+SFS 
selection provides the least error rate at some folds. The results 
show that the combination of shape features and colour-based 
features increase overall accuracy. However, the best combined 
features are selected by mRMR+SFS feature selection as shown 
by the ROC curves in Figure 5; AUC values for healthy green 
leaf (GL) shows 100%, and 99.31% for Yellow rust disease and 
98.79% for Septoria disease. The selected features improved 
the performance given in [14]; however, the primary leaves we 
considered are perfectly segmented. 
 



 
 (a) (b) 
Fig 4. Comparison of average error rate at selected number of 
features (a) from 260 colour-based features from different 
feature selection methods (b) from 163 shape-based features 
from different feature selection methods  

 
Fig 5. ROC curves of the combined colour-based features and 
shape features from mRMR + SFS feature selection method  
 
 Figure 6 displays the top-10 selected features from 5-fold 
scheme selection (~50 selected features per selection method). 
For colour-based features in Fig. 6(a), generally, chromatic 
components (R, H, Cb, a) are selected more than intensity 
components (Y, Grey, V). Homogeneity and entropy-based 
textural features are frequently presented (#31,#109,#191, 
#229,#241,#251). Other potential features include standard 
deviation, and contrast (#195) from Tamura’s features (#199). 
For shape features in 6(b), hydraulic radius (#15,#30,#45,#75), 
principal axis ratio (#1,#16,#46) and some Hu’s moments are 
selected by three evaluation aspects with high frequencies. The 
mean representations are selected more than peak index 
especially at #1-#15. No noise removal (AC = 0) is the most 
chosen in general. The higher AC factor, the less features are 
selected. Mean of PAR+AR+SLD distribution is chosen once 
based on error rate and correlation (POE+ACC). 
 

5. CONCLUSION 
 
The analysis of plant disease recognition system shows that the 
combined colour-based and shape features are powerful feature 
sets to represent plant disease patterns and achieve the high 
classification accuracy. These potential colour-based features 
includes homogeneity and entropy-based features (co-
occurrence matrix), standard deviation of colour components 
and visual perception contrast features which are amongst 
commonly selected features regarding feature quality, target 
relevancy and accuracy aspects. The best selected shape 
features include hydraulic radius and principal axis ratio which 
describe how complicated and how elongated of the disease 
shape respectively. The combined optimal sets of textural 
colour and shape features is implemented in the cloud-side of  
 

 
 

Fig 6. Top-10 selected features (5-fold) from (a) 260 colour-
based features from three feature selection methods (feature index 
(1) homogeneity, (2) contrast, (3) energy, (4) correlation, (5) sum 
of squares, (6) sum average, (7) sum variance, (8) sum entropy, (9) 
entropy, (10) diff variance, (11) diff entropy, (12-13) information 
of correlation measures #1&#2, (14) mean, (15) standard deviation, 
(16) skewness (17) kurtosis (18) coarseness (19) contrast (visual-
based), (20) directionality for greyscale, (21-40) R, (41-60) G, (61-
80) B, (81-100) Y, (101-120) Cb, (121-140) Cr, (141-160) H, (161-
180) S, (181-200) V, (201-220) L, (221-240) a, (241-260) b colour 
components; and (b) 136 shape features (feature index (1) 
principal axis ratio, (2) area ratio, (3) compactness, (4) circularity, 
(5) orientation, (6) complexity, (7-13) 1st Hu’s invariant moments, 
(14) equivalent diameter, (15) hydraulic radius represented by 
mean of shape values with AC = 0 (all disease patches), (16-30) 
peak index of shape histogram with AC = 0, (31-60) AC = 0.01, 
(61-90) AC = 0.05, (91-120) AC = 0.1, (121-122) PAR+AR, 
PAR+AR+SLD represented by mean value at AC = 0, (123-124) 
peak index at AC = 0, (125-128) AC = 0.01, (129-132) AC = 0.05, 
(133-136) AC = 0.1)  
 
the system cooperating with the automatic leaf segmentation  
performed on a mobile phone and captured using a template 
overlay; initial testing shows promising results accessible from 
a smartphone.  The top potential sets of features can be further 
implemented as a lightweight feature set on a standalone-
mobile application. 
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