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Abstract—Linear discriminant analysis (LDA) is a classical method for discriminative dimensionality reduction. The original LDA may
degrade in its performance for non-Gaussian data, and may be unable to extract sufficient features to satisfactorily explain the data
when the number of classes is small. Two prominent extensions to address these problems are subclass discriminant analysis (SDA)
and mixture subclass discriminant analysis (MSDA). They divide every class into subclasses and re-define the within-class and
between-class scatter matrices on the basis of subclass. In this paper we study the issue of how to obtain subclasses more effectively
in order to achieve higher class separation. We observe that there is significant overlap between models of the subclasses, which we

hypothesise is undesirable. In order to reduce their overlap we propose an extension of LDA, separability oriented subclass
discriminant analysis (SSDA), which employs hierarchical clustering to divide a class into subclasses using a separability oriented
criterion, before applying LDA optimisation using re-defined scatter matrices. Extensive experiments have shown that SSDA has better
performance than LDA, SDA and MSDA in most cases. Additional experiments have further shown that SSDA can project data into
LDA space that has higher class separation than LDA, SDA and MSDA in most cases.

Index Terms—Dimensionality reduction, feature extraction, linear discriminant analysis, subclass discriminant analysis, classification

1 INTRODUCTION

IMENSIONALITY reduction is a key process in ma-
Dchine learning and statistics to reduce the number of
variables under consideration, by way of feature selection
or feature extraction. Data analysis such as regression or
classification can usually be done in the reduced space more
accurately than in the original space when the same analysis
model is used. This is usually the case for high dimensional
data analysis tasks such as image, video, and spectral data
analysis.

Dimensionality reduction transforms data from a high-
dimensional space into a lower-dimensional space. The
transformation may be linear as in principal component
analysis (PCA), or nonlinear as in kernel PCA and man-
ifold learning, or supervised (or discriminant) as in linear
discriminant analysis (LDA). LDA is a classical approach
to discriminant dimensionality reduction, dating back to
Fisher [1]. It has been widely used in many fields of pattern
recognition such as face recognition and verification [2], [3],
image retrieval [4], and document recognition [5].

There are three limitations with the original LDA. The
mathematics of LDA is derived on the assumption that
the instances of all classes are generated from Gaussian
distributions of same covariance but different means. If
the distributions are significantly non-Gaussian, the LDA
projections may not preserve complex structure in the data
needed for classification. The assumption has significantly
restricted the application of LDA, as in real life many data
distributions are not Gaussian [6].
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The mathematics of LDA also implies that LDA pro-
duces at most C' — 1 feature projections, where C' is the
number of classes, because the number of projections is
constrained by the rank of the between-class scatter matrix
which is at most C'—1. As a result the original data space can
be transformed to a new space of at most C' — 1 dimensions.
When there are many classes this is not a problem; however,
when there are few classes this could be a serious problem.
For example, in a binary classification problem there are
only two classes. When LDA is applied there will be only
one feature projection to represent the data. One feature may
be insufficient to describe the class boundary in many cases
especially when the class boundary is complex. This is the
so-called over-reducing problem [7]. The third limitation is that
LDA will fail when the discriminatory information is not in
the mean but rather in the variance of the data .

To overcome these limitations, several variants of the
original LDA have been proposed in recent years including
non-parametric discriminant analysis (NDA) [8], [9], subclass
discriminant analysis (SDA) [10] and mixture subclass discrim-
inant analysis (MSDA) [11], [12].

Fukunaga [8] argued that LDA is parametric discrimi-
nant analysis since it uses the parametric form of the scatter
matrix based on the Gaussian distribution assumption [9].
As a result LDA suffers performance degradation in cases
of non-Gaussian distribution. Fukunaga then re-defined
the between-class scatter matrix! to overcome this non-
Gaussian problem and called the resulting LDA as non-

1. Fukunaga defined the new between-class scatter matrix as: S¥ =
S w(l, ) (w1 — pa(w1y)) @y — pa(1y))T + 52 w(2,5) (@ —
p1(z2;)) (w25 — p1(z2;))T, where z;; denotes the jth vector of class
i(i = 1,2) and p;(x;;) is the local KNN mean, defined by p;(zi;) =
%Zﬁ:l NNp(xzij,1) where NNp(x;5,1) is the pth nearest neighbor
from class [ to the vector z;;(¢ # 1) and w(s,1) is the value of the
weighting function in class <.



parametric discriminant analysis (NDA). In NDA’s between-
class scatter matrix, weighting is introduced to consider the
boundary information in the training set. In this way, for
any distributions, we can separate classes by maximizing
the distance between data instances in one class (especially
those instances that stand at the boundary) and the mean of
p nearest neighbours from another class. In addition, NDA
uses data instances to construct the between-class scatter
matrix instead of merely the class centres, therefore it also
solves the over-reducing problem (i.e., C' — 1 limitation).
However, NDA can only deal with the two-class case, so
Li et al. [9] extended NDA to address the multiclass case
and proposed a series of variants of NDA, such as non-
parametric subspace analysis (NSA) and nonparametric feature
subspace (NFA), and applied these variants of NDA for face
recognition.

Zhu and Martinez [10] argued that classes are usually
multimodal so distribution within classes should be consid-
ered when constructing between-class scatter matrix. They
proposed a variant of LDA, called subclass discriminative
analysis (SDA), to address this issue. Based on a nearest
neighbor based clustering algorithm and stability criterion
they proposed, SDA divides each class into same number
of subclasses and computes centres of those subclasses
or subcentres of the class. Then SDA uses the differences
between the subcentres of one class and the subcentres of
the other classes to construct a new between-class scatter
matrix and maximizes the new between-class scatter matrix
through the LDA optimisation machinery. Since SDA uses
subcentres rather than centres of every class to compute
between-class scatter matrix, it does not have the C' — 1
limitation.

Mixture subclass discriminant analysis (MSDA) [11] uses
the same criterion as SDA to obtain optimal number of
subclasses for each class but it only divides those classes that
do not have Gaussian distribution based on nongaussianity
criterion proposed by [11]. MSDA uses the same between-
class matrix as SDA so it does not have the C' — 1 limitation
either.

Although both SDA and MSDA have overcome some
of the LDA limitations, they have not answered one im-
portant question. Most if not all LDA variants, including
SDA and MSDA, perform dimensionality reduction by max-
imising the same (Fisher) objective which is the between-
class scatter matrix normalised by the within-class scatter
matrix, with different definitions for the between-class and
within-class scatter matrices. What is the true objective of
discriminative dimensionality reduction? Fig. 6 shows the
subclass distribution of the Iris data obtained by SDA,
MSDA and SSDA (to be presented in this paper), where
each circle corresponds to one subclass. It is clear that SDA
and MSDA have different number of circles thus resulting in
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very different LDA dimensions?, suggesting that SDA and
MSDA have different goals in dimensionality reduction. At
the same time they have one thing in common - the cir-
cles have significant overlap. A research question naturally
arises: could reducing the overlap of these circles be a good
objective of dimensionality reduction?

More recently a new LDA variant, orLDA, is proposed to
address the over-reducing problem associated with LDA [7].
Unlike LDA, which measures the between-class separation
by subtracting the mean of every class by the mean of the
whole data instances, orLDA does so by subtracting every
instance in one class by the mean of another class. In this
way, the original data space can be reduced to one with at
most min(d,n — 2) dimensions® where d is the number of
dimensions in the original data space and n is the number
of instances.

This has indeed overcome the over-reducing problem.
However, when the number of instances and the number
of dimensions are both large, the reduced (LDA) space may
still have many dimensions, thus dimensionalty reduction
being possibly insufficient. This may then affect the overall
performance. Furthermore, in its current form, orLDA can
only be used for binary classification problems due to its
way of computing the between-class scatter matrix.

Inspired by SDA and MSDA, also motivated by the
desire to extend orLDA to work on multiclass problems, we
present in this paper separability-oriented subclass discriminant
analysis (SSDA), a variant of LDA as a result of our effort
to answer the above overlapping question. SSDA is aimed
to reduce the overlap between models of the subclasses
within each class during the LDA dimensionality reduction
process. This is achieved by finding the optimal* subclasses
for each class and maximising Fisher’s separation objective
function using re-defined within-class and between-class
scatter matrices — instead of using every instance of one
class to subtract the mean of another class (as in orLDA),
we use the means of the subclasses in one class to subtract
the mean of all data instances. In this way, SSDA is expected
to find subclasses for each class that are ‘innate’ to the data,
and are not much overlapping in their models. Furthermore
the number of dimensions in the reduced LDA space is not
restricted by the number of classes or the number of data

2. The number of LDA dimensions is closely related to the number of
subclass (i.e. circles). The number of circles denotes the number of sub-
classes. When the between-class scatter matrix and within-class scatter
matrix are constructed by the centres of subclasses rather the centres
of classes, the ranks of between-class scatter matrix and within-class
scatter matrix are strongly correlated with the number of subclasses
(circles). The number of reduced (LDA) dimensions is given by the
rank of Sy;1S,, where r(mk(SQISb) < min(rank(Sgl),rank(Sb)).
Therefore, the number of dimensions in the reduced (LDA) space
correlates strongly with the number of circles. If we want to quantify
the relation precisely, we must know the exact definition of S, and S, .
Therefore there is no general formula for their relation.

3. According to linear algebra and the formula that we compute the
between-class scatter matrix S, and within-class scatter matrix S,,, we
can obtain rank(Sy) = min(d, N1 — 1 + No — 1) and rank(Sw) =
min(d, N1 —1+ Na — 1), where d is the number of dimensions, N; (i =
1,2) is the number of ith class. Therefore rank(S,) = min(d,n — 2),
rank(Sw) = min(d, n—2), where n is the number of instances. Because
the number of dimensions in the reduced space of orLDA is equal to the
rank(SylSy) and rank(Sy'Sy) < min(rank(Syt), rank(Sy)), the
original data space can be reduced to one with at most min(d,n — 2).

4. Throughout this paper, when we say ‘optimal’ we mean a choice
that gives the best prediction performance.



instances. Extensive experiments show SSDA indeed has
superior performance.

The rest of the paper is organised as follows. Section
2 presents related work including the classical linear dis-
criminant analysis, subclass discriminant analysis, mixture
subclass discriminant analysis, and LDA for over-reducing
problem. Section 3 presents our separability-oriented sub-
class discriminant analysis. Experimental results are pre-
sented in Section 4. Section 5 presents further evaluation
results about separability. Finally, Section 6 concludes the

paper.

2 RELATED WORK

To provide the context and to introduce the necessary tech-
nical notations we present an overview of related work,
including the original LDA and its recent extensions SDA,
MSDA and orLDA.

2.1 Linear Discriminant Analysis

Linear discriminant analysis (LDA) is a classical method for
discriminant analysis that is used in statistics, pattern recog-
nition and machine learning to find a linear combination of
features that separates two or more classes of objects. The
resulting combination may be used as a linear classifier, or
more commonly, for dimensionality reduction before later
classification [13]. It has been successfully used in many data
centric applications.

LDA uses a between-class scatter matrix S, to measure
class separability, and uses within-class scatter matrix .S, to
measure class compactness. The goal of LDA is to find a
projective matrix W that projects data from one data space
to a new one, LDA space that is spanned by LDA features
(or LDA dimensions), such that a measure of the between-
class scatter matrix S, in the new space is maximsed and
simultaneously the same measure of the within-class scatter
matrix S, in the new space is minimised. S, and S,, are
defined respectively as:
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S = 5 D Nilpi = ) (i — )" @
=1
| C.N
Sv = Z (wij — pa) (wig — pa) " 2

% 1

1J

where N is the number of instances, IV; is the number of
instances in class i, C' is the number of classes, u; is the
mean of class ¢, u is global mean of all instances, and z;;
denotes the jth instance in class .

LDA is an optimisation process. Its optimisation objec-
tive, the Fisher objective, is defined as follows

. tT(WTSbW)
 tr(WTS,W)

where W is a projective matrix that projects data from the
data space to the LDA space. The LDA optimisation is to
find one projective matrix, W*, that maximises the Fisher
objective; that is

JEPAW) €))

W* = arg max JEPAW) 4)
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It turns out the sought-after projective matrix W* is com-
posed of the eigenvectors corresponding to the largest
eigenvalues of S;le, based on the assumptions of nor-
mally distributed classes and equal class covariances®.

Note that S} is the sum of C matrices of rank < 1 and
the mean vectors are constrained by % E]C:l W = [, So
the rank of S is at most C' — 1. Therefore the variability
between features will be contained in the subspace spanned
by the eigenvectors corresponding to the C' — 1 largest
eigenvalues. In other words the dimensionality of the (new
reduced) LDA space is at most C' — 1. If C' = 2, the LDA
space will have only one dimension thus the over-reducing
problem — insufficient number of features are extracted for
describing the class boundaries, so there is loss of between-
class information.

The terms LDA and Fisher’s linear discriminant (FLD)
are often used interchangeably, although Fisher’s original
article [1] actually describes a slightly different discriminant,
which does not make some of the assumptions of LDA such
as normally distributed classes or equal class covariances.

Various variants have been proposed to extend LDA,
which fall under two main categories — incremental learning
LDA and batch learning LDA. Incremental learning LDA
methods focus on processing data streams, which update
LDA features based on new ‘burst’ of data. Many of them
update LDA features through updating between-class and
within-class scatter matrices [14], [15], [16], [17].

Batch learning LDA methods require that all instances
are available and construct LDA features with all data
instances. Most batch learning LDA methods also address
the small sample size (SSS) or singularity problem, which
is a well known problem with the original LDA — when
the number of features is much larger than the number
of instances we cannot use S, 1S, to obtain the projective
matrix W. Solutions include using LDA after PCA [18],
using random matrix multiplication with scatter matrices
to extract the most discriminant information [19], and using
regularization [20], [21], [22], [23]. The regularization based
methods are an important approach to solving the SSS
problem. Its key idea is to find a regularization parameter
o and add « to the diagonal elements of the within-class
scatter matrix, which will guarantee that the new within-
class scatter matrix is positive definite and non-singular.
Other batch learning LDA methods include tensor-based
LDA [24], heteroscedastic LDA [25], and sparse discriminant
analysis [26].

2.2 Subclass Discriminant Analysis

Subclass discriminant analysis (SDA) [10] is a variant of
LDA that aims to separate classes at a subclass level rather

5. To show how to obtain W*, we let f = WTS,W and g =
WTS,W —a = 0, where a > 01is any constant. The LDA optimisation
is thus equivalent to finding a projective matrix W to maximize f under
the g constraint. For this we define L = f — Ag, where A # 0 is
Lagrange’s multiplier. By setting the derivative of L with respect to
W to zero, we get

L
aaTv = 25, W — 2ASuW = 0 = S,W = ASuW (5)

If Sy is nonsingular, we obtain S 1SbVV = AW. Therefore, the
columns of projective matrix W* are the eigenvectors corresponding
to the largest eigenvalues of Sy’ Ss.



than at a class level, based on the observation that the data
distribution in a class may be multimodal (i.e., forming
clusters). This is achieved by dividing each class into sev-
eral subclasses and then maximising the redefined Fisher
objective function, where the original between-class scatter
matrix Sy, is replaced by a new between-subclass scatter
matrix Spep:

c-1K; C

K
SyPA = Spep = Z Z Z Zpijpm(uij*Mzn)(/lijfﬂln

i=1 j=11l=i+1n=1
(6)

where C' denotes the number of classes, K; denotes the
number of subclasses in class ¢, p;; and p;, denote priors,
and ;5 denotes the mean of the jth subclass in class i. The
within-class scatter matrix is the instance covariance matrix
N
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where N, z;, and p are the number of instances, the jth
instance and the mean of all instances respectively. The
redefined objective function is the following:

tr(WTSPPAW)  tr(WT Sy W)
~ tr(WTSSPAW) — tr(WTEXW)'

SDA uses a nearest neighbor based clustering algorithm
to divide each class into several subclasses, and automati-
cally determines the optimal number of subclasses by the
leave-one-out-test (LOOT) criterion proposed in [10], or by a
faster stability criterion [27] °.

JIPAW) ®)

2.3 Mixture Subclass Discriminant Analysis

Mixture subclass discriminant analysis (MSDA) [11] is an
extension of SDA. It adopts SDA’s between-subclass scatter
matrix Spsp, but replaces SDA’s within-class scatter matrix
by a new within-subclass scatter matrix, which is defined
as

SMSDA — $X = Sy + Suss, ©)

where Sy, is defined as in SDA, and S, is defined as
follows:

c K
Sws = Zzpij(ﬂfij — pij)(@ij — piz)"

i=1j=1

(10)

where C, K, p;j, x;; and p;; are the number of classes,
the number of subclasses in class ¢, prior, the instances in
subclass j of class 7, and the mean of subclass j in class <.
The Fisher objective function of MSDA is the:

JMSDA(W) _ tr(WTSbSDAW) — tT(WTSbis)
tr(WTSMSPAW) 4 (WTSXW)

(11)

MSDA applies nongaussianity criterion, based on skew-
ness and kurtosis, to select a class or subclass that is not
Gaussian distribution. It then applies the LOOT criterion
(or stability criterion if speed is required) to re-partiton the
selected classes or subclasses to getting optimal number of
subclasses.

6. The LOOT criterion is computationally expensive so a computa-
tionally efficient criterion, the stability criterion, was introduced in order
to find the optimal number of subclasses faster.

2.4 LDA for Over-Reducing Problem

LDA for over-reducing problem (orLDA) [7] is a variant of LDA
that is aimed to address the over-reducing problem for binary
classification by using a new between-class scatter matrix.
Instead of using the mean of every class to subtract the mean
of the whole data, orLDA uses every instance in one class
to subtract the mean of the other class. In this way orLDA
can get more LDA features than the original LDA. The new
between-class scatter matrix is defined as follows:

§,orLDA L(Ny Z;,\f:ll(xlj — p2) (w1 — p2)T +
Ny Z;V:Ql(mm — p) (@25 — p1)")

where N is the number of instances, IN; is the number of
instances in class i (i 1, 2) such that 23:1 N, = N, p;
is the mean of the instances in class i, and x;; is the jth
instance in class 7.

3 SEPARABILITY-ORIENTED SUBCLASS DISCRIM-
INANT ANALYSIS

In order to have an insight into LDA in general and to
answer the research question on Page 2 specifically, we pro-
pose separability-oriented subclass discriminant analysis (SSDA)
- an extension of subclass discriminant analysis. The objec-
tive is to find those LDA features that together (1) maximise
the between-subclass separation within a class (2) minimise
the within-class scatterness and (3) maximise the overall
between-class scatterness. The between-subclass separation
objective is achieved through clustering guided by a sepa-
rability criterion. The within-class scatterness objective and
the between-class scatterness objective are achieved through
re-defined within-class scatter matrix and between-class
scatter matrix.

3.1 Between-subclass Separation by Hierarchical Clus-
tering

Like SDA and MSDA, we divide each class into subclasses
through clustering before the LDA optimisation procedure
is applied. We select agglomerative hierarchical clustering’
for this, because hierarchical clustering is stable in that for
a given K and a given data set, the same clustering is
obtained no matter when the algorithm is run. This is not the
case with K-means clustering as it sets the initial clustering
randomly.

We are interested in the optimal number, K*, of clusters
(i.e., subclasses) for each class, which gives the best predic-
tion performance using SSDA with other parameters being
fixed. This is challenging if not impossible. One solution
to the problem of finding the optimal K* is a wrapper
approach®, but it is clearly very costly. We therefore need

7. Hierarchical clustering [28] is a method of cluster analysis which
seeks to build a hierarchy of clusters. There are two approaches to
hierarchical clustering: agglomerative (bottom up) and divisive (top
down). In agglomerative approach each data instance starts in its own
cluster, and pairs of clusters are merged as one moves up the hierarchy.
In divisive approach all data instances start in one cluster, and splits
are performed recursively as one moves down the hierarchy. In both
approaches the clustering process continues (in either direction) until
the given number (K) of clusters are obtained.

8. A wrapper approach should work this way: for each K we run
SSDA once to get one validation result, and we repeat this process for
all K and choose the optimal K based on the validation results.



to find an efficient heuristic method. One approach is to
design a criterion measuring the quality of a clustering for
a given K; repeat the clustering process for all K values;
and then select the K value that results in a clustering with
the best value for the criterion. SDA and MSDA both take
this approach and use the leave-one-out criterion or stability
criterion.

We consider a different criterion, called separability crite-
rion, which is aimed to find the clustering that maximises
the average distance between the mean of a class and the
means of subclasses in this class. This criterion is defined as
follows:

K} = arg max (AEDk ;) (12)
where K7 is optimal number of subclasses in class i and
AE Dy ; is the average Euclidean distance (AED) between the
mean of the class and the means of its K subclasses, which
is given below:

K
1
AEDg; = 5 > llpis — pill2 (13)
=1

where p;; is the mean of the jth subclass in class 7 and p; is
the mean of class 4. It is clear the bigger the AED, the more
separated the subclasses are from each other.

The algorithm for finding the optimal number of sub-
classes (i.e., clusters) K* for each class, in terms of the
separability criterion in Eq.(12) is described in Algorithm 1.
Given a max value K45, we run the hierarchical clustering
algorithm K, times with K = 1 to K., calculating
our separability criterion for every K then taking the K
corresponding to the best separability criterion value as the
optimal K*.

Algorithm 1 Finding the optimal number K* of subclasses automati-
cally. In this algorithm, nClass is the number of classes, classMean is the
mean of a class, subclassMean is the mean of a subclass, K;qz denotes
the maximum number of subclasses to consider for a class, K* is the
optimal number of subclasses for a class, K is the number of subclasses,
T ED denotes the total of all Euclidean distances in a class and ED; is
the Euclidean distance between classMean and ith subclassMean.

Input: A set of training instances and K42
Output: K*
for C =1 : nClass do
Calculate classMean;
forK=1: K,,,, do
Apply hierarchical clustering algorithm and obtain
subclasses;
Calculate subclassMean;
TED =0;
fori=1:K do
Calculate ED;;
Calculate TED = TED + EDy;
end for
Calculate and record AEDy = 1EB;
end for
K* = arg maxg (AEDk);
end for

After the optimal number of subclasses is found for
every class, the subclasses are subsequently obtained for
every class. We use these subclasses to calculate our new
between-class scatter matrix and within-class scatter matrix.

3.2 The Re-defined Within-class Scatterness

The original LDA uses individual instances and the mean
of the class in its definition of the within-class scatter matrix
(See Fig. 2(a) for an illustration), and MSDA uses instances
and means of subclasses. SDA defines the within-class scat-
ter as instance covariance matrix.

In SSDA, we use individual instances, means of sub-
classes and the mean of the class to define the new within-
class scatter matrix (See Fig. 2(b) for an illustration). It mea-
sures within-class scatterness at two levels: local scatterness
at subclass level and global scatterness at class level. Local
scatterness measures the degree to which data instances in
a subclass of a class are scattered around the subclass mean,
and global scatterness measures the degree to which sub-
class means in a class are scattered around the class mean. It
should be noted that in most research on LDA, including the
original LDA, only global scatterness is considered. Fig. 1
illustrates local scatterness and global scatterness for a class.

In classification tasks it is possible that some class may
have different modalities (or clusters). One example is face
recognition where a person’s face images may be front
view or side view, resulting in different modalities when
all images are represented in the same data space. The new
within-class scatterness represents multimodality informa-
tion, therefore optimising this within-class scatterness will
separate different modalities more clearly and hopefully the
resulting data reduction will have better performance.

Suppose there are N instances x; € R" for ¢ =
1,2,..., N from C classes, N; is the number of instances
in class ¢ (i= 1, 2,...,C) such that ch;l N; = N, K; is
the number of subclasses in class 7, N;; is the number of
instances in subclass j of class i, ji;; is the mean of subclass
j of class i, y1; is the mean of class i and x;j,, is the mth
instance in subclass j of class ¢. The new within-class scatter
matrix for SSDA is defined as follows:

SE;SDA = st = stl + stz (14)
where
C K; Nyj
Ssw; = Z Z (Tigm — pig)(Tijm — ,Uij)T (15)
i=1j=1m=1
C N Ki
Sews = Y~ > (g — i) (i — pa)” (16)
i=1 N j=1

where S;,,, measures local scatterness and S, measures
global scatterness.

3.3 The Re-defined Between-class Scatterness

In the original LDA the between-class scatter matrix is
defined in terms of the means of classes and the mean of all
instances (See Fig. 3(a)). In SDA and MSDA, the between-
class scatter matrices are all defined only by the means of
subclasses (see Eq.6).

In SSDA we define a new between-class scatter matrix
using the means of subclasses and the mean of all instances;
that is, we measure between-class scatterness by the differ-
ence between subclass means and a single point of reference,
i.e., the mean of all data instances (See Fig. 3(b)).



Using the same notation as in Section 3.2, our new
between-class scatter matrix for SSDA is defined as follows:

C K
N;
i=1 Jj=1

It is clear that this breaks the C' — 1 limitation.

SPSDA is similar to the between-class scatter measure
SEM004 = 50 S i (g — 1) (i — )T [29]. There is
however a key difference between them. The subclass prior
in quSDA is N;/N, while the subclass prior in SbZM2OO4 is
N;j/N. As a result of this, our approach places emphasis
on subclass separability and increases the contribution of
subclasses in separating different classes.

3.4 The LDA Optimisation for SSDA

The LDA optimisation for SSDA is done through the Fisher
objective (Eq.3), where we replace Sy, or S, or both by our
new versions, thus resulting in three different versions of
SSDA.

3.4.1 SSDA-1

In this version, we use the new between-class scatter matrix
and the original within-class scatter matrix so the Fisher
objective function is

JSSDAfl(W) _ tT(WTSiJSSDAW) _ tr(WTSis)
T (WIS, W) r(WIS, W)

SSDA-1 maximises class separation through maximising
subclass separation thus preserving the within-class struc-
ture whilst separating different classes. Therefore we expect
this to lead to data reductions that have better performance.
Additionally our Sj;, is defined in terms of subclass means
rather than class means, therefore SSDA-1 is not C' — 1
limited. Extensive experiments confirm our hypothesis.

It should be noted that the solution to the LDA opti-
misation using the above Fisher objective is the optimal
projective matrix whose columns are the eigenvectors cor-
responding to the largest eigenvalues of S} Sy, rather than
S; LS b-

3.4.2 SSDA-2

In this version, we use the new within-class scatter matrix
Ssw and the original between-class scatter matrix Sy, so the
Fisher objective function is
JSSDA—Q(W) _ tr(WTSbW) — tr(WTSbW) )
tr(WTSSSDAW)  tr(WT S5, W)

The new within-class scatter matrix encodes within-class
scatterness at two levels — the subclass level and the class
level. As discussed earlier, this within-class scatter matrix
measures within-class multimodality thus maximisng the
above Fisher objective can be expected to result in data re-
ductions leading to good classification performance. Again
the optimal projective matrix consists of eigenvectors corre-
sponding to the largest eigenvalues of S} 5.

3.4.3 SSDA-3
In this version we use both new matrices thus the Fisher
objective function is

tr(WTSFSPAW)  tr(WT S, W)
~ tr(WTSSSPAW) — tr(WTSe,W)

(18)
We have argued the advantages of both new matrices,
therefore there is reason to expect SSDA-3 to perform well.
The optimal projective matrix consists of eigenvectors cor-
responding to the largest eigenvalues of S} Sqp.

JSSDA*LS(W)

3.5 Discussion

The SSDA algorithm has two sub-procedures: (1) between-
subclass separation by hierarchical agglomerative cluster-
ing, which is equipped with our separability criterion;
(2) LDA optimisation using within-class and between-class
scattering matrices. Both procedures are known to converge.

Algorithm 1 has a time complexity of 3.7 (K2, . +
Koaz * O(N? % log(N;))), where C is the number of
classes, K,qx is the maxmum number of subclasses to
consider, NN; is the number of data instances in class ¢ and
O(N? xlog(N;)) is the time complexity of the hierarchical
agglomerative clustering algorithm [30].

4 EXPERIMENTAL EVALUATION

We have designed a series of experiments to evaluate SSDA.
Firstly, we want to compare our new SSDA with its closest
counterparts, LDA, SDA and MSDA, and two nonlinear
discriminative analysis (nonlinear-DA) methods, GDA and
KMSDA, in terms of classification performance and run
time. Secondly, we want to compare the three versions of
SSDA in order to gain a better understanding of SSDA.
Thirdly, we compare SSDA with two SDA versions with
different clustering approaches in order to gain an insight
into SSDA and to see the reasons behind their behaviours in
the experiments.

4.1 The Experiments

Linear Discriminant Analysis (and its variants) has been
applied to a wide range of data intensive domains, espe-
cially in computer vision, as a data reduction technique. In
our experiments, we consider a range of classification tasks
from general data mining, imbalanced data mining, to face
recognition and face verification.

We select ten data sets from UCI Data Repository [31]
for general data mining; eight imbalanced data sets from the
KEEL Data Repository [32] for imbalanced data mining; and
four face databases in the public domain for face recogni-
tion/verification — ORL face database [33], AR face database
[34], YouTube face database [35], and Labeled Faces in the
Wild (LFW) face database [36].

We use k-Nearest Neighbor (kNN, k=1) as the classi-
fier and ten-fold cross-validation as evaluation framework.
As evaluation metrics we consider estimated mean accuracy
(Ell\é[A) and standard error of the mean (SEM): EMA =
2%01’”, where p; denotes the percentage of correct clas-
sification in the ith fold validation; SEM = 9 where

V107
§ =/ 2ili(pi—EMA)?
9 .



General information about the ten data sets from UCI
Data Repository [31] is shown in TABLE 1. The same in-
formation about the eight imbalanced data sets from KEEL
Data Repository [32] is shown in TABLE 2. All data sets are
numerical and have no missing information as we need to
compute the mean and distance.

Name of data set (Acronym) #Instance  #Class  #Attribute
WDBC 569 2 30
Iris 150 3 4
Vehicle 846 4 18
Red Wine Quality (RWQ) 1599 6 11
Breast Tissue (BT) 106 6 9
Seeds 210 3 7
Banknote Authentication (BA) 1372 2 4
Leaf 340 30 14
Urban Land Cover (ULC) 675 9 147
Forest Type Mapping (FTM) 523 4 27

TABLE 1 General information about ten UCI data sets used in experi-
ments

Name of data set #Attribute  #Instance  #Class #IR
Glassl 9 214 2 1.82
New-thyroid1 5 215 2 5.14
Dermatology 34 366 6 5.55
Hayes-roth 4 132 3 17

Led7digit-0-2-4-5-6-7-8-9_vs_1 7 443 2 10.97
Pima 8 768 2 1.87
Vowel0 13 988 2 9.98
Wisconsin 9 683 2 1.86

TABLE 2 General information about the eight imbalanced data sets
used in the experiments. IR is short for Imbalanced Ratio.

Face Image Data

Face recognition is a multi-class classification problem. The
goal of face recognition is to determine if an image is from
someone in the database when we have a collection of
images for each person in the database. In our experiments
we use three face image databases which are commonly
used in face recognition research literature: the YouTube
faces database [35], the ORL face database [33] and the AR
face database [34].

The YouTube faces database: It contains 3425 videos of 1595
different people collected from the YouTube website. The
average length of each video clip is 181.3 frames, there
are large variations in expression, pose and illumination
in each video. In our experiments, we use the aligned
image database which contains aligned face frames taken
from videos, which are represented using YouTube’s Center-
Symmetric LBP (CSLBP) descriptor [37].

The ORL face database: It consists of a total of 400 images
of 40 distinct persons. Each parson has ten different images
and the size of each image is 92 by 112 pixels, which
will generate a feature space of 10,304 dimensions. All the
images were taken against a dark homogeneous background
with the subjects in an upright, frontal position (see Fig. 4(a)
for some examples).

The AR face database: It contains frontal-view face images
of 126 different persons (70 males and 56 females). Each
person was photographed under different lighting condi-
tions and distinct facial expressions, and some images have
partial occlusions (sunglasses or scarf). A total of 13 images
were taken in each session for a total of two sessions, which
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were separated by an interval of two weeks. Therefore, there
are 26 frontal face images per person. In our experiments,
we use a subset of AR-face data set. We use face images of
100 persons and 7 nonoccluded face images of each person
from the first session. Besides, we crop the face part of the
image and then resize all images to a standard image size
of 80 by 100 pixels (see Fig. 4(b) for some examples). This
yields a 8,000-dimensional feature space.

Labeled Faces in the Wild (LFW) Face Database: We use
this database for face verification’. The database consists
of 13,233 images of 5,749 people, which are organised into 2
views: view one is a development set of 3,200 pairs, which is
used for building models and selecting features; view two
is a ten-fold cross-validation set of 6,000 pairs for evalua-
tion. The size of each image is 250 by 250 pixels. All the
images in LFW were collected from the Internet with large
intra-personal variations (see Fig. 4(c) for some examples).
There are three versions of the LFW: original, funneled and
aligned. In our experiments, we use the aligned version [38].
Besides, we use a subset of view two of LFW. We randomly
choose 200 matched face pairs and 200 mismatched face
pairs from view two and crop each image to an image of
80 by 150 pixels as in [3]. We thus have 24,000 features for
each image of LFW that we use.

Dimensionality Reduction for Face Recognition/Verification

The images are initially represented using pixel-based rep-
resentation thus having large numbers of features. Therefore
face recognition and verification both have the small sample
size problem. To deal with this problem, we use the two-
stage PCA + LDA [18]. We use PCA to reduce data dimen-
sionality retaining principal components which can explain
95% of variance, before LDA, SDA, MSDA ,GDA, KMSDA
and SSDA are used.

4.2 The Results: All Methods

UCI Data: Our experimental results on UCI data are pre-
sented in TABLE 3 and TABLE 4. It can be seen that SSDA
(SSDA-1, SSDA-2, SSDA-3) have better performance than
LDA, SDA, MSDA,GDA and KMSDA on a majority of the
data sets. In particular SSDA-1 has better performance than
LDA on all ten data sets. This set of results suggests that
SSDA captures more discriminant information than LDA,
SDA, MSDA,GDA and KMSDA .

Imbalanced Data: Our experimental results on imbalanced
data are shown in TABLE 5 and TABLE 6. It can be seen that
SSDA has better performance than other methods on most
of the imbalanced data sets; in particular, SSDA3 has the
best performance on all imbalanced data sets.

Face Image Data: Our experimental results are presented
in TABLE 7 and TABLE 8. It can be seen that the SSDA
variants have better performance than the other methods
on most of the face databases; in particular, SSDA1 has the
best performance on 3 out of the 4 face databases.

9. Face verification is a binary classification problem, and its goal is
to decide if two given face images are from the same person (i.e. match
or not).



Methods Datasets | g BT | FIM | Iris | Leaf | RWQ | Seeds | ULC | Vehicle | WDBC
0.9956 | 0.7164 | 0.8468 | 0.9667 | 0.6912 0.6529 | 0.9524 | 0.7749 0.7398 0.9579
LDA + + + + + + + + + +
0.0016 | 0.0506 | 0.0142 | 0.0149 0.0417 | 0.0085 | 0.0142 | 0.0145 0.0168 0.0079
1.0000 | 0.7173 | 0.8621 | 0.9733 0.7735 0.6716 | 0.9762 | 0.7807 0.8050 0.9614
ISSDA-1 + + + + + + + + + +
0.0000 | 0.0409 | 0.0132 | 0.0109 0.0232 0.0097 | 0.0106 | 0.0091 0.0148 0.0078
0.9971 | 0.7182 | 0.8755 | 0.9733 0.7382 0.6591 | 0.9429 | 0.7764 0.7529 0.9579
ISSDA-2 + + + + + + + + + +
0.0012 | 0.0335 | 0.0127 | 0.0147 0.0242 0.0102 | 0.0138 | 0.0115 0.0134 0.0083
1.0000 | 0.7164 | 0.8777 | 0.9733 0.7500 0.6667 | 0.9476 | 0.7734 0.8049 0.9649
ISSDA-3 + + + + + + + + + +
0.0000 | 0.0401 | 0.0095 | 0.0109 0.0245 0.0110 | 0.0111 | 0.0098 0.0148 0.0091
0.9956 | 0.5473 | 0.8794 | 0.9667 0.5618 0.6360 | 0.9524 | 0.4889 0.7245 0.9297
SDA + + + + + + + + + +
0.0016 | 0.0478 | 0.0105 | 0.0149 0.0272 0.0101 | 0.0142 | 0.0176 0.0176 0.0070
0.9913 | 0.6318 | 0.8546 | 0.9533 0.7794 | 0.6754 | 0.9667 | 0.6325 0.7812 0.9510
IMSDA + + + + + + + + + +
0.0026 | 0.0568 | 0.0116 | 0.0142 0.0249 | 0.0116 | 0.0073 | 0.0175 0.0125 0.0060
0.9990 | 0.2082 | 0.3725 | 0.9373 0.7585 0.6069 | 09129 | 0.1483 0.2293 0.6100
IKMSDA (gaussian) + + + + + + + + + +
0.0008 | 0.0134 | 0.0188 | 0.0171 0.0211 0.0118 | 0.0219 | 0.0133 0.0140 0.0258
0.9993 | 0.6412 | 0.8677 | 0.9773 0.7535 0.6732 | 0.9333 | 0.7703 0.8136 0.9313
IKMSDA (linear) + + + + + + + + + +
0.0007 | 0.0396 | 0.0173 | 0.0140 0.0214 0.0137 | 0.0150 | 0.0205 0.0143 0.0103
0.9727 | 0.5282 | 0.7823 | 0.8740 0.7244 0.6401 | 0.8490 | 0.5644 0.7909 0.8442
IKMSDA (poly) + + + + + + + + + +
0.0048 | 0.0527 | 0.0231 | 0.0217 0.0198 0.0121 | 0.0195 | 0.0210 0.0144 0.0167
0.7369 | 0.1800 | 0.2863 | 0.9200 0.7588 0.5559 | 0.9238 | 0.1706 0.2540 0.4993
GDA(gaussian) + + + + + + + + + +
0.0162 | 0.0170 | 0.0380 | 0.0194 0.0214 0.0130 | 0.0238 | 0.0225 0.0151 0.0458
0.8863 | 0.6400 | 0.7151 | 0.9600 0.7706 0.5828 | 0.9429 | 0.3009 0.4727 0.8752
IGDA(linear) + + + + + + + + + +
0.0361 | 0.0382 | 0.0179 | 0.0147 0.0227 0.0143 | 0.0119 | 0.0212 0.0168 0.0150
0.9177 | 0.6400 | 0.7152 | 0.9467 | 0.7706 0.5891 | 0.9524 | 0.3009 0.4727 0.8752
GDA(poly) + + + + + + + + + +
0.0198 | 0.0382 | 0.0160 | 0.0166 0.0227 | 0.0131 | 0.0123 | 0.0212 0.0168 0.0150
TABLE 3 EMA+SEM of all methods on ten UCI data sets
Methods Datasets BA BT FTM Iris Leaf RWQ Seeds ULC Vehicle | WDBC
ILDA 0.4608 0.4684 0.4116 0.3469 0.4088 0.4470 0.3726 1.0508 0.3943 0.3931
ISSDA-1 13.4603 8.4878 9.0574 49063 5.8354 3.7611 5.3393 28.1698 11.5249 7.9278
SSDA-2 13.1489 8.6453 8.9739 5.0511 6.0323 3.7358 5.4260 22.5437 11.4149 7.6538
SSDA-3 13.2278 8.6484 8.9999 49841 7.1088 3.9986 5.5386 24.6621 11.5299 7.8622
SDA 14.0491 5.3398 10.9097 3.3197 7.1660 9.6376 9.3230 73.7869 21.2983 20.1334
IMSDA 84.7338 443218 | 1197.4534 | 85.1082 | 1158.5275 441.1192 176.1178 | 41389.6441 | 847.1926 | 493.4477
IKMSDA (gaussian) 2690.3158 | 30.1266 302.3954 66.6830 | 4416.8484 | 3037.8693 | 112.1421 7065.1503 415.5467 | 300.1595
IKMSDA (linear) 2522.4015 | 28.3255 380.1810 66.5756 | 4921.0894 | 3210.1374 | 102.2283 6565.1182 733.3666 | 345.4465
IKMSDA (poly) 2812.9827 | 25.7762 414.3065 66.7427 | 4474.3195 | 3068.0893 96.6440 8139.9187 586.9152 | 339.9491
GDA (gaussian) 73.4912 0.2170 4.6560 0.3143 1.6497 114.3346 1.0386 9.8661 16.1372 7.6408
IGDA (linear) 34.0265 0.1945 1.3793 0.1394 1.5265 53.4882 0.3356 8.0627 4.9252 6.2217
IGDA(poly) 34.4164 0.1598 1.3974 0.1416 1.4434 52.3882 0.2470 7.3010 4.5603 5.5423

TABLE 4 Run time, in second, of all methods on ten UCI data sets

4.3 The Results: SSDA-1, SSDA-2 and SSDA-3

Although all versions of SSDA have better performance
than LDA, SDA, MSDA, KMSDA and GDA in most of the
cases, SSDA-1 appears to be the best of the three versions in
many cases. To validate this further, a comparative study is
conducted on the three versions of SSDA. We varied K, .z
from 1 to 15 and, for each K,,,, value, we run the three
SSDA algorithms on 10 UCI data sets and 3 face databases,
and we counted how many times each algorithm obtained
the best performance. These counts are charted in Fig. 5. It
should be noted that the sum of the counts for each K, 4.
may be higher than 13 due to ties. It is clear that SSDA-1 is
a clear winner especially for bigger K,,qz.

This evaluation suggests that combining Ss and S,
can get more discriminant information than other ways of
combination.

4.4 The Results: SDA Versions Using Different Cluster-
ing Approaches

We modified the SDA implementation by replacing SDA’s
NN-clustering by the separability criterion based hierarchical
clustering as used for SSDA — named SSDA clustering. We
conducted experiments with the two versions of SDA (SDA
with NN-clustering and SDA with SSDA clustering) and
SSDA on 10 UCI data sets. Experimental results are shown
in TABLE 9. It can be seen that SDA with SSDA clustering is



Datasets

Methods Glassl | New-thyroidl | Dermatology | Hayes-roth | Led7digit | Pima | Vowel0 | Wisconsin
0.6119 0.9483 0.9645 0.7725 0.9390 0.6782 | 0.9393 0.9635
LDA + + + + + + + +
0.0226 0.0150 0.0134 0.0499 0.0067 0.0216 | 0.0067 0.0090
0.8316 0.9859 0.9700 0.8022 0.9390 0.6874 | 1.0000 0.9649
SSDA-1 + + + + + + + +
0.0175 0.0072 0.0075 0.0435 0.0067 0.0196 | 0.0000 0.0082
0.6175 0.9814 0.9670 0.7582 0.9391 0.6808 | 0.9433 0.9590
SSDA-2 + + + + + + + +
0.0236 0.0124 0.0089 0.0478 0.0067 0.0207 | 0.0064 0.0093
0.8374 0.9952 0.9700 0.8176 0.9391 0.6938 1.0000 0.9692
SSDA-3 + + + + + + + +
0.0244 0.0048 0.0027 0.0449 0.0067 0.0172 0.0000 0.0067
0.5799 0.9810 0.9589 0.7725 0.9345 0.6886 | 0.9393 0.9590
SDA + + + + + + + +
0.0412 0.0105 0.0085 0.0499 0.0070 0.0182 | 0.0067 0.0065
0.7623 0.9905 0.9370 0.6429 0.9345 0.5896 | 1.0000 0.8902
IMSDA + + + + + + + +
0.0273 0.0063 0.0158 0.0519 0.0062 0.0244 | 0.0000 0.0107
0.7402 0.8802 0.3558 0.7764 0.9265 0.6475 | 0.9993 0.9053
IKMSDA (gaussian) + + + + + + + +
0.0281 0.0216 0.0426 0.0455 0.0106 0.0236 | 0.0006 0.0266
0.7680 0.9765 0.9661 0.7553 0.9388 0.6789 | 0.9986 0.9517
IKMSDA (linear) + + + + + + + +
0.0321 0.0112 0.0094 0.0399 0.0067 0.0179 | 0.0012 0.0071
0.7408 0.9381 0.9609 0.8117 0.9368 0.6442 | 1.0000 0.9442
IKMSDA (poly) + + + + + + + +
0.0282 0.0144 0.0078 0.0363 0.0084 0.0168 | 0.0000 0.0078
0.6965 0.6881 0.1532 0.7357 0.9345 0.5131 | 0.9160 0.8042
GDA (gaussian) + + + + + + + +
0.0152 0.0327 0.0321 0.0589 0.0070 0.0546 | 0.0105 0.0424
0.7433 0.8883 0.5795 0.7495 0.9391 0.6444 | 09717 0.9590
IGDA(linear) + + + + + + + +
0.0376 0.0244 0.0375 0.0651 0.0067 0.0211 | 0.0039 0.0094
0.7528 0.8879 0.5902 0.7198 0.9390 0.6560 | 0.9787 0.9561
GDA(poly) + + + + + + + +
0.0374 0.0245 0.0433 0.0615 0.0058 0.0222 | 0.0053 0.0092
TABLE 5 EMA£SEM of all methods on eight imbalanced data sets
Datasets . . . . . .
Methods Glassl | New-thyroidl | Dermatology | Hayes-roth | Led7digit Pima Vowel0 Wisconsin
LDA 0.6590 0.0643 0.1265 0.0597 0.1355 0.1429 0.2050 0.1257
ISSDA-1 7.4430 6.2264 21.9584 8.9783 8.8396 12.7986 28.3226 12.5941
ISSDA-2 7.3851 6.4622 20.3601 8.9707 8.3202 10.6121 26.0256 10.5545
SSDA-3 7.7689 6.3447 20.6194 9.0347 8.8047 11.9960 27.0266 12.0818
SDA 14.8135 10.2511 48.5555 10.7161 14.8995 23.9342 32.0563 23.8213
IMSDA 14.2680 8.9955 162.0084 34.5359 14.8178 5.2682 15.4729 7.6626
IKMSDA (gaussian) 91.7083 78.0098 785.2526 52.7884 428.1921 | 896.2775 | 2245.4591 853.9795
IKMSDA (linear) 75.1814 65.2564 964.5750 54.4705 241.8900 | 762.5810 | 1401.7950 437.2513
IKMSDA (poly) 70.6793 62.1042 834.6825 51.0337 350.5261 | 983.0632 | 1799.6884 779.3523
IGDA(gaussian) 1.1456 1.5269 2.6936 0.2528 1.4012 25.1368 28.4806 9.0260
IGDA (linear) 0.6904 0.3037 1.4987 0.1497 0.7809 8.0520 15.3227 4.7597
IGDA(poly) 0.6404 0.3240 1.5158 0.1678 0.7831 8.4522 15.9725 5.1790
TABLE 6 Run time, in second, of all methods on eight imbalanced data sets
Methode 2% | YouTube LFW AR ORL
LDA 0.9790+0.0043 | 0.5450+0.0298 | 0.9157+0.0105 | 0.970040.0122
SSDA-1 0.9830+0.0030 | 0.7100+0.0155 0.9471+0.0068 0.9725+0.0058
SSDA-2 0.9800+0.0045 | 0.5900+0.0369 | 0.9200+0.0080 | 0.972540.0115
SSDA-3 0.9800+0.0045 | 0.7000+0.0144 | 0.9114+0.0090 | 0.972540.0115
SDA 0.9790+0.0043 | 0.7075+0.0247 | 0.9157+0.0105 | 0.9700+0.0122
IMSDA 0.9830+0.0037 | 0.6600+0.0208 | 0.8720+0.0129 | 0.977540.0096
IKMSDA (gaussian) 0.9830+0.0047 | 0.5000=£0.0000 | 0.0000 £0.0000 | 0.025040.0000
IKMSDA (linear) 0.9790+0.0038 | 0.675040.0227 | 0.9200+0.0105 | 0.962540.0125
IKMSDA (poly) 0.9800+0.0049 | 0.6900+0.0292 | 0.9443 +0.0065 | 0.9825+0.0065
IGDA(gaussian) 0.9730+0.0060 | 0.5000+0.0000 | 0.0014+0.0014 | 0.02504-0.0000
IGDA(linear) 0.9790+0.0043 | 0.5575+0.0140 | 0.9157+0.0105 | 0.9700+0.0122
IGDA(poly) 0.9800+0.0039 | 0.5625+0.0136 | 0.9157+0.0105 | 0.970040.0122

TABLE 7 EMA+SEM of all methods on four face databases




Datasets
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AR LFW ORL YouTube
Methods
ILDA 3.8463 4.1128 2.6092 7.7797
SSDA-1 54.9050 367.5684 32.4669 523.2413
ISSDA-2 57.0464 301.0679 30.4252 609.9837
ISSDA-3 59.2389 318.6475 36.1923 628.6595
SDA 363.7470 1179.4425 654.5643 8761.0927
IMSDA 1042403.8487 | 6639.7915 | 382253.9291 | 609021.1228
IKMSDA (gaussian) 416208.2398 | 2225.8405 | 162803.3881 —
IKMSDA (linear) 256660.7750 2547.5120 | 144394.6722 —
IKMSDA (poly) 479095.5967 2276.5896 | 131822.3761 —
GDA(gaussian) 22.8550 8.5004 6.6577 61.8623
IGDA(linear) 14.1721 8.9017 5.6373 29.1588
IGDA(poly) 13.6173 8.2842 5.7491 29.5443

TABLE 8 Run time, in second, of all methods on four face databases.

not consistently different to SDA with NN clustering. Fur-
thermore SSDA is better than both versions of SDA on most
of the data sets. This suggests that the good performance
of SSDA should be due to the new separability-oriented
scatter-ness proposed in this paper.

4.5 The Results: Runtime Performance

Runtime results of these algorithms are presented in TABLE
4, TABLE 6, and TABLE 8. It is clear that all versions of
SSDA are slower than LDA but faster than SDA and MSDA
in most of the cases.

5 SEPARABILITY

In this section we evaluate the separability of LDA, SDA,
MSDA and SSDA in terms of two measures: (1) visually, the
overlapping of the subclasses obtained and (2) the extent to
which the classifying of data in the LDA space are compact
(the variance between members of a class is small) and
are also well separated (the means of different classes are
sufficiently far apart). We select SSDA-1 in this evaluation
as it is the best of the three versions of SSDA.

For measure (1) we create charts, Fig. 6, showing subclass
structures sought after by SDA, MSDA and SSDA-1 in the
original data space. We can see subclass structure of SSDA-1
has much less overlapping than SDA and MSDA.

For measure (2) we use the well known Dunn index™
[40]. TABLE 10 shows the Dunn index value for the classify-
ing of data in the original data space and the LDA spaces. It
is clear that SSDA-1 has highest Dunn index value in 8 out
of 13 data sets used in this experiment.

To show their difference in the LDA space further we
take a closer look at a data set that has two classes —
Banknote Authentication, which has 1372 instances and 4
features. We divide it equally into two parts — one for
training and another for testing with 686 instances each.
We apply LDA, SDA, MSDA and SSDA-1 to the training
data to map them to the LDA space. The distributions of
the training data in these LDA spaces are shown in Fig.
7. Note that LDA and SDA reduced the training data to

10. The Dunn index is a metric for evaluating clustering algorithms.
It measures the “clusterness” of a clustering (i.e. partition) of a data
set — the extent to which the “clusters are compact, with a small
variance between members of the cluster, and well separated, where
the means of different clusters are sufficiently far apart, as compared to
the within cluster variance” [39]. For a given data set, a higher Dunn
index indicates better clustering.

The missing entries indicate the respective algorithms ran for too long.

1 LDA dimension thus the data distribution is a straight
line, MSDA to 2 LDA dimensions, and SSDA-1 to 4 LDA
dimensions where we select the first two components to
show the data distribution. It is clear that using the first two
LDA components, the training data can not be completely
separated by their class memberships. There is no more
LDA component to use in all cases but SSDA-1. When we
consider the third LDA component in SSDA-1, the training
data can be completely separated as shown in Fig. 7(d).

We also apply nearest neighbour classifier to the test data
set, using the projected training data set in the LDA space as
the model. The classification accuracies are: 99.13%, 99.13%,
99.27%, and 100.00% for LDA, SDA, MSDA and SSDA-1
respectively.

6 CONCLUSION

In this paper we propose a new LDA variant, separability
oriented subclass discriminant analysis (SSDA), which uses a
separability criterion we devise to divide every class into sub-
classes. This subclass structure has much less overlapping
than those obtained by SDA and MSDA, and is used as the
basis of constructing an LDA projection (from the original
data space to the LDA space) using new scatter matrices we
defined here. The projected data in the LDA space have con-
sistently higher Dunn index values than LDA/SDA/MSDA,
meaning they have higher within-class compactness and
higher between-class separation. Extensive experimentation
has shown that in most cases SSDA outperforms the original
LDA as well as SDA and MSDA, the two state of the art
subclass-based LDA variants. SSDA is also faster than SDA
and MSDA in most cases.

The difference between SSDA and LDA is the fact that
SSDA has exploited the subclass structure within classes.
The difference between SSDA and SDA/MSDA is the fact
that, although they all exploit the subclass structure, they
use different criteria to divide a class into subclasses and
they use different scatter matrices. SSDA aims to separate
different subclasses within every class as well different
classes whereas SDA and MSDA do not have the same aim.

It is well known that reducing variance (as a means
of reducing overefitting) under given learning bias is one
way of reducing generalisation errors. The usual approach
is to control the size of hypothesis space by e.g. keeping
the dimensionality of the hypothesis space small or keeping
the norm of the hypothesis space small. SSDA advocates
separating different subclasses within every class as well as
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Methods SDA with SDA with
Datasets NN clustering | SSDA clustering SSDA-1 | SSDA-2 | SSDA-3
0.9956 0.9964 1.0000 0.9971 1.0000
BA + + + + +
0.0016 0.0012 0.0000 0.0012 0.0000
0.5473 0.6691 0.7173 0.7182 0.7164
BT + + + + +
0.0478 0.0436 0.0409 0.0335 00.0401
0.8794 0.6895 0.8621 0.8755 0.8777
IFTM + + + + +
0.0105 0.0721 0.0132 0.0127 0.0095
0.9667 0.9733 0.9733 0.9733 0.9733
Iris + + + + +
0.0149 0.0109 0.0109 0.0147 0.0109
0.5618 0.5824 0.7735 0.7382 0.7500
Leaf + + + + +
0.0272 0.0297 0.0232 0.0242 0.0245
0.6360 0.6492 0.6716 0.6591 0.6667
RWQ + + + + +
0.0101 0.0129 0.0097 0.0102 0.0110
0.9524 0.9524 0.9762 0.9429 0.9476
Seeds + + + + +
0.0142 0.0142 0.0106 0.0138 0.0111
0.4889 0.4950 0.7807 0.7764 0.7734
IULC + + + + +
0.0176 0.0227 0.0091 0.0115 0.0098
0.7245 0.6608 0.8050 0.7529 0.8049
\Vehicle + + + + +
0.0176 0.0319 0.0148 0.0134 0.0148
0.9297 0.9121 0.9614 0.9579 0.9649
WDBC + + + + +
0.0070 0.0109 0.0078 0.0083 0.0091

TABLE 9 EMA+SEM of SDA with NN-clustering, SDA with SSDA clustering, and SSDA on 10 UCI database.

Datasets | Original | LDA | SSDA-1 | SDA | MSDA
BA 0.0395 | 0.0000 | 0.0914 | 0.0000 | 0.0043
BT 0.0001 | 0.0285 | 0.0062 | 0.0001 | 0.0254
FIM 0.0280 | 0.0093 | 0.0445 | 0.0468 | 0.0001
Iris 0.0585 | 0.0146 | 0.0817 | 0.0819 | 0.0176
Leaf 0.0050 | 0.0140 | 0.0490 | 0.0074 | 0.0106
RWQ 0.0007 | 0.0051 | 0.0096 | 0.0040 | 0.0049
Seeds 0.0456 | 0.0068 | 0.0767 | 0.0466 | 0.0014
ULC 0.0068 | 0.0382 | 0.0570 | 0.0245 | 0.0113
Vehicle 0.0095 | 0.0058 | 0.0325 | 0.0235 | 0.0185
WDBC 0.0025 | 0.0001 | 0.0080 | 0.0027 | 0.0005
AR 0.1741 0.2497 | 0.2689 | 0.2497 | 0.2562
LFW 0.2288 | 0.0000 | 0.0808 | 0.0000 | 0.0632
ORL 04299 | 0.8119 | 0.4791 | 04743 | 0.3140

TABLE 10 Dunn index for a classifying of data in the original data
space, and an LDA space by LDA/SSDA-1/SDA/MSDA on all ten
UCI data sets and the AR/LFW/ORL face data sets.

separating different classes. In other words, SSDA advocates
within-class multimodality to classification in contrast to
within-class unimodality. In the case of multimodality, each
modality has small hypothesis space whereas in the case of
unimodality, the single modality has large hypothesis space.
As a result the multimodality approach is expected to have
lower variance than the unimodality approach. In practice
the unimodality approach may still result in more than one
modality in the model, depending on the data and the
learning algorithm, and the multimodality approach may
end up with only one modality. A thorough investigation
of multimodality /unimodality will involve a lot of testing
and validating using both artificial and real data, which is
clearly beyond the scope of this paper and is a direction for
future work.

Other future work on SSDA will focus on two direc-

tions: further increase of classification accuracy and further
reduction in computation time. In the first direction we will
explore other (possibly nonlinear) ways of processing data
to increase Dunn index of data. In the second direction we
will redesign the whole SSDA pipeline to speed up the
clustering process of finding the optimal K *. Due to the way
hierarchical clustering works, we can run the hierarchical
clustering algorithm once (instead of K,,,, times in the
current SSDA pipeline) from K = n (when every data
instance is a cluster) to K = 1 (when all data instances are
merged into a single cluster), calculating our separability
criterion for every K thus being able to find the optimal
K™ that has the best separability criterion value at a lower
computational cost. .

REFERENCES
[1]
[2]

R. A. Fisher, “The use of multiple measurements in taxonomic
problems,” Annals of eugenics, vol. 7, no. 2, pp. 179-188, 1936.

L. Zhang, M. Yang, Z. Feng, and D. Zhang, “On the dimensionality
reduction for sparse representation based face recognition.” in
ICPR, 2010, pp. 1237-1240.

M. Kan, D. Xu, S. Shan, W. Li, and X. Chen, “Learning prototype
hyperplanes for face verification in the wild,” Image Processing,
IEEE Transactions on, vol. 22, no. 8, pp. 3310-3316, 2013.

X. He, D. Cai, and ]. Han, “Learning a maximum margin subspace
for image retrieval,” Knowledge and Data Engineering, IEEE Trans-
actions on, vol. 20, no. 2, pp. 189201, 2008.

C. L. He, L. Lam, and C. Y. Suen, “Rejection measurement based
on linear discriminant analysis for document recognition,” Interna-
tional Journal on Document Analysis and Recognition (IIDAR), vol. 14,
no. 3, pp. 263-272, 2011.

Z. Fan, Y. Xu, and D. Zhang, “Local linear discriminant analysis
framework using sample neighbors.” IEEE Transactions on Neural
Networks, vol. 22, no. 7, pp. 1119-1132, 2011.

(3]

(4]

(5]

6]



(7]

(8]
(9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

H. Wan, G. Guo, H. Wang, and X. Wei, A New Linear Discriminant
Analysis Method to Address the Over-Reducing Problem.  Springer
International Publishing, 2015.

K. Fukunaga, Introduction to statistical pattern recognition.
demic press, 2013.

Z.Li, D. Lin, and X. Tang, “Nonparametric discriminant analysis
for face recognition,” Pattern Analysis and Machine Intelligence, IEEE
Transactions on, vol. 31, no. 4, pp. 755761, 2009.

M. Zhu and A. M. Martinez, “Subclass discriminant analysis,”
Pattern Analysis and Machine Intelligence, IEEE Transactions on,
vol. 28, no. 8, pp. 1274-1286, 2006.

N. Gkalelis, V. Mezaris, and I. Kompatsiaris, “Mixture subclass
discriminant analysis,” Signal Processing Letters, IEEE, vol. 18,
no. 5, pp. 319-322, 2011.

N. Gkalelis, V. Mezaris, I. Kompatsiaris, and T. Stathaki, “Mixture
subclass discriminant analysis link to restricted gaussian model
and other generalizations,” Neural Networks and Learning Systems,
IEEE Transactions on, vol. 24, no. 1, pp. 8-21, 2013.

Wikipedia, “Linear discriminant analysis,” https://en.wikipedia.
org/wiki/Linear_discriminant_analysis, accessed: 2015-09-5.

S. Pang, S. Ozawa, and N. Kasabov, “Incremental linear discrimi-
nant analysis for classification of data streams,” Systems, Man, and
Cybernetics, Part B: Cybernetics, IEEE Transactions on, vol. 35, no. 5,
pp- 905-914, 2005.

T-K. Kim, B. Stenger, J. Kittler, and R. Cipolla, “Incremental
linear discriminant analysis using sufficient spanning sets and its
applications,” International Journal of Computer Vision, vol. 91, no. 2,
pp- 216-232, 2011.

D. Chu, L.-Z. Liao, M.-P. Ng, and X. Wang, “Incremental linear
discriminant analysis: A fast algorithm and comparisons,” Neural
Networks and Learning Systems, IEEE Transactions on, vol. 26, no. 11,
pp- 2716-2735, Nov 2015.

Y. A. Ghassabeh, F. Rudzicz, and H. A. Moghaddam, “Fast in-
cremental lda feature extraction,” Pattern Recognition, vol. 48, pp.
1999-2012, 2015.

P. N. Belhumeur, J. P. Hespanha, and D. ]J. Kriegman, “Eigenfaces
vs. fisherfaces: Recognition using class specific linear projection,”
Pattern Analysis and Machine Intelligence, IEEE Transactions on,
vol. 19, no. 7, pp. 711-720, 1997.

A. Sharma and K. K. Paliwal, “A new perspective to null linear
discriminant analysis method and its fast implementation us-
ing random matrix multiplication with scatter matrices.” Pattern
Recognition, vol. 45, no. 6, pp. 2205-2213, 2012.

Y. Guo, “Regularized linear discriminant analysis and its applica-
tion in microarrays,” Biostatistics, vol. 8, no. 1, pp. 86-100, 2007.
A. Sharma, K. K. Paliwal, S. Imoto, and S. Miyano, “A feature
selection method using improved regularized linear discriminant
analysis,” Machine vision and applications, vol. 25, no. 3, pp. 775~
786, 2014.

A. Sharma and K. K. Paliwal, “A deterministic approach to regu-
larized linear discriminant analysis,” Neurocomputing, vol. 151, pp.
207-214, 2015.

X. Shu and H. Lu, “Linear discriminant analysis with spectral
regularization,” Applied intelligence, vol. 40, no. 4, pp. 724-731,
2014.

M. Li and B. Yuan, “2d-1da: A statistical linear discriminant analy-
sis for image matrix,” Pattern Recognition Letters, vol. 26, no. 5, pp.
527-532, 2005.

R. P. Duin and M. Loog, “Linear dimensionality reduction via a
heteroscedastic extension of lda: the chernoff criterion,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on, vol. 26, no. 6,
pp- 732-739, 2004.

L. Clemmensen, “Sparse discriminant analysis,” Technometrics,
vol. 53, no. 4, pp. 406413, 2011.

A. M. Martinez and M. Zhu, “Where are linear feature extraction
methods applicable?” Pattern Analysis and Machine Intelligence,
IEEE Transactions on, vol. 27, no. 12, pp. 1934-1944, 2005.

S. C. Johnson, “Hierarchical clustering schemes,” Psychometrika,
vol. 32, no. 3, pp. 241-254, 1967.

M. Zhu and A. M. Martnez, “Optimal subclass discovery for
discriminant analysis,” in Computer Vision and Pattern Recognition
Workshop, 2004. CVPRW ’04. Conference on, 2004, pp. 97-97.

L. Rokach and O. Maimon, “Clustering methods,” in Data mining
and knowledge discovery handbook. Springer, 2005, pp. 321-352.

C. Blake and C. J. Merz, “{UCI} repository of machine learning
databases,” 1998.

Aca-

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

12

J. Alcald, A. Fernandez, J. Luengo, J. Derrac, S. Garcia, L. Sdnchez,
and F. Herrera, “Keel data-mining software tool: Data set repos-
itory, integration of algorithms and experimental analysis frame-
work,” Journal of Multiple-Valued Logic and Soft Computing, vol. 17,
no. 2-3, pp. 255-287, 2010.

F. S. Samaria and A. C. Harter, “Parameterisation of a stochastic
model for human face identification,” in Applications of Computer
Vision, 1994., Proceedings of the Second IEEE Workshop on. IEEE,
1994, pp. 138-142.

A. M. Martinez and A. C. Kak, “Pca versus 1da,” Pattern Analysis
and Machine Intelligence, IEEE Transactions on, vol. 23, no. 2, pp.
228-233,2001.

L. Wolf, T. Hassner, and I. Maoz, “Face recognition in uncon-
strained videos with matched background similarity,” vol. 42,
no. 7, pp. 529-534, 2011.

G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, “Labeled
faces in the wild: A database for studying face recognition in
unconstrained environments,” Technical Report 07-49, University
of Massachusetts, Amherst, Tech. Rep., 2007.

M. Heikkil, M. Pietikinen, and C. Schmid, “Description of interest
regions with center-symmetric local binary patterns,” in Computer
Vision, Graphics and Image Processing, Indian Conference, Icvgip 2006,
Madurai, India, December 13-16, 2006, Proceedings, 2006, pp. 58-69.
L. Wolf, T. Hassner, and Y. Taigman, “Similarity scores based on
background samples,” in Computer Vision—ACCV 2009. Springer,
2010, pp. 88-97.

Wikipedia, “Dunn index,” https:/ /en.wikipedia.org/wiki/Dunn_
index, accessed: 2015-12-21.

J. C. Dunn, “A fuzzy relative of the isodata process and its use in
detecting compact well-separated clusters,” Journal of Cybernetics,
vol. 3, no. 3, pp. 32-57, 1973.

Huan Wan received the bachelor of engineering
degree in computer science and technology from
Shangrao Normal University, Jiangxi, China, in
2013. She is currently pursuing the M.S. degree
in computer application and technology in the
School of Mathematics and Computer Science,
Fujian Normal University, China. Her current re-
search interests are feature extraction and face
verification.

o . . ° °
° te
) .
I. b ¢ . °
o ° o
o o ® .
f e
e
° ° ° ° ° ¢
° .
local ° N '. ¢
compactnéss e .
° °
. . e .
o & o e
° o o . global
B compactness

Fig. 1 Illustration of local scatterness and global scatterness of a class of

data.



13

Class1

Class3

Class2

(a) Sy in the original LDA — S,, is covariance of every
instance of one class and the mean of the class. It is
calculated as: Z;le(xgj — p2)(z2; — p2)T, where zo;
denotes the jth instance of Class 2, N> is the number of

i iginal LDA — is th i f cl
instances in Class 2. (a) Sp in original Sy is the covariance of class

means and the mean of whole instances. It is calculated
as: Zle(ui — 1) (i — )T, where p; is the mean of class
7 and p is the mean of whole instances.

Class 1

[
Subclass 23

Class3

hY

swy
Class 2

(b) Ssw inour SSDA = S = Sswy +Ssws- Sswy IS cOvari-
ance of subclass instances and corresponding subclass
mean, which is calculated as: fofjl (z23m — p23)(r23m —
u23)”, where Subclass 23 denotes the 3th subclass in
Class 2, 23, denotes the mth instance in Subclass 23
and po3 is the mean of Subclass 23. Ss..,, is covariance
of subclass means and class mean. It is calculated as:
E?:l (2 —p2) (n2j —p2)T, where o is the jth subclass
mean in Class 2 and p2 is the mean of Class 2.

(b) Ssp in our SSDA — Sy, is covariance of subclass means
and the mean of whole instances, which is calculated as:

Y (miy — m)(mi; — w7, ki is the number of
sublcasses in class i and p;; is the mean of subclass j
in class 1.

Fig. 2 Illustration of Sy, and Ssw.
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Fig. 6 Iris data: subclass structures sought after by SDA, MSDA and
SSDA-1. Every circle represents one cluster, which is centred at the
mean of the cluster and has a radius as the distance between the centre
and furtherest point in the cluster.

(c) LFW face database: matched face pairs in the left; mismatched
face paris in the right

Fig. 4 Sample images from the face databases
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