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Reliable object handover through tactile force sensing and effort control
in the Shadow Robot hand

A. Gómez Eguı́luz1 and I. Rañó1 and S.A. Coleman1 and T.M. McGinnity2

Abstract— A fundamental problem in cooperative Human-
Robot Interaction is object handover. Existing works in this
area assume the human can reliably grasp the object from
the robot hand. However, in some situations the human can
produce perturbing forces in the object that are not meant
to end in a handover. These perturbations can result in the
object being dropped or the robot hand being damaged. This
paper addresses this problem and presents a mechanism for
reliable robot to human object handover implemented in a
Shadow Robot hand endowed with tactile sensing. Given a
stable grasping configuration, using BioTAC sensors we are able
to estimate the contact forces applied to the object, and provide
a feedback signal to a joint effort controller to maintain grasp
forces despite perturbations. Our system is able to identify
between object pulling forces which should result in an object
handover, and other disturbances. Experimental results show
that the hand releases the object only when the object is pulled,
validating the proposed algorithm.

I. INTRODUCTION

Safe and smooth human-robot collaboration attracts huge
research efforts in robotics. Joint manipulation and object
hand-over are among the most important aspects of robots
working alongside humans. These are complex, research
areas; on their own since, for instance, human-robot object
handover involves multiple aspects such as human and object
safety, social and handling context, grasping stability and
slip detection, and ergonomics. For example humans prefer
certain handover configurations [1], but this preference is
affected by the intended use of the object the robot is
handing over [2]. In some complex situations, for instance
in a mechanical workshop, the handover must be reliable as
an operator might not be able to grasp an object in a fully
secure way. This paper proposes a reliable object handover
mechanism using tactile sensing and effort control, to ensure
the person is ready to hold the object, avoiding damage for
both the object and the robot itself.

Object handover is closely related to grasp stability, as the
robot hand holding the object has to keep it stable until the
human is ready to hold it. This is in fact the approach taken in
one of the pioneering works on human-robot object exchange
[3]. The implementation of a grasping system and the evalua-
tion of (different forms of) grasp stability was used to control
a three fingered robotic hand to hold and release objects when
interacting with a human. A combination of joint angles,
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contact, kinematic, and dynamic stability indexes was used
by the hand to decide whether to open the fingers (releasing
the object) to close them (holding it), or to re-adjust one of
the fingers in case contact was lost. While some handover
research focuses on finding appropriate configurations to
make the task easier for humans, conversely [4] shows that
humans adapt the way they hand objects over to the specific
configuration of the robot hand, simplifying the grasping
problem. In their work the velocity of the hand is used
to detect when the robot had to open or close the hand in
order to release or grasp the object respectively during the
interaction of the robot and the human.

As a part of a much larger project to build a butler robot,
[5] implements a drink handover mechanism. Because of the
potential troubles dropping a drink can cause, the robot in
this case opened the gripper only when a human face was
detected by the robot and, simultaneously, the person was
pulling from the beverage displacing the compliant hand of
a PR2 by one centimetre in the vertical direction. The first
effort to imitate the actual way humans handover objects
is presented in [6]. Their experiments showed that humans
adapt the grasping force according to the change in the esti-
mated weight of the object. Using a two finger hand and force
sensors, the authors identify the slippage of the object, i.e.
the tipping point on the Coulomb force, to release the object.
Based on similar results about human handover [7], the work
in [8] presents an object release controller implemented on a
PR2 robot. The grip force of the robot is controlled according
to the load force the robot perceives in the wrist. The authors
perform a comparison with other handover controllers for
quick release and constant grip forces. A user evaluation
reveals that the participants’ preference was the controller
imitating human handover, as it produced less likelihood of
the object dropping and the object was easier to accept by
humans.

Existing works in object handover assume the handover
is going to take place with no potential problem, although it
might not be always the case. Therefore, in some situations
the robot should not release the object, for instance if the
force over the object does not have the right direction. If
the human pushes or rotates the object unintentionally it
might result in the object dropping. On the other hand, if the
perturbing force is too high the robot hand could be damaged,
hence the robot must adapt its configuration to try and keep
holding the object. This paper contributes a solution to this
problem by proposing a reliable object handover algorithm
implemented in a Shadow Robot Hand through force sensing
and a joint effort controller. The rest of the paper is organised



as follows. First, Section II presents the effort controller and
force estimation procedures, followed by the reliable object
handover algorithm to keep the object grasped or release
it according to the force applied to the object. Section III
shows results on the adaptation of the hand fingers when
different forces are applied, and on the release algorithm.
Finally Section IV presents conclusions and directions for
future work.

II. RELIABLE OBJECT HANDOVER CONTROLLER

Reliable robot to human object handover requires a system
that can provide adaptability against uncertain events such as
collisions or unintended grasping movements of the human,
those not expected to end in a handover. Under these
circumstances the robot should be able to keep itself and
the object safe, i.e. the hand should not be damaged nor
should the object fall. This is an extremely complex problem
which involves quickly readjusting the fingers to maintain
the stable grasping during a potentially large perturbation.
Moreover, a multi-fingered grasp may not be manipulable,
i.e. the object cannot be moved by the robot hand in some
directions, yet forces during an unintended handover could
force the object to move in that direction, causing damage
to the robot and resulting in the object falling. Instead of
trying to maintain the current grasp, the hand could move to
a different configuration to achieve another stable grasp. That
would entail a contact loss with the object at some point in
time and a high chance of the object dropping. In summary,
if the object is perturbed by external forces which should
not result in an object handover, maintaining a stable grasp
could turn out not to be possible. However, in the following
sections we present a control system that was empirically
found to keep the object grasped while perturbations act on
the object, and an algorithm that successfully detects events
that should lead to the robot releasing the object.

A. Grasping effort controller

The starting assumption in our approach is that the object
is grasped in a stable configuration ready for the handover.
Since the experimental platform used is the Shadow hand
we use three of the five fingers (endowed with BioTAC
tactile sensors) to manually set a hand configuration that
holds the object (see Section III). We index the three fingers
used as j = 1, 2, 3, where j = 1 is the thumb, j = 2 is
the first finger, and j = 3 is the middle finger. Given the
configuration of each finger joints qj , and the corresponding
torques measured Γj , the wrench we set on the hand for the
stable grasping can be obtained in the robot base reference
as BF̄j = Jj(qj)

†Γj , where Jj(qj)† is the pseudo-inverse
of the Jacobian for finger j, and the superscript B states
the wrench is in the base reference. Converting these forces
and torques to the object reference frame, jointly with the
friction coefficients, and the normals at the contact points,
provides the necessary conditions to maintain a stable grasp.
The straightforward technique to maintain the stability of
the grasp in the presence of a perturbation would be to
maintain the wrenches in the object reference frame OF̄j
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Fig. 1. Changes in the fingertip force length for effort vs. position control

constant, provided the palm reference suffers only small
changes. Obviously, trying to maintain the configuration of
the fingers through a position control will result in large
commanded torques to the joints, potentially damaging the
hand and dropping the object.

Instead of controlling the wrenches in the object reference
frame, we propose to maintain and restore the contact forces
and torques as computed in the base frame BF̄i for a
stable grasp for each finger. The stable grasp wrench BF̄i
is used as a reference in an effort joint control where
the perturbed measured wrench BFj is fed back to the
controller. Considering the fingers individually, and given
the difference between the j-th finger contact wrench BFj
and the one for the stable grasp we apply the effort Γj =
KjJj(qj)

T
(
BF̄j − BFj

)
, where Jj(qj) is the Jacobian of

finger j at the joint position qj , and Kj is a square gain
matrix of size equal to the joints to control. As an example
of the behaviour of this controller, if a perturbation increases
the contact force while maintaining the direction and torque,
the finger will move backwards to keep the force constant. In
general for a perturbed wrench the product with the Jacobian
produces the motion of the finger to compensate from the
external forces and torques. Since the grasped object is rigid,
all three fingers perceive a change in the contact forces and
torques and they will move individually to maintain the stable
grasping wrench in the base frame. Although the motion can
have a different effect on the wrenches in the object reference
frame, because the friction of the rubber fingertips of the
BioTAC is large, we experimentally found that this control
mechanism kept a stable grasp while the object moved due to
external perturbations. This control mechanism implements
compliance in the tactile force.

For a fixed position control system in the fingers a force
perturbation would results in a contact loss or increased
efforts in the joints, which in the case of the Shadow hand
could result in broken tendons. To illustrate the effect of the
force increase when controlling the position of the fingers
we performed an experiment where a perturbation force was
applied to a single finger. Figure 1 shows the time evolution
of the norm of the forces sensed in a finger using the
BioTAC (see Section II-B for how the force is computed)
with a position control vs. our proposed controller. Despite
the Shadow hand fingers providing some compliance through



its mechanical design with tendons and springs, the force
sensed for a small perturbation is more than twice the force
sensed when the effort controller is running, reducing the
risk of damaging the hand.

B. Cartesian force estimation using the BioTAC

Provided the hand joints have torque sensors attached, the
wrench applied to the object can be easily computed from
the measured torques Γ using the pseudo-inverse Jacobian
matrix for the corresponding configuration J(q)† as BF =
J(θ)†Γ. However, the sensors included in the joints of the
Shadow hand measure the tension difference between the
tendons [9], not the applied torque in the corresponding
joint. We rely on the SynTouch BioTAC [10] tactile sensors
installed on each finger holding the object to estimate the
contact force in the fingertips Bf , instead of the applied
wrench. The BioTAC sensor provides a variety of sensing
modalities from which the contact force can be estimated;
specifically it can be computed using the pressure and skin
deformation. Upon contact, the increase in pressure measured
by the BioTAC (P ) can be converted into the norm of a
contact force (|f |) by simply using the relation |f |= Pa,
where a is the contact area with the object. While the
pressure can be directly obtained from the sensor, the contact
area needs to be estimated from the impedance measured
by the 19 electrodes located across the finger core. The
impedance is directly related to the distance between the
core and the rubber skin at their corresponding locations,
therefore a decrease in the impedance from the resting level
(when there is no contact) corresponds to a deformation on
the rubber skin. In our previous work [11] we presented an
approach to compute the contact area using the electrodes,
by approximating the contact area corresponding to each
electrode i as a circle of radius ri equal to half the distance
between the electrode and its nearest neighbour. The total
contact area of the fingertip can be obtained as a weighted
average of these individual areas:

a =
∑

i

λiπr
2
i (1)

where λi ∈ [0, 1] is a scale factor. The scale factor λi is a
piece-wise linear function of the change of the impedance
value ēi of each electrode relative to the resting level, such
that at the resting level (or above) λi is zero (meaning no
contact at the electrode position), and it linearly increases to
1 for decreasing impedances up to a minimum threshold em
(in our case fixed at em = −400). Finally, λi is 1 for values
below the threshold.

Although the fingertip of the BioTAC also applies a torque
at the contact point, there is no way to estimate it, or compute
the component of the force tangential to the object. We must
assume, therefore, the full length of the force is applied in
the direction perpendicular to the contact surface. In [12] a
technique is presented to estimate the contact direction based
on the unit vectors normal to the BioTAC fingertip at each
electrode position. The basic idea is similar to the one used
here to compute the area, i.e. to obtain a weighted average

of the normal vectors using the change in the corresponding
impedances relative to the resting levels. Given the normal
vectors for the electrodes of the BioTAC n̂i, i = 1, · · · , 19,
the total estimate of the contact force is computed as:

f =
|f |

|∑i λin̂i|
∑

i

λin̂i (2)

where λi and the force norm |f | are defined above. Finally,
because the force is computed in the reference frame of the
fingertip, Equation 2 corresponds to Ef , that we convert to
the base reference frame in order to use it as a valid feedback
signal for the effort controller, while the torques at each
contact point are considered to be zero.

C. Object Handover and release detection

Existing works implement handover controllers based on
the evidence that humans rely on the changes in the load
force to control grasping forces. Moreover, humans complete
the handover procedure when the person delivering the object
feels that the receiver is pulling from the object [7]. We
designed our handover release algorithm based on these two
events: the change in the perceived load force, and the issue
of a pulling force by the receiver. However, in our case the
detection of these events becomes more complex because of
the interaction with the effort controller that deals with the
potential perturbation forces. The estimate of the load force
in the base frame BfL corresponds to the sum of all the
contact forces BfL =

∑
j

(Bfj), and when an external action

is being carried out over the object there is a change in the
norm of BfL, ∆BfL. This norm changing event triggers a
recursive Bayesian estimation process to identify the type of
event, and only when the perturbation force sensed by the
fingers (compensated by the effort controller) points in the
outward direction of the palm, the robot releases the object.
The detection of the specific event is performed through
the angular deviations of the forces in the three fingers in
the fingertip frame, we will denote Efj for finger j, with
respect to the unperturbed forces E f̄j . Algorithm 1 shows
the proposed approach for reliable object handover, which
works on top of the effort controller presented in Section II-
A and is described in the subsections below.

1) Event detection: At every time step, a fixed size sliding
window of duration ∆t seconds (∆t = 0.05) is updated to
include the latest forces Bf measured by the BioTAC. We
divide the window in two equal size sequences BW1 and
BW2, where BW1 denotes the oldest data and BW2 the
most recent. To reduce the noise from the BioTAC in the
force estimate, the variation on the load forces is computed as
∆BfL =

∣∣E
[
BW1

]
− E

[
BW1

]∣∣, where E
[
BWi

]
denotes

the expected value of the corresponding sub-window BWi. If
this value goes above some fixed threshold we can determine
that an external force is acting on the object. We chose
the threshold ∆fth experimentally from data collected while
perturbing the object with the effort controller running, since
selecting the value without the control system generates
a threshold that is too large. The general event detection



Algorithm 1 The reliable object-handover algorithm
1: procedure OBJECT-HANDOVER(Efj ) . BioTAC forces
2: Bfj ← T (Efj) . Transform Efj to base
3: Update EW with Efj . Pull detect sliding window
4: Update BW1 and BW2 with

∑
j

Bfj . Event detect sliding window

5: ∆BfL ←
∣∣∣E
[
BW2

]
− E

[
BW1

]∣∣∣ . Load force module change

6: if ∆BfL > ∆fth then . Event detection
7: ∆Efj ← E f̄j − Efj . Change in the fingertip forces
8: Set empty ϑ
9: for f∗ = {∆Ef1,∆

Ef2,∆
Ef3} do

10: θj ← arctan

[
f∗
y

f∗
x

]

11: φj ← arctan

[
f∗
z√

(f∗
y )2+(f∗

x)2

]

12: ϑ← ϑ
⋃

[θj , φj ] . Angular changes feature vector
13: end for
14: Update p(e1|ϑ) and p(e1|ϑ) using Bayes Rule
15: if p(e1|ϑ) > th then . Pull detection
16: ReleaseObject & End
17: end if
18: end if
19: Γj ← KJT (qj)

(
B f̄j − Bfj

)
. Send efforts to joints

20: end procedure

corresponds to line 6 in the algorithm and triggers the event
classification.

2) Release detection: Although the variations in the load
force ∆BfL are good indications for event detection, we
experimentally found that the force without reference frame
changes Efj are better suited to discriminate the direction
of the perturbation force. Therefore, in order to detect when
the object is being pulled by the human, we have modelled
the variations of the contact force for each individual finger
(Ef1, Ef2, and Ef3) with respect to the resting position
forces E f̄j . Similar to the event detection phase, at every
time step, a window EW of ∆t seconds is updated with
the latest estimates of Efj provided by the BioTAC. We
use the deviation of the forces ∆Efj in the three fingers
to detect whether the perturbation is caused by a pulling
event and compute Efj = E

[
EW

]
as the expected value

of the sequence EW . We define a feature vector containing
the azimuth and elevation angles (θj and φj) of each ∆Efj ,
ϑ = {θ1, φ1, θ2, φ2, θ3, φ3}, computed from the Cartesian
coordinates of these force changes in the fingertip frame. If
we denote E = {e1, e2} the discrete events to be identified,
i.e. pulling the object and any other event, we can obtain
training sets from the robot running the effort controller to
approximate the conditional probability of the feature vectors
ϑ given the events e1 and e2, p(ϑ|eb). We modelled these
probabilities as mixtures of Gaussian distributions, of the
form:

p(ϑ|eb) =

Kb∑

i=1

αbiN (µbi ,Σ
b
i ) (3)

where Kb is the number of Gaussians in the mixture for
event eb, αbi is the weight of the i-th Gaussian, and N (µ,Σ)
represents a normal distribution with mean µ and covariance
Σ. While we used the Expectation-Maximisation (EM) al-
gorithm to estimate the parameters of the mixture model,
the number of Gaussian functions was chosen based on the
increase of the likelihood of the data given the parameters

of the model. We found the optimal number of Gaussians
for our experimental data was 4 for the pulling event and 5
for all other actions, i.e. pushing in different directions and
rotating the object.

Having these conditional probabilities p(ϑ|eb) for each
event, and given a new feature vector ϑ we tried to classify
the events using a Maximum Likelihood approach. Although
it can successfully detect pulling events, we noticed a high
number of false positive classifications. Because of the
sequential nature of the problem, we implemented instead
a Recursive Bayesian Estimation approach which reduced
the frequency with which false positives appeared. The initial
event probability was distributed evenly among both possible
events, i.e. p(e1) = p(e2) = 1

2 , while in subsequent estimates
we use the latest posterior probabilities of each event as
prior for the next prediction. Therefore, when a new feature
vector ϑ is computed, we re-compute the probabilities for
each event eb as:

p(eb|ϑ) =
p(ϑ|eb)p(eb)

p(ϑ)
(4)

where p(eb) is actually the posterior probability in the
previous iteration, and p(ϑ|eb) is given by the GMM model
of the corresponding event eb. Updating the probabilities
of the two events, our system can reliably distinguish the
pulling event e1 by comparing p(ϑ|e1) with a fixed threshold
value th adjusted empirically. This corresponds to line 15
of Algorithm 1 and results in the arm executing a fixed
command to release the object.

III. EXPERIMENTAL RESULTS

As mentioned earlier our experimental setup consists on a
Shadow Robot Hand with Syntouch BioTAC tactile sensors
installed in the thumb, first and middle fingers. We manually
set an initial configuration of the fingers in the centre of the
hand workspace and recorded the joint positions as a starting
point to set the grasping for all the experiments. Selecting
this position allowed large individual finger motions due to
the disturbances without lost of contact. From the initial
approximate position, the fingers were manually adjusted
to generate a stable grasp of the object, generating slightly
different grasp configuration in terms of forces for each
experiment. Before the experiments were performed the
electrodes of the BioTAC were calibrated, to avoid drifts on
the readings due to changes in the sensor gel after a series
of runs. Figure 2 shows the configuration of the hand for a
series of experiments performed with different object shapes.

A. Force adaptation while holding

Our first set of experiments was designed to evaluate the
response of the effort controller to maintain stable grasping
of the object in the presence of external perturbations (cf.
Section II-A). The hand grasped three foam objects with
different geometric shapes (cube, cylinder and triangle) and
used the initial grasping forces as a reference for the con-
troller. Then we tested different perturbing forces (pushing



Fig. 2. Experimental set-up

up and down, rotating, and pulling and pushing the object)
to evaluate the response of the proposed approach. It is
worth noting that at this point the object handover algorithm
was not being tested, so the hand had to adapt also to
pulling forces. Despite fingers adapting individually, and the
controller having no information on the geometry of the
object, we found in our experiments that the system keeps
contact with the object maintaining a stable grasp in different
configurations. Figure 3 shows the time evolution of the
components of the contact forces in the base frame for each
finger when an external perturbation is applied to generate
a clockwise rotation. The constant horizontal line represents
the reference to the controller, i.e. the initial grasping forces,
while the solid vertical lines correspond to the beginning and
end of the perturbation over the object. As the external forces
are applied, the fingers change their position and the contact
forces deviate from the reference, while trying to keep the
difference as small as possible. Once the perturbation is
removed, the controller keeps trying to restore the reference
contact forces but since the configuration of the fingers has
changed the hand cannot generate the exact same forces.
It is worth noting at this point that each finger has only
three joints after the palm, so the grasping configurations
are not manipulable; however the controller maintains the
forces close to the initial reference.

B. Force adaptation and object handover

We also performed pulling detection experiments com-
bined with the effort adaptation controller to evaluate the re-
liability of the handover mechanism. We tested the response
of our approach to a variety of consecutive events (the same
disturbances applied in the previous section) including at the
end a pull force that had to result in a handover, i.e. the hand
opens the fingers releasing the object. Figure 4 shows some
images of a sequence of movements performed during one of
the experiments, where the object was rotated and then pulled
from the robot hand, i.e. signaling a handover event. During
the rotation movement the hand adapted to keep the contact
forces close to the initial grasping forces (see Figures 4(b)
and 4(c)), while the object was released when the pulling
force was detected, Figures 4(d) to 4(f). We evaluated the
algorithm five times for each perturbing force (two opposite
rotations, lateral forces and pushing) followed by a pulling
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Fig. 3. Effort controller response against object rotation event (Experiment
1)

force (see attached video). Figure 5 shows the time evolution
of the components of the forces in their corresponding end-
effector frame for the above experiment for each finger. The
first two solid vertical lines in the time sequence represent
the start and end of the perturbation leading to the object
rotation, while the final vertical line signals the pulling force
and consequent object handover. Although the configuration
of the hand changes after the first perturbation, our approach
successfully detects the pulling event and proceeds to release
the object.

IV. CONCLUSIONS AND FUTURE WORK

This paper proposes a reliable object handover algorithm
combining an effort joint control and the detection of pulling
events, and presents its implementation on a Shadow Robot
Hand endowed with BioTAC tactile sensor. While previous
works assume the interaction between the robot and the
human should result in an object handover, this paper con-
siders the situations where that might not be the intention
or the outcome. Our experimental results show the fingers



(a) (b) (c)

(d) (e) (f)

Fig. 4. Object rotation and pulling event sequence (Experiment 2)

can adapt to the disturbances from the initial stable grasping
situation, while managing to continue to hold the object in
new configurations. We also show that pulling the object (as
a precursor to handover) can be differentiated from other
forces that should not result in the robot handing the object
over. Our algorithm works only with the tactile estimates
of the contact force instead of using the contact wrench,
which cannot be computed from the Shadow Robot hand
joint torque sensors.

Although the implemented effort controller successfully
adapts to new configurations in the presence of perturbations,
the limited degrees of freedom of the fingers relative to the
palm restrict the object movement. In the case of the Shadow
Robot hand this means the point of contact between the fin-
gers and the object changes slightly, potentially affecting the
stability of the grasp. Moreover, we noticed that the detection
of the pulling event is highly sensitive to the geometry of
the object that the hand is grasping. This problem could be
solved through a better Gaussian mixture model for pull
detection or by the inclusion of visual information about
the geometry of the object. Using vision would enable a
richer interaction between the robot and the human creating
the opportunity to investigate reliable human to robot object
handover.
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