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Abstract—The ubiquitous computing paradigm is becoming a
reality; we are reaching a level of automation and computing
in which people and devices interact seamlessly. However, one
of the main challenges is the difficulty users have in interacting
with these increasingly complex systems. Ultimately, endowing
machines with the ability to perceive users emotions will enable
a more intuitive and reliable interaction. Consequently, using
the electroencephalogram (EEG) as a bio-signal sensor, the
affective state of a user can be modelled and subsequently
utilised in order to achieve a system that can recognise
and react to the users emotions. In this context, this paper
investigates feature vector generation from EEG signals for
the purpose of affective state modelling based on Russells
Circumplex Model. Investigations are presented that aim to
provide the foundation for future work in modelling user affect
and interaction experiences through exploitation of different
input modalities. The DEAP dataset was used within this
work, along with a Support Vector Machine, which yielded
reasonable classification accuracies for Valence and Arousal
using feature vectors based on statistical measurements and
band power from the α, β, δ, and θ waves and High Order
Crossing of the EEG signal.

1. Introduction

In the context of intelligent systems, we are facing a
paradigm shift: from a world where users control devices to
a world of autonomous devices, capable of self-management
and aware of their environmental and situational context [1].
Ubiquitous computing as envisioned by Mark Weiser is be-
coming a reality; we are reaching a level of automation and
computing in which people and devices interact seamlessly,
without this interaction being perceived by the user [2].

Ironically, one of the main challenges found in this
paradigm is the difficulty of user interacting with these sys-
tems due to their increasing complexity [3]. Consequently,
it is important to identify all possible interaction modali-
ties and structure these based on the requirements of the
problem domain, which may include both traditional and
natural user interfaces, situational awareness and adaptation,

personalised content management, multimodal dialogue and
multimedia applications. Moreover, the computer mediated
nature of interaction modalities such as Virtual Reality
typically requires a facility for personalised interaction in
order to maintain user engagement with the underlying
task. While task engagement encompasses both the user’s
cognitive activity and motivation, it also requires an un-
derstanding of affective change in the user. Accordingly,
physiological computing systems may be utilised to provide
insight into the cognitive and affective processes associated
with task engagement [4]. In particular, an indication of the
levels of brain activity, through acquisition and processing
of electroencephalogram (EEG) signals, may yield benefits
when incorporated as an additional input modality [5]. In
recent studies, researches have used Brain-Computer Inter-
face (BCI) systems in order to match the responses of the
environment directly to the user’s brain activity [6], [7], [8],
[9], [10].

Currently, Human-Computer Interaction (HCI) research
targets the use of BCI systems as a novel input modality,
typically for control purposes, enhancing traditional modal-
ities such as mouse, keyboard, or game controller. Sub-
sequently, beyond assistive technology applications, today
BCI technology is considered as another potential input
modality. However, this form of active interaction is still
quite costly for users as it requires training and a good
amount of both concentration and effort to modulate ones
brain activity, which ultimately causes the user to focus
more on the interaction modality itself than the underlying
task. In order to achieve truly transparent interaction, the
system is required to acquiesce to the users intentions or
needs. Consequently, using the EEG as a bio-signal sensor to
model the users cognitive and affective state is one potential
way to achieve an interaction that does not require any
training or attention focus from the user. Focusing on the
users affective state, this paper investigates different feature
extraction techniques in order to relate and discover useful
patterns between EEG signals and their respective levels of
Valence and Arousal. For the purposes of the investigations,
the DEAP dataset has been utilised to provide an annotated
set of EEG signals [11], and Support Vector Machine (SVM)
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employed to generate an affective state model.
The structure of the remainder of this paper is as fol-

lows: Section 2 provides a brief overview of approaches to
affect-based modelling within the existing literature; Section
3 describes both the dataset and underlying methodology
employed within the investigations carried out, with the
corresponding set of results presented in Section 4. This
is subsequently followed by a discussion of the results
in Section 5. Finally, Section 6 provides an indication of
general heuristics gained from the observations made, along
with aspects for consideration in future works.

2. Background

Providing machines with the ability to recognise and
detect the emotional states of users could be of major im-
portance for the next generation user interfaces. Endowing
computer systems with logical reasoning abilities about the
users affective context will facilitate detection and recogni-
tion of the affective states they are currently experiencing,
especially indications of frustration, fear, or dislike, and
enable the system to respond in a more empathetic and
intelligent manner [12]. As a consequence, this together with
other HCI characteristics such as consistency, flexibility,
usability, and accessibility may provide a catalyst for the
production of intelligent and adaptive interfaces [13].

Currently, various input modalities exist that can be
utilised to acquire information about the user, which can be
exploited for the purpose of recognising emotion. Firstly,
audiovisual-based communication, such as eye gaze track-
ing, facial expressions, body movement detection, and
speech and auditory analysis may be employed as in-
put modalities. Secondly, physiological measurements using
sensor-based input signals, such as EEG, galvanic skin
response, and electrocardiogram can also be utilised. How-
ever, the use of EEG as an input modality has a number
of advantages that make it potentially suitable for use in
real-life tasks including its non-invasive nature and relative
tolerance to movement. Additionally, EEG can work on a
very high level for temporal resolution [14].

Accordingly, several existing studies have exploited EEG
as an input modality for the purpose of emotion recognition.
For instance, Picard et al. looked at different techniques
for feature extraction and selection in order to enhance
emotion recognition by employing EEG data in conjunc-
tion with various transformations [15]. And they found
that there is a variation in physiological signals of the
same subject expressing the same emotion from day to
day. Which impairs recognition accuracy if not managed
properly. Konstantinidis et al. studied real-time classification
of emotions by analysing EEG data recorded using 19 chan-
nels. They showed that extracting features from EEG data
using a complex non-linear computation, which is a multi-
channel correlation dimension, and processing the features
using a parallel computing platform (i.e. CUDA) would
substantially reduce the processing time needed, hence fa-
cilitate real-time emotion recognition [16]. In [17], emotion
recognition from EEG as proposed using feature extraction

methods based on Higher Order Crossing (HOC) analysis,
in which the features represent the oscillatory patterns exist
in the EEG data. Additionally, they used four different
classification techniques on HOC features extracted from
each channel separately, as well as HOC features extracted
from data combining four channels together. Furthermore,
they reported the highest classification accuracy achieved
83.33%, using SVM trained on extracted HOC features.
Murugappan investigated feature extraction using wavelet
transforms [18]. Moreover, he used K-Nearest Neighbor
to evaluate classification accuracy for emotions across two
different sets of EEG channels (24 and 64 channels), with
a resulting classification accuracy of 82.87%. Jenke et al.
looked for feature selection methods of features extracted
from EEG for emotion recognition [19]. They presented a
systematic comparison that concluded multi-variate methods
perform better than uni-variate methods for feature selection
in this context.

Nevertheless, still there are challenges that may be en-
countered when attempting to exploit EEG for emotional
state recognition. For example, due to the poor signal-
to-noise ratio associated with the EEG signal, a number
of constraints must be applied and per subject analysis
performed. Therefore, extracting relevant and informative
features from EEG signals from a large number of subjects
and formulating a suitable representation of this data in
order to distinguish different affective states is an extremely
complicated process [20].

3. Methodology

As previously discussed, the ever growing ubiquity of
computer systems deployed within our everyday lives neces-
sitates further system awareness of the emotional state of the
user. In order to investigate EEG signal feature selection, for
subsequent affective state modelling, an existing dataset was
used. The following subsections describe the dataset, feature
extraction approaches, and analysis method employed for
the purposes of emotion recognition and modelling using
neurophysiological data.

3.1. The DEAP Dataset

The DEAP dataset [11], utilised in the work presented
herein, comprises EEG and peripheral physiological signals
for 32 subjects who individually watched 40 one-minute
music videos of different genres as a stimulus to induce
different affective and emotional states. Within the dataset
32 channels were used to record EEG signals for each
trial per subject, resulting in 8064 samples that represent
the signal over each one-minute trial. During each trial, a
single subject rated his/her feelings after watching the video
using the Self Assessment Manikin (SAM) scale in the range
[1-9] to indicate the associated levels of Valence, Arousal,
Dominance, and Liking.

Furthermore, the resulting EEG signal data averaged to
the common reference, the EEG channels were reordered
to follow the Geneva order, and finally, the data segmented



TABLE 1. EEG BRAIN WAVE BANDS

Band Name Band Symbol Frequency Range (HZ)
Delta δ 0.5 - 4
Theta θ 4 - 8
Alpha α 8 - 12
Beta β 12 - 30

into 60 second trials and a three second pre-trial baseline
was removed.

3.2. Bandwave Extraction

The investigations exploited the four primary channels
Fp1, Fp2, F3 and F4 that are relevant to the detection and
analysis of affective states, according to [17]. Furthermore,
the EEG data associated with these channels was trans-
formed into α, β, δ, and θ waves, using the ParksMcClellan
algorithm and Chebyshev Finite Impulse Response filter to
filter the signal according to the ranges shown in Table 1.

3.3. Feature Extraction

Three feature extraction techniques for EEG-based emo-
tion recognition were implemented and applied to the ac-
quired signals.

3.3.1. Statistical Features. We have initially adopted six
descriptive statistics, as suggested by Picard et al. in [15]:

1) Mean (µ)

1

N

N∑
n=1

Xn

2) Standard deviation (σ)√√√√ 1

N − 1

N∑
n=1

(Xn −Mean)2

3) Mean of the absolute values of the first differences
(AFD)

1

N − 1

N−1∑
n=1

|Xn+1 −Xn|

4) Mean of the normalised absolute values of the first
differences (AFDN)

1

N − 1

N−1∑
n=1

|X̃n+1 − X̃n|

5) Mean of the absolute values of the second differ-
ences (ASD)

1

N − 2

N−2∑
n=1

|Xn+2 −Xn|

6) Mean of the normalised absolute values of the
second differences (ASDN)

1

N − 2

N−2∑
n=1

|X̃n+2 − X̃n|

3.3.2. Spectral Power Density of Brain Waves. For the
selected four channels, the mean log-transformed brain wave
power were extracted from the α, β, δ, and θ frequency
bands, according to [21]. The Spectral Power Density (SPD)
is widely used to detect the activity level in each brain wave,
allowing the components in the frequency domain to be in-
terpreted as electroencephalographic rhythms. Subsequently,
the power features resulting from the four channels, for each
of the four frequency bands, were combined together prior
to subsequent analysis.

3.3.3. Higher Order Crossing. In this technique, the EEG
signal is interpreted as a finite time series. It is possible
to characterise a finite series (Zt, such that t = 1, ...,
N) oscillating through the zero point by the number of
intersections, or crossings, for this level. Such a number of
crossings can be changed by applying a filter to adjust the
oscillation of the series. From this perspective it is possible
to assume the filtering-counting process by applying a filter
to the series and performing a count of the zero crossings
[22] [23], resulting in a high order crossing after applying
a specific sequence of filters.

Considering the difference operator (5), defined as
5Zt ≡ Zt − Zt−1, as a high-pass filter. We can consider a
sequence of filters such as =1 ≡ 5k−1, with k = 1, 2, 3, ...
and can estimate the sequence of HOC crosses as:

Dk = NCZ {=k (Zt)} , k = 1, 2, 3, ...; t = 1, ..., N

Being NCZ {} the number of zero-crosses for each
filter, in which:

= (Zt) = 5k−1Zt =
∑k

j=1

(
k−1
j−1

)
(−1)j−1

Zt−j+1

To calculate the number of zero-crossings, a binary
time series is initially constructed given by:

Xt (k) =

{
1, =k (Zt) ≥ 0

0, =k (Zt) < 0
, k = 1, 2, 3, ...; t = 1, ...N

And finally the HOC is estimated by:

Dk =
∑N

t=2 [Xt (k)−Xt−1 (k)]
2

3.4. Affective State Classification Methods

The Circumplex Model of emotion developed by James
Russell suggests that the core of emotional states are dis-
tributed in a two-dimensional circular space, containing
Arousal and Valence dimensions. Arousal represents the
vertical axis and Valence represents the horizontal axis,
while the center of the circle represents a neutral Valence
and a medium level of Arousal [24].

As the current study is interested in recognising the
affective state that a subject is experiencing, congruous with
Russells Circumplex Model, throughout the investigations
only Valence and Arousal ratings were used. Furthermore,
ratings are provided within the DEAP dataset as continuum



Figure 1. Mapping from SAM scale value ranges to Tripartition Scheme
Labels (Low, Medium, High)

numeric values ranging from [1-9] based on the SAM scale
[25]. Subsequently, two different partitioning schemes have
been employed in order to discretize the range of values
within the scale, as illustrated in Figure 1, and given as
follows:

1) Tripartition Labeling Scheme: Dividing the scale
into three ranges [1.0-3.0], [4.0-6.0] and [7.0-9.0],
given as the partitions Low, Medium and High
respectively.

2) Bipartition Labeling Scheme: Similar to the previ-
ous scheme, however we removed instances anno-
tated as Medium, resulting in the two ranges [1.0-
3.0] and [7.0-9.0], given as the partitions Low and
High respectively.

Within the research literature, a range of classification
techniques have been used for affective computing and
emotion recognition using EEG bio-signals as an input
modality [26]. In this work, we employ a Support Vector
Machine (SVM), specifically the C-Support Vector with a
linear kernel, available from the LIBSVM library developed
at National Taiwan University [27], [28].

4. Experimental Results

For the sake of exploration of different features, as
previously described, we used classification accuracy as
a metric. Furthermore, we have utilised the 10-fold cross
validation approach for assessing classification performance.
As previously discussed, this investigation aims to identify
patterns related to data extracted from EEG bio-signals
across different Valence and Arousal states. Subsequently,
feature vectors for the SVM classifier utilised a range of
statistics-based measures; in some cases the feature vector
comprised individual statistical values, whereas in other

TABLE 2. CLASSIFICATION ACCURACIES USING STATISTICS-BASED
FEATURE VECTORS DERIVED FROM PREPROCESSED EEG SIGNALS

Method Features # Valence Arousal Average Scheme
µ 32 49.22% 55.23% 52.23% Tripartition
µ 32 64.32% 64.77% 64.54% Bipartition
σ 32 52.81% 56.41% 54.61% Tripartition
σ 32 71.33% 63.49% 67.41% Bipartition

AFD 32 54.69% 56.09% 55.39% Tripartition
AFD 32 74.53% 67.55% 71.04% Bipartition

AFDN 32 51.72% 55.16% 53.44% Tripartition
AFDN 32 69.71% 68.15% 68.93% Bipartition
µ , σ 64 51.80% 55.47% 53.63% Tripartition
µ , σ 64 69.58% 65.16% 67.37% Bipartition

All 128 52.89% 54.06% 53.48% Tripartition
All 128 69.77% 66.09% 67.93% Bipartition

TABLE 3. CLASSIFICATION ACCURACIES USING STATISTICS-BASED
FEATURE VECTOR DERIVED FROM α, β , δ AND θ WAVES

Features # Valence Arousal Average Scheme
96 58.75% 58.75% 58.75% Tripartition
96 85.99% 73.67% 79.83% Bipartition

cases the feature vector comprised a concatenation of statis-
tical values. Moreover, two labeling schemes were employed
during the investigations, i.e. Bipartition and Tripartition.

Table 2 provides the classification accuracies obtained
from the use of statistical measures as feature vectors for
the classifier. As may be observed in Table 2, the statistical
features µ, σ, AFS and AFDN were tested individually. In
addition, the statistical features µ and σ were concatenated,
producing an additional feature vector. Lastly, all four sta-
tistical features (µ, σ, AFS and AFDN) were concatenated
together to produce another feature vector. It was discovered
that AFD achieves the highest accuracy when classifying
Valence (74.53%), along with the highest mean accuracy
(71.04%), yet a marginal improvement can be observed in
the use of AFDN, which classifies Arousal with an accuracy
of 68.15%. However, the Bipartition mapping scheme out-
performs the Tripartition scheme regardless of the choice of
feature vector.

In a similar manner, Table 3 gives the results for the
classification accuracies obtained when using all statistical
features (i.e. µ, σ, AFD, AFDN, ASD and ASDN) derived
from the α, β, δ and θ waves for each of the selected chan-
nels. Consequently, the results in Table 3 show classification
accuracy of 85.99% and 73.83% for Valence and Arousal
respectively when using the Bipartition mapping scheme.

In addition to the previous results, Table 4 gives the
classification accuracies obtained when exploiting the power
bands of the the α, β, δ and θ waves as features for each
channel. Subsequently, best performance is again shown
when using the Bipartition mapping scheme, thereby achiev-
ing classification accuracies of 82.53% and 76.89% for
Valence and Arousal respectively.

Table 5 provides the classification accuracies obtained
when utilising feature vectors generated using the HOC
statistics from each channel. Similar to the previous results,



TABLE 4. CLASSIFICATION ACCURACIES USING A POWER
DENSITY-BASED FEATURE VECTOR DERIVED FROM α, β , δ AND θ

WAVES

Features # Valence Arousal Average Scheme
16 59.77% 61.09% 60.43% Tripartition
16 82.53% 71.25% 76.89% Bipartition

TABLE 5. CLASSIFICATION ACCURACIES USING HOC-BASED
FEATURE VECTOR

Features # Valence Arousal Average Scheme
24 53.83% 55.86% 54.84% Tripartition
24 66.9% 66.69% 66.8% Bipartition

Table 5 shows the best classification accuracies (i.e. 66.90%
for Valence and 66.69% for Arousal) were achieved when
the Bipartition mapping scheme was employed.

An additional endeavour carried out during the investi-
gations was to probe the relationship between the emotional
states reported by the subjects and the actual power bands
of the measured EEG signals. Consequently, by averaging
the power bands of the α, β, δ and θ waves from the four
channels across all 32 subjects over the Valence and Arousal
states, an insight into the relationship may be determined.
As Figure 2 indicates, there appears to exist an inversely
proportional relationship between Valence and the power
band features. In contrast, in the case of Arousal, no distinct
relationship can be observed.

Figure 2. Comparison of Average Power Bands with Bipartition-based
Valence and Arousal Selection

5. Discussion

The investigations and associated results presented in
this paper show the potential of utilizing EEG signal data
with the intention of recognising and modelling the affective
states of a user. In particular, the highest classification
accuracy rates obtained used a feature vector generated
from features based on the statistical measurements derived
from the α, β, δ and θ waves, e.g 85.99% for Valence and
73.83% for Arousal. Likewise, using a feature vector based

on the associated power bands also produced a reasonable
degree of classification accuracy, e.g. 82.53% for Valence
and 76.89% for Arousal. In both cases, the Bipartition
labeling scheme was used. Furthermore, in the majority of
the investigations, the classification accuracies obtained for
Valence outperformed those obtained for Arousal.

However, the variance observed amongst the results ob-
tained from the investigations could be due to many reasons.
Firstly, the sensitivity of the self-assessment scale used to
garner affect ratings; this kind of measurement is somewhat
subjective, as it is based on the thoughts and impressions of
the participant about the video he/she watched. Moreover, it
is often the case that people do not know how to articulate
their actual emotions and associated states due to ambiguity
and mixed mental activities [29]. Therefore, it is potentially
the case that some of the participants could not precisely
entail their actual emotional state using the SAM scale. Due
to this factor, classification models were generated twice
using two different mapping schemes in order to determine
the impact from ambiguous annotations that potentially arise
from the selection of Valence and Arousal values from the
middle of the self-assessment scale. As the results indicated,
placing such a constraint on the ranges of affect to be
modelled improved the overall classification performance.
Secondly, it is common that people intermix and are un-
able to differentiate between Valence and Arousal states. In
particular, participants within the DEAP dataset watched
video clips as a stimuli, hence were passive during that
time. Therefore, it is probable that self-assessing the Arousal
state was somewhat vague, which would explain the lower
accuracy rates achieved for the state.

Moreover, combining extracted features together to form
a feature vector does not necessarily correspond to an
increase in the classification accuracy. For example, as
shown in Table 2, Absolute First Difference (AFD) of the
preprocessed EEG signals achieves a better classification
accuracy than other individual features as well as collec-
tively combined features. Additionally, as Figure 2 depicts,
a direct relationship was observed between the power bands
of the α, β, δ and θ waves and the classification accuracies
obtained for Valence. Therefore, the ease with which this
pattern may be observed makes it potentially suited as a
metric for measuring this aspect of the affective state of a
user, ranging from negative to positive (i.e. Low-Valence to
High-Valence).

6. Conclusion and Future Work

This paper investigated exploiting electroencephalogram
data for the purpose of recognising and modelling the
affective states of users. Consequently, the results from
several experiments using different sets of features extracted
from EEG data within the DEAP dataset were presented.
In addition, the observed discrepancy in classification accu-
racy due to different affective state mapping schemes was
discussed, indicating that a degree of ambiguity will exist
within such datasets, which has an obvious effect on the abil-
ity to accurately model affective states. These preliminary



results will help inform and lead to further experiments that
eventually integrate different input modalities together with
EEG in order to potentially provide a more robust model
of the users affective state. As a next step, the current set
of investigations will be repeated using another mapping
scheme based on Fuzzy Logic in an effort to improve the
classification of potentially ambiguous affective states.
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[20] A. Schlögl, M. Slater, and G. Pfurtscheller, “Presence research and
eeg,” in Proceedings of the 5th International Workshop on Presence,
2002, pp. 9–11.

[21] R. J. Davidson, “Anterior cerebral asymmetry and the
nature of emotion,” Brain and Cognition, vol. 20,
no. 1, pp. 125 – 151, 1992. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/027826269290065T

[22] B. Kedem, “Spectral Analysis and Discrimination by Zero-
Crossings,” Proc. of the IEEE, vol. 74, Nov. 1986.

[23] P. C. Petrantonakis and L. J. Hadjileontiadis, “Emotion recognition
from eeg using higher order crossings,” Trans. Info. Tech. Biomed.,
vol. 14, no. 2, pp. 186–197, Mar. 2010. [Online]. Available:
http://dx.doi.org/10.1109/TITB.2009.2034649

[24] J. A. Russell, “A circumplex model of affect,” Journal of Personality
and Social Psychology, vol. 39, pp. 1161–1178, 1980.

[25] M. M. Bradley and P. J. Lang, “Measuring emotion: the self-
assessment manikin and the semantic differential,” Journal of behav-
ior therapy and experimental psychiatry, vol. 25, no. 1, pp. 49–59,
1994.

[26] M.-K. Kim, M. Kim, E. Oh, and S.-P. Kim, “A review on the
computational methods for emotional state estimation from the human
eeg,” Computational and mathematical methods in medicine, vol.
2013, 2013.

[27] C.-C. Chang and C.-J. Lin, “LIBSVM - A Library
for Support Vector Machines,” 2001. [Online]. Available:
http://www.csie.ntu.edu.tw/\ cjlin/libsvm/

[28] Y. EL-Manzalawy, “WLSVM,” 2005. [Online]. Available:
http://www.cs.iastate.edu/\ yasser/wlsvm/

[29] R. W. Picard, “Affective computing: Challenges,” Int. J. Hum.-
Comput. Stud., vol. 59, no. 1-2, pp. 55–64, Jul. 2003. [Online].
Available: http://dx.doi.org/10.1016/S1071-5819(03)00052-1


