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Abstract—Multiple Classifier Systems are often found to be
useful for improving individual results by combining a set of
classifier decisions where a single base level classifier may not
achieve the same level of results. However not every set of
base classifiers improve results, therefore a selection of a set
of classifiers is required. The process of selecting base level
classifiers for a multiple classifier system may be performed
by the use of a Genetic Algorithm. The aim of this work is
the selection of optimal sets of base level classifies using an
evolutionary computation approach. In addition, a comparative
analysis is made of the performance of the generated ensembles
against the individual base level classifiers.

I. INTRODUCTION

An ongoing challenge, for security experts and businesses,
in the defense and stability of modern networks are intrusions
that either illicitly retrieve data/information, or prevent legit-
imate access [1]. Given wide varieties of existing intrusions,
one key difficulty is providing widespread detection. Intrusion
detection depends largely on analysis of attack vectors and
purposes. Attack methods and perceived purposes may be
useful to determine if they are different enough from normal
traffic to accurately state them to be attacks. Accuracy of
intrusions depends upon the algorithm employed, when a
single algorithm is not adequate, multiple algorithms may be
required, determination of how many and which algorithms to
employ requires further consideration.

Systems put in place to detect intrusions are known as
Network Intrusion Detection Systems (NIDS). An NIDS may
function with respect to historical or real time network traffic
[2]. In either case, they are utilized to provide some method
of detection through analysing all or a specified set of features
[2], [3]. A popular approach to NIDS over the last decade has
been the use of multi-layered or tiered approaches [4], [5], [6],
which incorporate multiple methods within a hierarchy.

The focus of this paper concerns the use of a Genetic
Algorithm (GA) to determine an optimal ensemble of base
level classifiers (BLC) for the detection of intrusions. The
hypothesis is the possible evolution of BLCs for an ensemble
to perform better, to some degree, than individual BLCs. To
explore this, we measured performances of a set of supervised
Machine Learning (ML) algorithms, previously used with a
GA [7], on two datasets used for intrusion detection research,
notably the NSL-KDD [8] and ISCX2012 [9] datasets.

The developed work involves the evolution, by GA, of
sets of ML algorithms, provided by third party sources, with

multiple additions made, with their explicit usage in the
domain of intrusion detection using data from two different
datasets. This work differentiates itself from existing works
by the specific usage of listed ML algorithms in the specific
domain of intrusion detection with some more recent and large
subsets.

The remainder of this paper is outlined as follows: Sec-
tion II describes some background on GA, ML algorithms
and existing NIDS. Following this, Section III, describes the
methodology employed for the experiments discussed herein,
followed by a presentation of the results obtained in Section
IV. Finally, in Section V a brief discussion of the results is
given along with a subsequent conclusion in Section VI.

II. BACKGROUND

As ML research and development continues more potential
algorithms are produced. For any given situation one algorithm
may perform as well as another algorithm, in this case the
need for both algorithms may become less likely, at least
for a certain series of instances [7]. Each algorithm may
require a certain amount of time for training and classification,
the overall amount of time may not simply be linear and
predictable. Therefore, implementation of all algorithms may
not be desirable or adequate for the problem of accurate
classification.

In general, the set of optimal algorithms for a given problem
is known to not be all possible algorithms [10]. Thus, selection
of an optimal set requires a further optimization process, such
as a GA which follows the theory of evolution, producing
optimal sets of classifiers with objective evaluation criteria.

NIDS can be evaluated using various different measures.
For example, F-Measure (FM), Detection Rate, totals of False
Positive (FP) or False Negative (FN), or rates of FP or FN
classification instances may be employed. Within this paper,
FP is taken to be the erroneous classification of an instance
as an intrusion. Conversely, a FN is taken to be the erroneous
classification of an instance as normal. With NIDS a balance
must be found between FPs and FNs, as these two objectives
generally compete. One way to achieve this balance is identify
the Pareto-optimal trade-off between FP and FN using multi-
objective optimization algorithms. A noted limiting factor of
NIDS is the reduction of FPs [11], [12].
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A. Ensemble Algorithms

Outputs from multiple BLCs may be combined into a single
output, this approach may be referred to as an Ensemble or
Multiple Classifier System (MCS).

Popular conventional Ensemble methods include Bagging,
Boosting and Stacking.

Bagging uses instances of a BLC and a replicated dataset
with differences introducing variations, improving average
classification result [13].

Boosting uses BLCs sequentially over one dataset. Improve-
ments are induced at each subsequent BLC, weighting changes
of misclassified instances, improving overall classification
[14].

Stacking uses BLCs in parallel over one dataset [15]. Each
BLC predicts class probabilities as input for a regression
model per class. Each regression model classifies each in-
stance [16]. Using class probabilities rather than predictions
improve overall performance. A Stacking variation, StackingC
[17], improved efficiency by using only the probability of a
specific class for each linear model for that class, rather than
considering the other class probabilities as well [17].

B. Ensemble-based NIDS

Within research literature, some NIDS have utilized Ensem-
ble approaches, improving upon performance of a single BLC.

Octopus-IIDS [5], described as an Intelligent IDS, imple-
ments a Kohonen network to split data into attack classes,
then SVMs to reclassify instances as Normal or Attack.

Hidden Markov Models with Payl (HMMPayl) [18] per-
forms analysis on payloads, as well as using Hidden Markov
Models (HMMs) initially, performing multiple initial classi-
fications, then forming a final classification from the initial
classification results.

Work described in [19] forms clusters with K-Means Clus-
tering (KMC), after which Nave Bayes (NB) corrects data
previously misclassified by the clustering. This approach in-
creases classification results as well as efficiency by grouping
the data.

C. Genetic Algorithms

A GA is an evolutionary algorithm that mimics the pro-
cess of natural selection to evolve a population of candidate
solutions to an optimization problem [20], [21].

The evolutionary aspect of the algorithm is related to
modelling evolutionary processes whereby two chromosomes
are ’mated’, producing ’child’ chromosomes based on ’par-
ent’ chromosome representations. Improvements can arise by
selection and crossover (i.e. ’mating’) of the fittest chromo-
somes. Mutations may also be applied, whereby a gene of
a chromosome is randomly modified to introduce diversity
within the population of chromosomes.

Objective functions of a GA generate values utilized to
compare performance of decoded chromosomes, such that the
optimal or dominating chromosome may be identified. Values
may be maximized or minimized depending upon need; for
instance, maximising accuracy and minimizing error. GAs

with one objective are Single-Objective GAs (SOGA), those
with two or more are Multi-Objective GAs (MOGA).

A SOGA optimizes a single objective, improving to a
singular end. However, a MOGA optimizes multiple objectives
and in some cases the objectives compete, meaning there
exists no ’global’ solution thus a concept of how a solution
’dominates’ another is used to rank solutions, each set of
solutions that do not ’dominate’ each other form a ’pareto’
front, multiple such fronts may exist.

D. Multi-Objective Algorithms

Non-dominated Sorting Genetic Algorithm II (NSGA-II)
[22], an improved version of NSGA creates an initial pop-
ulation of chromosomes and evaluates those chromosomes
using a defined problem. Chromosomes in pairs create a
child chromosome population, using crossover and mutation,
which is then evaluated. Evaluated chromosomes are all com-
pared to each other, providing the domination information of
each chromosome, i.e. which chromosomes dominated and
which were dominated by an individual chromosome. Non-
dominated chromosomes form the first or 0 subset; these
pareto optimal chromosomes are removed from any dominat-
ing set of remaining chromosomes. This process continues,
finding all possible and existing pareto fronts for the problem
until all chromosomes have been assigned to a front.

NSGA-III is an improved version of NSGA-II, able to more
efficiently evolve solutions where problems include a large
number of objectives.

MOEA/D is a Multi-Objective Evolutionary Algorithm that
decomposes optimization problems into sub-problems, at each
generation the best solution of each sub-problem forms the
new generation, in this way the complexity of the overall
problem is reduced.

E. Intrusion-based NIDS using GAs

GAs are also used to choose an optimal set of variables. In
[23] a GA has been implemented and used for the detection
of intrusions from the KDD’99 dataset and is compared. A
multi-class approach was taken, performing well on Denial of
Service (DoS) data, however not as a well on Normal data,
although the performance on DoS and User to Root data is
stated as better than that of the KDD’99 competition winner.

In [24] a set of features and the parameters of SVMs
kernel function is evolved to optimize the detection rate of
the resultant SVM. The proposed system is said to sometimes
outperform the KDD’99 competition winner.

In [25], a GA named Archive-based Micro Genetic Algo-
rithm 2 (AMGA2) is used to optimize the features of an NB
and compared against other methods using NB as the base
algorithm. Experiments are carried out on both KDD’99 and
the more recent ISCX2012 datasets, although low numbers of
instances are selected from ISCX2012.

III. METHODOLOGY

The focus of the work presented in this paper is investigation
and determination of optimal sets of BLCs, using NSGA-II,



for use in an ensemble, StackingC, employed for the detection
of network intrusions.

BLCs and an efficient ensemble method is implemented,
as described in [7]. a particular distinction is the difference
of domain upon which the set of BLCs are used, in this
case network intrusion detection. Additionally compared to
some current literature, a more recent dataset, ISCX2012, is
also implemented with large number of instances, providing
investigation into the effects of large scales of data with
StackingC in an evolutionary context.

To simplify selection and implementation of algorithms for
the ensemble, algorithms within Weka are used to form BLCs.
In this case StackingC, the BLCs and Meta Level Classifier
(MLC), in this case Multi-response Linear Regression, each
coming from Weka. In addition, JMetal, an object-oriented
Java-based framework for multi-objective optimization with
metaheuristics, has been utilized for encoding and decoding
chromosomes for the GA, providing an initial population of
chromosomes and assisting in catching potential issues with
child chromosomes; in the case of this work, ensuring a
minimum number of BLCs in initial populations and handling
when chromosomes decode to an empty set.

While it is known that NSGA-III more current GAs exist,
NSGA-II is a robust and popular approach adequate for two
objectives. The work herein did not require more than two,
so NSGA-III was not required to replace NSGA-II which
was more easily available for implementation from JMetal.
Development of a GA was not in focus thus a generic NSGA-
II is implemented.

A. StackingC with pre-trained BLCs

StackingC required a number of changes to provide the
efficiency found when using pre-trained BLCs. Objects and
methods were added to Stacking and StackingC (the latter
depending upon the former), maintaining trained BLCs, in-
dices selecting required BLCs for the current chromosome
and the meta data with which to train each MLC. The reason
for implementing a more efficient StackingC follows from the
potentially unlimited number of BLCs that could be included.

When StackingC is used over multiple iterations of a set
of BLCs, each set would require training on the full dataset.
However, building from the full dataset requires time; the
amount of time then determined by considering each BLC, as
well as training data, compounding the issue of time required
to fully train each BLC in the resulting ensemble. Thus due
to a combination of, firstly, size of current and potential
future BLC sets, secondly, training datasets and, thirdly, time
required to train individual BLCs, a change from training each
BLC for each ensemble iteration to only training once was
required.

B. NSGA-II using BLC evaluations

Binary encoding of the set of BLCs was selected, presence
or absence of a BLC is represented by a 1 or 0 respectively.
An implementation of NSGA-II capable of handling binary
encodings was utilized. Subsequently, creation and evolution

of chromosomes provide sets of BLCs, where these sets
are subsets of the entire possible set of BLCs. Comparisons
of chromosomes involved minimization of both FP and FN
values. It is assumed that, two sets of BLCs that perform well
may be evolved and produce at least one set of BLCs that can
perform better than the prior two sets.

C. Evolving sets of BLCs for StackingC

The use of a GA would facilitate the process of evolving a
chromosome evaluated on pre-selected objectives, evaluation
provided by the more efficient StackingC. Within this section
such a system is described, it is also illustrated in Fig.1.
The illustration provides, in 10 parts total, the methodology
of the experiment from an initial StackingC and population
generation followed by descriptions of the evolution of the
population.

An initial iteration of StackingC is run on training data,
training the MLC but also producing a set of Trained BLCs,
from the full set of BLCs, and the Meta Data, representing
classifications from each BLC, used to train the MLC, as
shown in parts 1-3 of Fig.1 respectively. Trained BLCs and
Meta Data are represented in parts 2 and 3 respectively, these
are maintained throughout.

Subsequently, as illustrated in part 4 of Fig.1, NSGA-II
through the use of a problem description creates multiple
solutions forming the initial population of chromosomes.

As shown in part 5 of Fig.1 the GA decodes the chromo-
some to produce an array of indices indicating which BLC
should be present in a set. This array is used against the full
set of Trained BLCs to provide the set of Reduced BLCs,
given by part 6 of Fig.1.

Both the array and reduced set are passed to a new Stack-
ingC instance, given by part 7 of Fig.1, to set the required
BLCs and the indices of data from the Meta Data initially
used to train the MLC, as shown in part 8 of Fig.1.

The combination of these three objects provides the creation
of a StackingC model without retraining the whole set of
BLCs or recreating meta data with which to train the MLCs,
as shown in part 8 of Fig.1. Meta data is only adapted to
represent the new instance of StackingC, training each MLC
required within StackingC only with portions of the meta data
represented by indices provided by NSGA-II.

Testing Data passed to the reduced set of BLCs is used
to produce meta data for the testing of Trained MLCs. Clas-
sification and evaluation of the ensemble, described by the
chromosome, are used to update the solution’s objective values
and subsequently the solution in the population, as shown in
part 9 of Fig.1. The process described by parts 5-9 of Fig.1 is
repeated for each chromosome in the initial population, after
which the process described in part 10 is performed.

With the population evaluated, if the stopping condition is
not met, which in this case is the evaluation of 30 generations
of the population, a child population is evolved. The set from
which the child set evolved is the parent population. Each
child population chromosome is subject to processes of parts
5-9 of Fig.1. Optimal chromosomes from parent and child set



Fig. 1. Illustration of efficient StackingC training and subsequent evolution by NSGA-II

are found by measure of domination, as described previously,
to form a new Updated Population of parent chromosomes,
the process repeats until the specified number of generations
has been passed.

D. Datasets

As previously mentioned, the work presented in this paper
employs two primary datasets: NSL-KDD and ISCX2012.
NSL-KDD has been pre-processed into training and testing
datasets. By contrast, ISCX2012 has not been pre-processed,
hence required training and testing datasets to be subsequently
generated. Consequently, the ISCX2012 dataset was split in
two ways: UUJN - using only the Distributed Denial of
Service (DDoS) scenario from the dataset, with a similar
distribution of classes as NSL-KDD; and Yassin2013 - using
an approximation of the dataset used by [19] with a higher
number of attack instances in the training set. Table I gives
brief description of datasets.

IV. RESULTS

A number of experiments were performed to determine the
optimal sets of BLCs for StackingC, with a focus on detecting
network intrusions. Each column in Table II represents the
point of a chromosome at which the presence of the associated
BLC is determined, also represented are the changes made to

the possible position of each BLC in a chromosome as the
iteration sets change. The optimal sets of BLCs depicted in
Table IV are referred to as ensembles.

During the experiments, each dataset was used with the
full set of BLCs. Some adjustments to the full set of BLCs
was required in order to allow results from each dataset to be
obtained. This was due to different feature types, number of
instances as well as how each BLC performed on each dataset.

One issue faced was the time complexity of training; NSL-
KDD was trained in an adequate [Define adequate here]
amount of time and was able to produce results on the full
set of BLCs. However, UUJN and Yassin2013 were found
to require extended periods of time to be trained. Extended
periods such that some BLCs required scores of hours be-
fore completing training and in some cases did not finish.
Therefore, it was only possible to obtain results from a subset
of the BLCs for these two datasets, as indicated in Table II.
Consequently, BLCs that experienced extended training times
were removed from the full set and a new subset/full set was
produced. This new set experienced no such issues with UUJN,
however still some issues were found with Yassin2013 for one
BLC. In response, again, the BLC causing issues was removed
and a new subset/fullset was produced.

Thus three BLC set iterations were of appropriate use for



TABLE I
CLASS DISTRIBUTIONS OF DATASETS USED FOR EXPERIMENTS

Dataset Features Training Testing
Normal Attack Total Normal Attack Total

NSL-KDD 42 67,343 58,630 125,973 9,711 12,833 22,544
UUJN 16 35,223 30,666 65,889 4,571 6,040 10,611
Yassin2013 15 63,765 8,968 72,733 19,115 37,159 56,274

TABLE II
PRESENCE OF BASE LEVEL CLASSIFIERS FROM WEKA

Base Level Classifier Base Level Classifier Set
Name Type One Two Three
NaiveBayesUpdateable bayes 10000000000000 10000000000 1000000000
PART rules 01000000000000 01000000000 0100000000
J48 (pruned) trees 00100000000000 00100000000 0010000000
J48 (unpruned) trees 00010000000000 00010000000 0001000000
DecisionStump trees 00001000000000 00001000000 0000100000
DecisionTable rules 00000100000000 00000100000 0000010000
ClassificationViaRegression meta 00000010000000
RandomForest trees 00000001000000
RandomTree trees 00000000010000
VFI misc 00000000010000 00000010000 0000001000
ConjunctiveRule rules 00000000001000 00000001000 0000000100
JRip rules 00000000000100 00000000100 0000000010
NNge rules 00000000000010 00000000010
HyperPipes misc 00000000000001 00000000001 0000000001

Total Classifiers 14 11 10

each dataset with some overlap between which datasets and
which sets of BLCs provided results. NSL-KDD produced
results with each BLC set iteration, UUJN produced results
with the second and third BLC set iterations and Yassin2013
only produced results with the third BLC set iteration. This is
shown in Tables III and IV.

A. On NSL-KDD Results

The results of each BLC set iteration, as given in Table
III, show that overall there is a single data point that exists
as an optimal set of FP and FN values, which is achievable
by multiple unique ensembles. This is true across each BLC
set iteration where the FP and FN values obtained remain
the same. All ensembles across NSL-KDD achieve 248 FPs
and 3263 FNs, while some of the individual BLCs achieve
similar results. It can be seen from Table IV that the ensembles
perform best regarding FN where in all but one case the
individuals achieve around 700 more FNs.

Considering the results obtained from NSL-KDD, shown in
Table III and Table IV, it can be determined that the ensembles
outperform the majority of BLCs, in terms of FP as well as
FN. An exception, however, is found with the HyperPipes
BLC, which outperforms any of the ensembles in terms of
FP, achieving 56 FP compared to 248 FP achieved by any
ensemble. The data points from BLCs and optimal ensembles
are presented in Fig.2. It is evident from positions of BLCs in
comparison to the optimal ensemble that the latter outperforms
the former. Similar figures exist for UUJN and Yassin2013,
however due to space constraints are not shown here.
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Fig. 2. NSL-KDD Results

B. On UUJN Results

As previously discussed, in terms of the UUJN dataset,
there are only results from BLC set iterations Two and Three.
Across both of these set iterations there are four data points
found, each with at least two unique ensembles. The ensembles
outperform a number of BLCs in terms of both FP and FN.
However, while some of the ensembles outperform a number
of BLCs, both PART and JRip produce similar results and one,
J48 unpruned, produces the same results.

From Table III and Table IV it may be observed that PART
achieved 1 FP with 10 FN to an ensembles 0 FP with FN
10 and JRip achieved 2 FP with 7 FN to an ensembles 1 FP
with 6 FN. J48 unpruned achieved the same results as some



TABLE III
INDIVIDUAL BASE LEVEL CLASSIFIER RESULTS

Base Level Classifier
Dataset

NSL-KDD UUJN Yassin2013
FP FN FP FN FP FN

NaiveBayesUpdateable 670 4714 67 66 728 37152
PART 275 3948 1 10 11 37159
J48 pruned 263 3900 0 16 60 37159
J48 unpruned 268 3930 3 3 60 37159
DecisionStump 440 4072 65 66 3 37158
DecisionTable 256 5923 92 25 415 37156
ClassificationViaRegression 659 4713
RandomForest 267 4206
RandomTree 278 4381
VFI 377 4567 37 12 54 37069
ConjunctiveRule 884 3328 65 66 0 37159
JRip 288 4613 2 7 11 37159
Nnge 697 3994 430 4
HyperPipes 56 11443 445 9 211 37069

TABLE IV
OPTIMAL ENSEMBLES AND RESULTS FOUND FOR EACH DATASET AND RELEVANT BLC SET ITERATION

Dataset
Base Level Classifier Set Iterations

One Two Three
Chromosome FP FN Chromosome FP FN Chromosome FP FN

NSL-KDD

11110000011000

248 3263

01111000000

248 3263

0111101001

248 3263

11110000000001 01111000001 1111001001
01110000010001 01111010000 1111101001
11110000010001 11111000001 0111001001
11110000000000 01110000000 0111000000
01110000010000 11111010000 1111101000
11110000010000 01111010001 0111101000

11111000000 0111001000
0111000001

UUJN N/A

11100101011 0 10 0110110001 0 1111100101010 0110010001
10110101000

1 6

1011110001

1 6
10110101001 0011110001
00110101001 1011110000
00110101000 1011010000
00111100000 1011010100
10011111011 2 4 0011100001

3 3

00011111011 0001111001
10010001011

3 3

0001100101
00010111000 0011010001
10010101000 1001100101
10010011011 0011000000
00010101000 1011100100
10010011001 1011000100
10010111011 1011000000
10011101000 1011100001

0001000101
0001010000

Yassin2013 N/A

0000100100

0 37159

1000100100
1000100101
1000000101
0000100101
0000000101
0000100001

3 371581000100000
0000100000
1000100001
0000111001

43 370690000011001
0000011100
0000011000



ensembles of 3 FPs with 3 FNs as evidenced in Tables III and
IV. The optimal ensembles achieve low FPs ranging from 0-3.
While these values match some FPs produced by BLCs, the
FNs indicate that those same instances achieve higher results
and, in some cases, the optimal ensembles achieve lower FNs.
For example, PART with 1 FP and 10 FNs is outperformed
by an ensemble with 0 FPs and 10 FNs. While this difference
may not be large it is still indicative of a better performing
ensemble in some cases.

C. On Yassin2013 Results

Finally, with regard to the Yassin2013 dataset, results were
only obtained for BLC set iteration Three. As there exists only
one set of results for this dataset the comparisons between the
optimal sets and BLCs are somewhat simplified. Consequently,
there are a small number of optimal data points found, each
with at least four unique ensembles. Considering the results
from each individual BLC, as well as comparisons between
the optimal ensembles, it can be observed that some BLCs
are able to achieve the same result as optimal ensembles. In
particular, this is the case with the BLCs ConjunctiveRule and
DecisionStump, which achieve 0 FPs with 37159 FNs and 3
FPs with 37158 FNs respectively. Comparisons also show that
while both the set of individual BLCs and optimal ensembles
achieve 37159, 37158 or 37069 FNs, the number of FPs vary
more, with the optimal ensembles outperforming most of the
BLCs in terms of the number of FPs alone. Optimal ensembles
achieve 0, 3 or 43 FPs, where optimal ensembles that achieve
0 or 3 FPs perform better than most individual BLCs where
the number of FPs are typically found to be 11 and above,
three of which achieve over 200 FPs.

V. DISCUSSION

As stated in Section IV, the optimal ensembles found
with NSL-KDD outperform the majority of individual BLCs.
Comparing them on their individual FPs and FNs, 100% of
the ensembles outperform 93% of the BLCs in regards to FPs
while 100% of the ensembles outperform 100% of the BLCs
in regards to FNs. Thus, overall, it is shown that 93% of the
optimal ensembles strictly outperform any of the BLCs. The
greatest distinction between BLCs and optimal ensembles may
be the difference found with the single BLC, HyperPipes,
that is not strictly improved upon; the FPs of the BLC is
approximately 22% of any ensemble’s FPs, the FNs from the
BLC is approximately 350% of any ensemble’s FNs. Hence
while the FPs may be of more importance for NIDS, the
FNs would have more of an effect being instances where an
intrusion was not caught. The performances found with UUJN
differ in comparison to NSL-KDD, the differences between
optimal ensembles and individual BLCs are not as definitive.
With four and three possible optimal ensemble results for
BLC set iterations Two and Three respectively, individual
comparisons are more varied. For BLC set iterations Two and
Three the domination of BLCs by at least a single optimal
ensemble is approximately 63% and 54% of individual BLCs
respectively. The performance when considering Yassin2013

is more easily defined. Two BLCs, DecisionStump and Con-
junctiveRule, achieve results equal to those of two different
sets of optimal ensembles. Those optimal ensembles are least
likely to dominate given results equal to individual BLCs, thus
remains the third optimal ensemble, strictly dominating 60%
of the individual BLCs.

Given that adjustments to the sets of BLCs were based
on the usability of the datasets, it has been shown that each
BLC did not perform equally across each individual dataset
based on the results. A clear example of this is with the BLC
named ConjunctiveRule; from results obtained from both the
NSL-KDD and UUJN datasets it may be observed that any
optimal ensemble outperforms ConjunctiveRule. Instead, from
results obtained from Yassin2013 it may be observed that
ConjunctiveRule performs just as well as at least one of the
ensembles, example 0000100100.

Where comparisons across each dataset can be made di-
rectly, over BLC set iteration Three, the last three columns of
Table IV, it can be seen that each ensemble found to be optimal
is unique; an optimal set of BLC found for NSL-KDD is not
found for UUJN or Yassin2013, this is also true for UUJN
and Yassin2013. Accordingly, it may be the case that the data
points utilized by each dataset may be less compatible with
some BLCs than with others. A particular BLC may perform
better when trained on NSL-KDD rather than UUJN; BLCs
that do not perform as well may be removed from subsequent
generations of chromosomes by the evolutionary process.

When considering the patterns of the presence of the BLCs,
over set iteration Three, as given in Table IV, it can be seen
that for each dataset there is at least one BLC, namely JRIP,
that does not appear in any of the optimal ensembles. JRip is
dominated by at least one ensemble whenever used with NSL-
KDD, UUJN or Yassin2013. Consequently, it is likely that
future experiments may be able to exclude JRip as it would
appear to play no part in the generation of optimal ensembles.

With the removal of a BLC, NNge, between set iteration
Two and set iteration Three, there is a slight decrease in
performance with UUJN. In set iteration Two an optimal
ensemble, example 11100101011, achieves 0 FPs and 10 FNs,
while in set iteration Three an optimal ensemble, example
0110110001, achieves 0 FPs and 11 FNs. While these example
ensembles differ in the presence of more than one BLC, it
may be observed that removal of NNge allows production of
similar but worse results by the remaining BLCs. Furthermore,
a different optimal ensemble, example 10011111011, is no
longer produced. Hence, achieving 2 FPs and 4 FNs no longer
occurs in set iteration Three, perhaps indicating that while the
addition of a BLC can improve an optimal ensemble, it may
also introduce a wider range of unique optimal ensembles from
a set of BLCs including the additional BLC.

Comparisons can be made against some similar works.
Comparing against [19] shows less FPs however more FNs, all
evolved ensembles more accurately detect intrusions but less
accurately classify normal instances. It should be noted that
the Yassin2013 dataset used here is only an approximation of
the dataset used in [19] and not an exact replica, this may



provide some explanation where an exact replication could
provide more accurate comparisons.

VI. CONCLUSION

The hypothesis was that a GA should be able to evolve
sets of BLCs for use with an MCS to produce an ensemble
that is able to outperform a number of the individual BLCs
that comprise the ensemble. Results show that evolved optimal
ensembles perform better than individual BLCs, the number of
optimal ensembles that perform better would appear to partly
be based on the dataset.

When considering the BLC set iterations, no singular op-
timal set of BLCs is produced that may be applied with
impunity across the varied datasets. However, NSGA-II is
capable of evolving sets of BLCs to optimal ensembles for
each dataset. Individual BLCs require some analysis before
benefits may be produced, especially where prolonged training
time requires removals of BLCs, indicating that datasets may
dictate inclusion of BLCs. Sets of BLCs may also need to be
adequately large to provide optimal variations of optimal en-
sembles and subsequent data points from evaluation measures.
Thus the benefits of optimization of StackingC could rely on
combinations of BLCs and datasets.

Future works could include further investigation and anal-
ysis into a number of aspects; selection of individual BLCs
better suited for varied datasets, implementation of a more
recent GA, additional objective functions.
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