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Pierre et Marie Curie, France

© 20xx IEEE. Personal use of this material is permitted. Permission from IEEE
must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes,
creating new collective works, for resale or redistribution to servers or lists, or
reuse of any copyrighted component of this work in other works.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ulster University's Research Portal

https://core.ac.uk/display/287021485?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


A Drift Diffusion Model of Biological Source Seeking for Mobile Robots

I. Rañó1 and M. Khamassi2 and K. Wong-Lin1

Abstract— Braitenberg vehicles have been used in multiple
real world robotic implementations of bio-inspired local naviga-
tion. While sensor based control strategies – including existing
models of Braitenberg vehicles – typically neglect sensor noise,
real robot implementations suffer from different levels of noise,
especially in the case of low cost robots and highly stochastic
environments. This paper presents a novel drift-diffusion model
of Braitenberg vehicle 3a – a bio-inspired source seeking
controller for non-holonomic robots – accounting for the sensor
noise. The stochastic differential equations obtained provide
means to accurately simulate the behaviour of this bio-inspired
control mechanism. Although these equations do not have ana-
lytic solutions in general, under some simplifying assumptions,
we obtain the deterministic equations for the average and
dispersion of the vehicles while performing source seeking.
Moreover, we found an analytic bound for the distribution of
the heading direction of the robots. Simulations illustrate and
confirm the theoretical results presented.

I. INTRODUCTION

Braitenberg vehicles model simple stimulus driven animal
movement towards (or away from) a stimulus [1]. Known
in biology as taxes, these models qualitatively illustrate how
such a set of controllers can become a basis for local bio-
inspired navigation [2]. Although the original formulation
is purely sensor-based, a potential function can be defined
on the environment to drive local navigation. In contrast,
for instance, to potential-based methods in robotics, Brait-
enberg vehicles inherently account for the non-holonomic
motion of animals regardless of their locomotive system
[3]. The original qualitative models are highly intuitive, yet
their mathematical formulation has been used to predict not
so intuitive features of their behaviour like deterministic
chaos [4]. Like many other navigation control techniques
for mobile robots, these models assume a deterministic pose
and neglect sensor noise in their mathematical formulation
for simplification purposes. Assumptions of noiseless sen-
sor readings might be unrealistic in many cases, such as
swarm robotics and any low cost robot, but also when the
environment is highly stochastic, for example in underwater
robotics. This paper presents the first model of a Braitenberg
vehicle 3a (see figure 1) in the presence of sensor noise as
a stochastic differential equation. Drift diffusion models are
widely used in physics and chemistry [5], decision-making
[6], and biological movement [7], among others. As we
will show later, the model enables realistic simulations, and
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provides a better understanding of this bio-inspired control
mechanism in real world conditions.

Because of their qualitative nature, the principles govern-
ing Braitenberg vehicles have been implemented in different
ways in many successful robotic works. A robot imitating
female cricket phonotaxis is presented in a series of works
[8], [9], [10], where the goal of the robot was to move
towards a sound source. A combination of vehicles 2a
and 3b was implemented using a spiking neural network,
resulting in an excellent performance under quite adverse
outdoor conditions. Contrary to other works and to the
existing models of Braitenberg vehicles [2], the sensor-
motor connection is not functional but dynamic, due to
the nature of the spiking neural networks used. Another
implementation of phonotaxis is presented in [11] where the
main contributions are implementing a model of the central
auditory system of rats and integrated a pinnea. This work
uses vehicle 3a to drive the robot motion towards the sound
source. Further, a phonotaxic lizard robot is presented in [12]
where a Braitenberg vehicle and a bang-bang controller are
compared. This implementation works successfully across a
wide range of frequencies for an empirically tuned vehicle
type 2b. The works in [13] [4] present similar obstacle
avoidance mechanisms using vehicle 2b and with proximity
sensors. The stimulus is an estimate of the free area around
the robot, which can be shown to produce chaotic trajectories
[4].

The behaviour of Braitenberg vehicles can be properly
described by their deterministic model when the signal to
noise ratio is high enough, as the noise can be neglected.
However, they have been also used successfully in more
adverse conditions. A pioneering work in odour localisation
in robotics [14] analysed experimentally the behaviour of
Braitenberg vehicles 3a and 3b. Based on symmetrically
located chemical sensors this work shows how a robot
can move towards high concentrations of chemicals in the
environment and stay close to the odour sources. An im-
plementation of fish rheotaxis is presented in [15], where
pressure sensors on the sides of the fish robot imitating
the fish lateral line were used to keep the orientation of
the robotic fish aligned with a laminar flow. Although the
variation in the lateral position of the robot using Braitenberg
vehicle 2b controller is larger than a PID controller, the fish
heading direction results in a better alignment with the flow.
Inspired by electric fish, [16] presents another underwater
robotic application of Braitenberg vehicles, where a robot
approaches conductive objects and avoids isolating ones in
a pond. Grounded on the bilateral symmetry of animals, the
steering control is driven by the current difference measured



by electrodes on both sides of the robot, one of the principles
of Braitenberg vehicles.

Through the literature we find multiple empirical appli-
cations of Braitenberg vehicles even in highly stochastic
environments, and using robots with noisy sensors. While
existing mathematical models work under ideal conditions,
we will show it is not sufficient to understand the robot
behaviour in realistic scenarios with noise. The contribution
of this paper is threefold. First, we present the first stochas-
tic model (as a drift-diffusion model) of this biologically
inspired source seeking mechanism (Braitenberg vehicle 3a)
under sensor uncertainty. The resulting stochastic differential
equation allows realistic simulations of this movement mech-
anisms, and a subsequent analysis of the resulting simulated
trajectories for different noise realisations. Second, under
certain assumptions, the model can provide analytical results
like the deterministic equations driving the average and
dispersion evolution of the vehicles over time, and a bound
for the angular dispersion. Finally, it has been shown recently
that adding noise to navigation functions can improve the
obstacle avoidance behaviour in the presence of potential
minima [17]. However, little is known about the effect that
this would have on the accuracy to reach the target position.
This work gives the first steps in the direction to find what
the effect of noise is for a non-holonomic target reaching
controller in the presence of noise.

The rest of the paper is organised as follows. Section II
presents the assumptions and develops the model of Brait-
enberg vehicle 3a as a stochastic differential equation. Sec-
tion III shows that, under certain conditions, the deterministic
equations of the evolution of the probabilistic properties
of the model can be obtained in a simple form. Further
simplifications allow finding the limit value of the variance of
the vehicle heading direction. Section IV presents computer
simulations of the stochastic and deterministic equations of
Braitenberg vehicle 3a to illustrate the results. The paper
concludes presenting some remarks and future lines of work
in Section V.

II. A DRIFT DIFFUSION MODEL OF BRAITENBERG
VEHICLE 3A

Before developing the drift-diffusion model of Braitenberg
vehicle 3a we briefly introduce its original qualitative model.
As figure 1 shows, vehicle 3a corresponds to a wheeled
robot with two symmetrically arranged sensors connected in
a decreasing way (inhibitory) to the wheel motor of the same
side (ipsilateral connection). The decreasing connection, de-
picted by the sign ’−’ in the figure, means that high sensor
stimulus produce slow wheel turning speeds, and the higher
the stimulus the lower the speed. For instance, if the stimulus
lies on the right side of the vehicle, the intensity perceived
in the right sensor will be higher than the intensity perceived
in the left one. Given the vehicle internal connections, the
right wheel will turn slower than the left one, making the
vehicle turn towards high values of the stimulus. The first
mathematical model of this bio-inspired non-linear control
mechanism for non-holonomic vehicles was presented in [18]
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Fig. 1. Braitenberg vehicle 3a

assuming noiseless sensors. In this paper we introduce a
white noise signal following a Gaussian distribution in the
sensor readings (see figure 1) and develop the corresponding
model which requires the use of stochastic systems theory.

Like in the case of deterministic Braitenberg vehicles [2]
we will assume the vehicle is immersed in a deterministic
two dimensional stimulus modelled as a smooth function
of the point in the environment S(x). We assume that the
sensors present a noise term, ξt, with a variance depending
on the stimulus perceived ξt = σ(S(x))dWt, where Wt

is a Wiener process. Therefore the noise at every point in
time follows a zero mean Gaussian distribution. We assume
the variance of the noise depends smoothly on the stimulus
measured, i.e. σ(s) is a smooth function of s. Obviously,
because the vehicle has two sensors, left and right, there
are two such noise processes we will denote by ξlt and ξrt ,
but we assume both have identical statistical properties. The
connection function F (s) sets the speeds for each wheel
according to the corresponding sum of the stimulus measured
and the noise. Therefore the speed of the right and left wheels
are:

vr = F (S(xr) + ξrt )

vl = F (S(xl) + ξlt) (1)

where xl = [xl, yl], and xr = [xr, yr] are the positions of
the left and right sensors. Assuming F (s) is also smooth
enough we can approximate the wheel speeds as:

vr ≈ F (S(xr)) + F ′(S(xr))σ(S(xr))dW
r
t

vl ≈ F (S(xl)) + F ′(S(xl))σ(S(xl))dW
l
t (2)

where dW r
t and dW l

t are the stochastic processes driving the
noise for the right and left sensors.

We can now approximate F (S(·)), F ′(S(·)), and σ(S(·))
around the middle point between the two sensors (x) since
xr = x − δ

2 êp and xl = x + δ
2 êp, where δ is the distance

between sensors, and êp = [− sin θ, cos θ] is the unit vector
perpendicular to the vehicle motion direction (θ) as:

F(S(xr)) = F(S(x))− δ

2
F ′(S(x))∇S(x) · êp

F(S(xl)) = F(S(x)) +
δ

2
F ′(S(x))∇S(x) · êp (3)

where F represents any of the composite functions to
approximate F (S(·)), F ′(S(·)), and σ(S(·)). Substituting



equations (3) into (2), and using the conversion from wheel
velocities (vr and vl) to linear and angular speeds of the
robot (v and ω = θ̇) we get:

ω =− δ

d
∇F (x)T êp −

1

d
D1(x, θ)dW−t −

1

d
D2(x, θ)dW+

t

v =F (x) +
1

2
D1(x, θ)dW+

t +
1

2
D2(x, θ)dW−t (4)

where for simplicity we denote F (x) = F (S(x)), d is the
wheelbase of the vehicle, dW+

t = dW r
t +dW l

t and dW−t =
dW l

t −dW r
t are two stochastic processes combining the two

sensors noise, and the terms D1 and D2 are:

D1(x, θ) =
δ2

4
F ′′(x)σ(x) [∇S(x) · êp]2 + F ′(x)σ(x)

D2(x, θ) =
δ

2
∇S(x) · êp [F ′(x)σ′(x) + F ′′(x)σ(x)] (5)

where we further eliminated all the compound functions to
simplify notation, i.e. F (x) = F (S(x)), F ′(x) = F ′(S(x)),
and so on.

It is worth noting that the stochastic processes dW+
t and

dW−t are not independent random processes, but equations
(4) can be easily re-stated in terms of the independent Wiener
processes dW r

t and dW l
t . Moreover, it can be shown that

dW+
t and dW−t are the increments of two Wiener processes

with W+
t+s − W+

t and W−t+s − W−t following a Gaussian
distribution with variance 2s.

Substituting equations (4) into the unicycle motion model
we can express the behaviour of Braitenberg vehicle 3a using
Itô calculus as a stochastic differential equation (SDE):

dxt =F (xt) cos θtdt+
1

2
D−(xt, θt) cos θtdW

r
t

+
1

2
D+(xt, θt) cos θtdW

l
t

dyt =F (xt) sin θtdt+
1

2
D−(xt, θt) sin θtdW

r
t

+
1

2
D+(xt, θt) sin θtdW

l
t

dθt =− δ

d
∇F (xt) · êp(θt)dt−

1

d
D+(xt, θt)dW

l
t

+
1

d
D−(xt, θt)dW

r
t (6)

where D−(xt, θt) = D1(xt, θt) − D2(xt, θt) and
D+(xt, θt) = D1(xt, θt) + D2(xt, θt). This is a non-linear
drift-diffusion equation with a drift term equivalent to the
deterministic model of Braitenberg vehicle 3a [18], and dif-
fusion terms depending on the sensors noise, the connecting
function (i.e. the controller), and the gradient of the stimulus,
see equations (5). In general, the diffusion term, for arbitrary
F (s), will be non-linear even if the sensor noise is additive
σ(S(x)) = σ0. Only when the connection function F (s)
is linear and the noise is additive, the SDE describing the
movement of the vehicle will have an additive noise term,
but, as we will see later, it appears only in the equation
describing the angular variable. Although an analytic solution
for these equations cannot be found in general, as we will
show later, this stochastic differential equation can be used

to simulate and analyse the movement of the vehicle under
sensor noise conditions.

Interestingly, if the vehicle is immersed in a constant
stimulus, i.e. ∇S(x) = 0 the heading has no drift term,
and the vehicle direction suffers a dispersion with variance
growing over time proportional to the sensor noise, i.e.
σ2
θ ∝ F ′(s0)

2

d2 σ(s0)2t, where σ(s) and the derivative of F (s)
are both evaluated at the stimulus value S(x) = s0.

III. EVOLUTION OF THE FIRST TWO MOMENTS

Let us assume a general stochastic differential equation,
like (6) in the Itô form:

dXt =F(Xt)dt+ G(Xt)dWt (7)

where Xt is an n dimensional state, F(Xt) and G(Xt) are
the nonlinear drift and diffusion terms respectively, and dWt

is an m dimensional vector of increments of independent
Wiener processes. It is worth reminding that the stochastic
process is a set of infinite (in this case uncountable) random
variables X indexed by time Xt. If we denote the expected
value of X at time t as E[Xt] = µt, taking the expecta-
tion on both sides of (7) we obtain a differential equation
describing the evolution of the average:

µ̇t = E[F(Xt)] (8)

where the expectation operator E[] is applied to the non-
linear function F (·), and the second term of (7) can be
neglected as

∫ t
t0
E[G(Xt)dWt] = 0 for the Itô integral.

To compute the expectation of a scalar non-linear function
we can use the first order approximate around the average
F (µ + (X − µ)) ≈ F (µ) + DF (µ)(X − µ) + 1

2 (X −
µ)TD2F (µ)(X−µ), where DF (µ) and D2F (µ) represent,
respectively, the first (gradient) and second (Hessian) deriva-
tives of the function F (X) evaluated at the average. Because
E[DF (µ)(X − µ)] = 0, and for a random variable X
with covariance Σ and a symmetric matrix A, E[XTAX] =
tr(AΣ) + E[X]TAE[X], with tr() denoting the trace of a
matrix, the equation for the evolution of the average can be
approximated as:

µ̇t = F(µt) + Tr(D2F(µt)Σt) (9)

where the term Tr(D2F(µ)Σt) is a vector containing the
traces of the product of the Hessians of the components of
F(X) = (Fi(X)) evaluated at the mean µt, multiplied by
the covariance matrix of Xt, Σt. This equation shows that
the average of a set of trajectories of this Braitenberg vehicle
is not equivalent to the behaviour of the noiseless vehicle,
since the second term in (9) is not zero in general.

Although it is more involved, using Itô’s lemma, we
can compute the time evolution of the covariance matrix
(second moment) for the SDE (7) defining a new variable
Yt = (Xt − µt)(Xt − µt)

T for which the expectation
is the covariance of X, i.e. E[Yt] = Σt. The dynamical
equation for the covariance depends on the Jacobian of the
drift term and on the diffusion term (its first and second order
derivatives). However, as we will see in the next section,



under some assumptions the dynamical equation for the
covariance matrix can be greatly simplified. Alternatively,
the evolution of the moments for (7) can be obtained through
the Fokker-Planck equation [5].

A. Simplifying assumptions on the noise

As we already stated, the stochastic differential equation
modelling the movement of Braitenberg vehicle 3a with
noisy sensors, equation (6), becomes linear for the angular
variable in the case of additive noise (σ(s) = σ0), and linear
connecting function (F (s) = a0 − a1s) simultaneously. It is
worth reminding (cf. section II) that the function connecting
the sensors and the motors has to be decreasing for this ve-
hicle, therefore the slope has to be negative (a1 > 0). Under
these assumptions the drift terms become D1(x, θ) = a1σ0
and D2(x, θ) = 0, and the stochastic differential equations
describing the movement of the Braitenberg vehicle become:

dxt = F (xt) cos θtdt+
a1σ0

2
cos θt(dW

r
t + dW l

t )

dyt = F (xt) sin θtdt+
a1σ0

2
sin θt(dW

r
t + dW l

t )

dθt = − δ
d
∇F (xt) · êp(θt)dt−

a1σ0
d

(dW l
t − dW r

t ) (10)

As it can be seen, the diffusion terms in the first two
equations include the sin and cos of the angular variable,
therefore the noise is non additive for the x and y equations.
For the heading direction, however, the diffusion factor
scaling the noise processes on the left and right sensors is
constant. Comparing equation (10) and (7), and defining the
state Xt = (xt, θt) we can identify the drift and diffusion
terms as:

F(Xt) =




F (xt) cos θt
F (xt) sin θt

− δ
d∇F (xt) · êp(θt)


 (11)

and

G(Xt) =




a1σ0

2 cos θt
a1σ0

2 cos θt
a1σ0

2 sin θt
a1σ0

2 sin θt
a1σ0

d −a1σ0

d


 (12)

and dWt = [dW r
t , dW

l
t ]
T .

Using equation (9) we can obtain the evolution of the
average pose of the vehicle as:

µ̇x = F (µxy) cosµθ + tr(HxΣ)

µ̇y = F (µxy) sinµθ + tr(HyΣ)

µ̇θ = − δ
d
∇F (µxy) · êp(µθ) + tr(HθΣ) (13)

where µxy = [µx, µy]T , Σ is the covariance matrix, and Hx,
Hy and Hθ are the Hessian matrices of the corresponding
components of the drift vector flow (11).

Using the technique of defining a new stochastic process
Yt = (Xt − µt)(Xt − µt)

T , the evolution equation of the
covariance under the stated assumptions can be shown to be:

Σ̇ = DF (µxy, µθ)Σ + ΣDF (µxy, µθ)
T +G(X)G(X)T

(14)

where DF (µxy, µθ) is the Jacobian of the drift flow evalu-
ated at the mean pose of the vehicle.

While the stochastic differential equations (6) can be
used to simulate individual trajectories of vehicle 3a under
sensor noise conditions, equations (13) represents the average
behaviour of the simulation under multiple noise realisations,
while equation (14) corresponds to the covariance matrix of
the trajectories. Interestingly, while the average trajectory
in the stochastic case includes the term on the covariance
matrix of the pose, for the stochastic differential equation
the drift term simply corresponds to the noiseless model of
Braitenberg vehicle 3a.

B. Vehicle in a stimulus with a constant gradient

Although having additive noise in the sensors simplifies
the equations for the average and variance of the dynamical
system (6), no analytical conclusions can be easily drawn
from the model behaviour. However, if we further assume the
vehicle is immersed in a stimulus with a constant gradient
∇S(x) = ∇0, and if we focus on the particular case where
its heading is aligned with the direction of the gradient, i.e.
∇0 · êp = 0, the dynamical equations for the average and
standard deviation can be further simplified and clarifying
analytical results can be obtained. For simplicity we will only
consider what happens to the angular variable, its mean and
variance under these assumptions, as the evolution equations
of x and y do not allow to analytically interpret the vehicle’s
behaviour. The last equation of (13) then becomes:

µ̇θ =− δ

d

[
1− σθθ

2

]
a1∇0 · êp (15)

which vanishes when the vehicle is initially heading the
direction of the source (∇S(x) = ∇0). In the deterministic
case, if the vehicle is aligned with the stimulus gradient, its
heading direction does not change (θ̇ = 0). The average
heading of the stochastic equations also fulfils µ̇θ = 0
and therefore the average direction of the vehicle does
not change. Because of the additional covariance term, the
expected x and y coordinates do not necessarily behave as
the deterministic case. Applying the simplifying conditions
to equation (14), and taking only the variance of the angular
velocity, the dispersion around the direction of the gradient
σθθ is found to follow the equation:

σ̇θθ =2
a21σ

2
0

d2
+ 2

δ

d
a1∇0 · êσθθ (16)

where ê = [cos θ, sin θ]T . This is a linear differential equa-
tion on the variance σθθ, and it is worth noting that the
equation generalises our previous results on the dispersion of
the heading direction in the presence of a constant stimulus
(∇S(x) = 0, see σ2

θ in section II). The stability of this
equation depends on the dot product of the gradient and
the unit direction of the vehicle ê evaluated at the expected
heading µθ. If the vehicle is heading the direction in which
the stimulus grows, i.e. ∇0 · ê = |∇0|, where |·| represents
the norm of the vector, the differential equation (16) is
unstable and the variance of the heading direction grows
exponentially. This result is easy to understand intuitively,



since vehicle 3a performs a gradient descent on the stimulus
S(x) with non-holonomic constraints. When the vehicle
approximately heads the direction in which the stimulus
grows (but not the exact gradient direction) it turns to face
the opposite direction. That occurs for the deterministic case,
and the corresponding stochastic behaviour is an exponential
growth in the dispersion, although on average the vehicle
does not turn, which corresponds to the alignment with the
gradient in the deterministic case. However, when the initial
direction of the vehicle is opposite to the gradient, the dot
product is negative, ∇0 · ê = −|∇0|, and the differential
equation above is stable. The equation can be solved analyt-
ically leading to the typical time exponential decay term in
the transient with time constant τ−1 = 2 δda1|∇0|. Because
the equation is stable, the equilibrium point in this case can
be obtained by simply making σ̇θθ = 0 and solving for the
variance σθθ, which turns to be:

σθθ =
a1σ

2
0

dδ|∇0|
(17)

This is an interesting result as it provides a boundary for the
angular dispersion of the non-holonomic vehicle direction
when performing a gradient descent, and can be intuitively
interpreted to some extent. Obviously, the higher the noise
variance in the sensors σ2

0 , the higher the angular dispersion
of the vehicle will be. On the other hand, if the gradient is
very steep, i.e. |∇0| is large, the angular variance decreases.
Interestingly σθθ in the equilibrium increases linearly with
the slope of the connection function a1, which affects the
stability in the deterministic case, i.e. how fast the vehicle
turns towards the decreasing stimulus direction. This implies
that there is a trade-off between the capacity of the vehicle to
reach the target and the heading dispersion. If the connection
function F (s) has large negative slope it will help the vehicle
to reach the target in the absence of noise. However, the slope
will contribute to a more erratic heading direction under
sensor noise condition.

IV. SIMULATIONS

This section will present a set of simulations under dif-
ferent conditions for the stochastic differential equations
modelling Braitenberg vehicle 3a. While the stochastic dif-
ferential equations are integrated in all the simulations using
the Euler-Maruyama method with step h = 0.01 time units,
their deterministic counterparts are solved using the standard
Runge-Kutta methods of order 4-5 and adaptive step size.

A. Additive vs. multiplicative sensor noise

As stated above, even in the case of additive sensor noise
the final approximated equations show multiplicative noise
in x and y, but simulations can provide an idea of the
vehicle behaviour. Figures 2(a) and 2(b) show the results
of simulating the equations (6) under two different noise
conditions for 500 different realisations of the process noise.
The average trajectory is shown in the figure as a dashed
line, jointly with the solution of the noiseless system, i.e.
the corresponding deterministic equation. All the simulations

(a) Additive noise

(b) Multiplicative noise

Fig. 2. Stochastic model of Braitenberg vehicle 3a with additive and non-
additive noise.

have the same stimulus function and initial pose of the
robot. As the model predicts, although the drift term is the
same as the deterministic model, the equation for the time
evolution of the average trajectory, equation (13), differs
from the deterministic case. The figures clearly show that
the average trajectory of the vehicles with noise is longer
than the noiseless vehicles. This is captured by the additional
terms on the equations of the average trajectories (13), which
depend on the Hessian of the stimulus and the covariance
matrix. Because the Hessian is related to the curvature of
the isolines of S(x), whether the average trajectory is longer
or shorter than the deterministic case might depend on the
local curvature of the stimulus close to the deterministic
trajectory. A comparison of figures 2(a) and 2(b) also shows
that the deviation from the average (the trajectory covariance)
is larger in the case of non-additive noise. This occurs
despite the fact that the noise variance in the non-additive
simulations goes to zero as the vehicle approaches the target
(i.e. the signal to noise ratio goes to infinity), and the variance
of the non-additive case was smaller than the additive one.



(a) Average trajectory

(b) Covariance trajectory

Fig. 3. Average and covariance matrix from SDE and moments equation.

B. Evolution of the first two moments

We also performed a comparison between the results
from simulating the stochastic differential equations (6) for
the additive noise case, and the evolution equations of the
average trajectory and its corresponding covariance matrix,
equations (13) and (14). It is worth noting that these last two
equations are vector and matrix differential equations which
have to be integrated simultaneously, as the computation
of the mean requires the covariance matrix. Figures 3(a)
and 3(b) show the time evolution of the mean trajectories
and the entries of the covariance matrix. The solid line
represents the evolution obtained from the deterministic evo-
lution equations of the moments, while the dashed line has
been computed from the simulation of 15000 trajectories for
different realisations of the sensor noise. Figure 3(a) shows a
disparity between the average trajectories obtained from the
two sets of equations, which can be seen more clearly in the
evolution of the covariance matrix (figure 3(b)). This results
from considering only the first two moments, jointly with
the approximation of the expectations as a Taylor series. As
can be seen in figure 3(b) the elements of the covariance

matrix obtained through equation (14) – solid line – start
close to the covariance of the simulated trajectories (dashed
line). However, as time unfolds they start to diverge, as
the approximation errors accumulate through the integration.
Because the dynamical system is non linear and the final
noise is non additive, although the original noise is Gaussian,
the pose at each point in time is not, as Gaussianity test run
on the sampled trajectories confirmed.

C. Behaviour in a constant gradient stimulus

To test the validity of the heading deviation variance,
equation (17), in a constant gradient stimulus we performed
simulations and compared the results of additive and non-
additive noise. Figures 4(a) and 4(b) show simulations of
500 different realisations of the noise for a vehicle 3a
immersed in a stimulus with a constant gradient with its
initial orientation aligned in the opposite direction to the
gradient. According to the results obtained in section III-B
the variance of the heading direction goes to a finite value as
time goes to infinity in the case of additive noise. Figure 4(a)
presents the corresponding simulations where the dashed
lines provide a 3σ boundary around the average angular
trajectory according to the analytical result. The red dashed
line represents the actual 3σ boundary for the trajectories
obtained through simulation of equation (6). As it can be seen
there is a growing discrepancy between the two plots due to
a few trajectories with angular values around ±6 rad, which
is actually the same orientation as 0 rad, but the angle has not
been normalised to allow modelling the angle as Gaussian
distribution (although a von Misses distribution would be
more appropriate). Therefore the vehicles following these
trajectories found an equivalent attractor to the expected
average, after making a whole turn due to the noise. It is
expected that the experimental variance will increase over
time as other simulated trajectories might find the other
equivalent attractors ±2kπ, with k = 2, 3, · · ·. In the case at
hand, the angular variance has a short time constant as the
plot shows, since the variance reaches the steady state regime
in less than one simulated time unit. Figure 4(b) shows a
similar simulation set up with a non additive noise, where the
analytic approximation does not work. These conditions are
not captured by our assumptions, therefore further analysis
would be required to understand the large changes in the
direction of the vehicle, but this is out of the scope of the
current work.

V. CONCLUSIONS AND FUTURE WORK

This paper presents the first drift-diffusion model of
Braitenberg vehicle 3a. While on the one hand existing
theoretical models assumed noise free sensors, on the other
hand, many experimental research results have shown this
bio-inspired source seeking mechanism works with noisy
sensors. While it is well known that adding a random vector
field to the gradient of a potential field contributes to avoid
local minima, in a recent work [17] a drift diffusion approach
with a similar spirit is presented, adding random noise to the
navigation function itself. The resulting model for the robot



(a) Additive noise

(b) Multiplicative noise

Fig. 4. Heading directions of vehicle 3b in a stimulus with constant
gradient.

motion is a drift-diffusion equation which allows obtaining
some theoretical results on the probability of avoiding local
minima. The noise signal, however, also affects the ability
of the robot to reach the target. In this work, we explicitly
tackled this issue by proposing the first stochastic formula-
tion of target reaching with Braitenberg vehicles, and showed
that the analytical solution is a drift-diffusion process. Our
analytic results show that the expression of the variance on
the angular variable provides an excellent clue on whether
the robot is deviating too much from the target over time.
Finding a bound of the position of the robot around the
goal is also useful to analytically decide when the target has
been reached. In the case of this non-holonomic controller
complete analytical resolution of the system is not possible
unless further assumptions are made whose consequences we
illustrate through numerical simulations.

Besides providing a mechanism to perform realistic sim-
ulations of Braitenberg vehicle 3a, the proposed model
can serve as a basis to implement both model-based (e.g.
metric or topological maps) and model-free (sensor based
reactive) implementations of bio-inspired navigation strate-
gies in robotics. Our future plans include to investigate the
interplay between these two strategies [19] to implement a
biologically inspired robot endowed with navigation learning

capabilities. This entails strategically combining potential
functions representing goals in the environment and stimulus
functions based on direct perception from the robot. To do so,
however, other navigation primitives might need to be used,
specifically avoidance strategies like Braitenberg vehicle 2a.
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