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Abstract 

 

A central idea in distance-based machine learning algorithms such k-nearest neighbors and manifold 

learning is to choose a set of references, or a neighborhood, based on a distance functions to represent 

the local structure around a query point and use the local structures as the basis to construct models. 

Local Partial Least Square (local PLS), which is the result of applying this neighborhood based idea in 

Partial Least Square (PLS), has been shown to perform very well on the regression of small-sample 

sized and multicollinearity data, but seldom used in high-dimensionality classification. Furthermore the 

difference between PLS and local PLS with respect to their optimal intrinsic dimensions is unclear. In 

this paper we combine local PLS with non-Euclidean distance in order to find out which measures are 

better suited for high dimensionality classification. Experimental results obtained on 8 UCI and 

spectroscopy datasets show that the Euclidean distance is not a good distance function for use in local 

PLS classification, especially in high dimensionality cases; instead Manhattan distance and fractional 

distance are preferred. Experimental results further show that the optimal intrinsic dimension of local 

PLS is smaller than that of the standard PLS.  

 

Keywords: High Dimensionality Classification, Distance function, Fractional Distance, Local Partial 

Least Squares. 

 

1. Introduction 

 

High-dimensional data are quite common in the real world. Such data are usually contaminated by 

outliers, irrelevant or redundant dimensions, which could invalidate data mining algorithms, yielding 

biased and inaccurate models. To circumvent this issue, noise reduction [1] and dimensionality 

reduction [2, 3] are usually applied in order to obtain suitable and effective representation of data. 

Partial Least Square (PLS) is initially a latent modeling approach for linear regression [4] and later on 

extended to PLS discriminant analysis (PLS-DA) for classification [5], which is able to analysis the 

small sample size and multicollinearity data such as chemical spectroscopy data. These data are usually 

high-dimensional and highly correlated in neighboring independent variables. Such type of data will 

invalidate Fisher discriminant analysis (FDA) and local FDA as scatter matrices become singular [6, 7].  

Basically, PLS handles the high-dimensional problem by means of latent projection before modelling 

in order to avoid the effects of the curse of dimensionality [8]. 

 



In recent studies, PLS has been effectively extended to local PLS algorithm to handle data with 

complex global structures and data with characteristics such as nonlinearity and multimodal 

distributions using local learning approach [9, 10]. This approach uses neighboring points to predict a 

query point by modelling in local space [11], thus any global influence can be lessened. For example, 

locally weighted PLS (LW-PLS), which utilizes the similarity based on weighted Euclidean distance, is 

proposed to estimate the content of active pharmaceutical ingredients and drastically improved by 38.6% 

in root mean square error of prediction (RMSEP) compared with PLS [9]. Similarly, local regression 

(LR) approach is coupled with PLS to predict the soil organic carbon content [12] and analyze the 

voice conversion [13]. Some modified algorithms aim to further improve the performance of local PLS 

methods by adapting the distance functions used. A covariance-based distance scheme is applied in [14] 

which explicitly takes account of the relationship among variables and reduces the computational load. 

Another study utilizes cosine distance after locality preserving projection (LPP) [15] to measure the 

sample similarities and establishes a high-performance calibration model [16]. In addition, a 

non-Euclidean function defined in [17] has been used for the detection and measurement of residual 

drug substances; the results of using such a distance exceeded those of a Euclidean norm-based by over 

10% [18]. As a result, the performances of distance functions selected in local PLS can be varying and 

Euclidean distance may not always be the best option.  

 

In fact, it has been proven that Euclidean distance can barely make sufficient distinctions between 

different data points in high-dimensional case [19]. Given a query point, the ratio of its Euclidean 

distances with its nearest and farthest neighbors approaches 1 under broad conditions as dimensionality 

increases [20]. In such case, Manhattan or fractional distance are preferred and can provide better 

discriminations [19, 20]. As PLS-DA is commonly used to analyze high-dimensional data in literatures, 

it is therefore reasonable to expect better classification performance if fractional distance is embedded 

in local PLS-DA.  

 

In this paper, we combine local PLS-DA with non-Euclidean distance, specifically fractional distance 

to classify data with varying dimensionalities. Furthermore, as dimensionality reduction is embedded in 

PLS, the optimal intrinsic dimension is related to latent variables. If a complex global structure is 

simplified in local PLS, a reduction in the number of latent variables can be expected. In this paper, we 

also study the optimal intrinsic dimensions in both local and global (ordinary) PLS. The results show 

that non-Euclidean distance, such as fractional and cosine are preferable than Euclidean distance in 

local PLS-DA. Meanwhile, the number of latent variables (LVs) in local PLS-DA is smaller than that in 

the global PLS. 

 

2. Local PLS for classification 

 

2.1 PLS regression 

 

PLS problem is to establish a relationship between independent variables ndX  and dependent 

variables 
nqY  in latent space towards the regression model: 

 min || ||nq ndY X B  (1) 



where B  is a d-by-q regression coefficient matrix. X  and Y  are decomposed as follows: 

 ' X TP E  

' Y UQ F  (2) 

(3) 

Here, T andU are low-dimensional latent representations of X and Y with size of n r . P and Q are 

termed loading matrices with size of p r and q r . E and F are residual matrices. Suppose there is a 

linear relationship such that: 

 U TD H   (4) 

where D is an r-by-r diagonal matrix, then  

 
*'Y TC F   (5) 

where 

 
' 'C DQ

 (6) 

and 

 
* 'F HQ F 

 (7) 

Based on (2) and (5),  
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The PLS regression coefficient  

 
 

1

'T

PLSB P P P C



 (9) 

 

A number of algorithms can be used for solving the PLS regression problem. Among such algorithms, 

the Simple Partial Least Squares (SIMPLS) is a non-iterative algorithm that provides a fast and 

efficient computation [21]. In SIMPLS, X and Y are standardized as 0X and 0Y , respectively. Then 

Singular Value Decomposition (SVD) are applied on
0 0

TX Y  and its deflations to maximize covariance 

for multivariateY . In this paper, the PLS based experiments are operated by SIMPLS algorithm. 

 

Algorithm: SIMPLS 

Compute cross-product: 
0 0 TS X Y  

for i = 1 to LVs 

if i = 1 compute SVD of S  

if i > 1 compute SVD of 1( ) T TS P P P P S  

get weights: s = first left singular vector 

compute scores 0t X s  

compute loadings 
0 / ( ) T Tp X t t t  

store s, t, and p into R, T, and P respectively 

end 



Compute regression coefficients  
1

0 


 T T

PLSB R T T T Y  

 

2.2 PLS-DA  

 

Given that PLS is closely related to canonical correlation analysis (CCA) and CCA is related to linear 

discriminant analysis (LDA) in turn, reference [5] transforms PLS regression to classification by using 

dummy matrix to represent category information. The category information is initiated as a null matrix 

Y  in which rows and columns are equal to the number of instances n and categories c, respectively. If 

the values of a category ci integrally increase from one, the corresponding element in ci-th column of 

Y  is set to 1. Suppose 1k is a 1k  vector of all ones and, 0k is a 1k  vector of all zeros. After 

arranging the sequence of category information, Y can be reordered as: 
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or 
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where
1


c

j

j

n n . Then the category 
predictY  (1-by-c) of a query vector 

queryX  (1-by-d) is predicted as: 

 predict query PLSY X B  
 (12) 

where  is the intercept. For binary classification, a threshold of 0.5 is commonly applied for category 

decision. For multiclass problem, the category decision follows the maximum assignment criterion [22, 

23] where the column of maximum value in vector 
predicty  returned is the predicted category. 

 

2.3 Local PLS-DA  

 

Local PLS-DA employs adjacent references of a query instead of global data during PLS modelling 

thus can be viewed as a Just-in-Time (JIT) approach. Typical distance functions such as Euclidean, 

Manhattan, cosine and correlation distance have been widely used to select nearest references. Despite 

the fact that distance function plays a key role in the neighborhood selection, the effect of different 

distance functions towards datasets as well as learning tasks are varies. For example, Euclidean 

distance performs less well than cosine and correlation distance on the alignment of mass spectrometry 

data [24, 25]. Also, Manhattan or fractional distance can provide better discriminations when 

dimensionality increases [19, 20]. Such findings motivate the embedment of different distance 

functions in local PLS-DA. Given data vectors 1 2( , , , )i i i idX x x x  and 
1 2( , , , )j j j jdX x x x  in 



data matrix ndX , following distance functions are applied in our work: 

 

 Euclidean distance:  

 
2 ( )( ) 'ij i j i jD X X X X  

 (13) 

 Manhattan distance:  
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 Cosine distance:  
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 Correlation distance:  
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 Fractional distance:  

 1/
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In this paper, p value in fractional distance is set to 1/2, 1/3 and 1/5. For a query
queryX , Nearest 

Neighbors (NNs) is firstly selected as local references localX  with corresponding categories of dummy 

matrix localY . If all of the local references belong to a same category, the query is directly attributed to 

that category. Otherwise given a specified LVs number, the PLS regression coefficient and intercept 

can be obtained by SIMPLS algorithm. With (12), the category of
queryX will be predicted. The optimal 

parameters of LVs and NNs are usually identified by cross validation. For LVs, it will not over the 

dimensionality of the data. Usually the performance is not affected significantly if the number of LVs is 

greater than 5 [26]. Reference [27] set the number of LVs considers the eigen-decomposition of the 

between-class scatter matrix in PLS-DA. The range of NNs can be empirically set which takes into 

account the specificities of data. For example, fewer NNs may cause under fitting while too many NNs 

will resemble local PLS-DA to global PLS-DA. 

 

3. Experiments 

 

To gauge the performance of local PLS-DA coupled with various distance functions, 10 datasets of 

multi-class and high-dimensionality have been selected. The analysis of the obtained results and 

classification accuracy take account of parameter setting; that is the number of NNs used to build local 

neighborhoods and number of LVs in PLS models.  

 

3.1 Datasets 

 



 8 UCI repository datasets: from the UCI repository [28], 8 datasets have been selected which 

cover data types of high-dimensionality, multi-class and imbalance. The basic information 

about these datasets is shown in Table 1.  

 

   Table 1 Information on 8 datasets from UCI repository and the ranges of parameters in the first experiment 

Datasets Instances Attributes Categories LVs NNs 

Breast Tissue 106 10 2 1-9 10-50 

Ecoli 336 8 8 1-7 20-60 

Glass 214 9 6 1-9 20-60 

Ionosphere  351 34 2 1-7 30-80 

Parkinson’s 197 23 2 1-10 30-70 

PLRX 182 13 2 1-9 30-70 

Sonar 208 60 2 1-9 10-40 

Wine 178 12 3 1-12 20-60 

 

 Near-Infra Red (NIR) cookie dataset: This dataset was initially generated as part of an 

experiment to test the feasibility of NIR spectroscopy to measure the composition of 4 

responses: namely fat, sucrose, dry flour and water [29, 30]. It comprises 700 variables 

captured at wavelengths ranging from 1100 to 2498 nm with a distance interval of 2 nm. 

There are 40 samples in the training set and 32 samples in the test set. We simplify the 

regression task to classification by setting cut-off values which divide selected responses of fat 

and water into binary groups; cut-off values of 18.31% for the mean fat response and 14.60% 

for the mean water response are used to discretize fat and water responses into binary 

categories as shown in Fig.1.  

 

 ARCENE dataset: This dataset was initially used in the Neural Information Processing 

Systems (NIPS) 2003 feature selection challenge [31]. It is obtained by mass-spectrometer and 

aims to identify cancer from normal patterns. There are 10000 randomly sorted features in the 

ARCENE dataset among which 3000 features with no predictions are added as ‘distractors’. 

As the labels of test samples are not available, we have selected the validation set as test data 

in Task 1 and then have inverted this procedure in Task 2. The ratio of training to test samples 

in both procedures is 1:1 as shown in Table 2.  

 

Table 2 Sample distribution of ARCENE dataset 

ARCENE Positive Negative Total 

Training set 44 56 100 

Validation set 44 56 100 

Test set (N/A) 310 390 700 

All 398 502 900 

 



 
Fig.1. Histogram of fat and water response (%) in NIR-Cookie dataset. Vertical lines in red discretize the dataset into binary 

categories with cut-off values of 18.31% and 14.60% in fat and water response, respectively. 

 

3.2 Experimental settings 

 

In the experiments on 8 UCI datasets, a 10 fold cross-validation approach was applied to obtain an 

average of validation accuracy of PLS based classifications on 8 UCI datasets. We set the range of 

parameters LVs and NNs depending on the specified dataset. Basically for classification purposes, both 

parameters are determined by cross-validation which returns a LVs-by-NNs validation accuracy matrix. 

Previous work suggested that the optimal number of LVs in PLS-DA is usually less than twenty [32]. 

Another parameter NNs is set by using a distance function which adjusts the local PLS-DA model 

towards a given query point. Intuitively, too many NNs will reduce the local property while too few 

NNs barely provide enough distinctions. Also, the NNs can be empirically fixed to several values and 

ranges in order to test the performance of local PLS [10, 12]. In our experiment, two ranges of 

parameters (LVs and NNs) are selected and listed in Table 1.    

 

The second and third experiment provides a case study of using local PLS-DA to classify small sample 

sized chemical spectroscopy data. As training and testing sets have been assigned, a 10-fold cross 

validation step is firstly operated within training set to identify the optimal LVs and NNs. Then the 

returned parameters are used for modelling and classification. The range of LVs in local PLS-DA is 

from 1 to 8 for both experiments, while the range of NNs is 10:35 and 10:50 with a step of 1, 

respectively in NIR cookie and ARCENR datasets. The mean value of NNs within a range is estimated 

by the number of points in potential groups after latent projections. For example in ARCENE dataset, 

100 training points can be divided into three groups in 2 or 3 dimensional latent spaces (Fig.2). The 

searching range of NNs is set to avoid too many and too few modelling references. Additionally, these 

experiments aim to show that, given reasonable ranges of both parameters in local PLS-DA, the 

performance has already exceeded global PLS-DA and the outcomes vary when coupled with different 

distance functions. 

 



 

Fig.2. 2D and 3D scatter plots of PLS latent variables in representing ARCENE training samples in Task-1 

 

4. Results and discussion 

 

The overall results of 8 UCI datasets using PLS-DA and local PLS-DA are given in Table 3. In most of 

the datasets, local PLS-DA drastically exceeds global PLS-DA regardless of the distance function used. 

Usually, when LVs in local PLS-DA is smaller than the optimal number of LVs in global PLS-DA, the 

performance has already exceeded the global ones. Given a query point in Fig.6 (197th sample in 

Sonar dataset), global and local PLS-DA project neighboring and overall references, respectively into 

the space spanned by two latent variables. Global PLS-DA achieves an accuracy of 82.19% using 7 

LVs, while local PLS-DA can be 7% higher using 3 LVs only. The boundary between two categories in 

global PLS-DA is less distinctive compared to local PLS-DA. 

 

Within local PLS-DA, fractional and cosine distance dominate the highest accuracies achieved. 

Euclidean distance always performs less well than other distance functions. For example in Fig.4 and 5, 

a high-level of accuracies is obtained by the proposed fractional distance in Breast Tissue and ECOLI 

datasets given the searching range of LVs and NNs. Similarly, it can be seen in Fig.6 that cosine 

distance globally outperforms Euclidean distance in ionosphere dataset. Further, the cosine and 

correlation distance have attained comparable validation accuracies and parameters value, for instance 

in the Parkinson’s (Fig.4) and PLRX (Fig.5) datasets.  

 

Table 3 Average accuracies of 10-fold cross validation obtained by Global and local PLS-DA with optimal parameters. Local 

PLS-DA are based on Euclidean, Manhattan, Cosine, Correlation and Fractional (1/2, 1/3 and 1/5) distance. 

PLS-DA 
  Breast Tissue   ECOLI   Glass 

  Accuracy LVs NNs   Accuracy LVs NNs   Accuracy LVs NNs 

Global  0.8300 3 N/A  0.8542 5 N/A  0.6203 8 N/A 

Local 

Euclidean  0.8873 7 16  0.8782 2 41  0.7290 5 22 

Manhattan  0.8955 4 13  0.8782 1 34  0.7478 5 22 

Cosine  0.8873 1 11  0.8722 1 33  0.7483 8 27 

Correlation  0.8782 1 11  0.8751 3 53  0.7385 8 27 

1/2  0.9145 6 15  0.8812 5 56  0.7245 4 23 

1/3  0.8955 3 17  0.8842 5 57  0.7240 4 42 

1/5  0.8964 3 15  0.8902 6 43  0.7338 4 27 

PLS-DA   Ionosphere    Parkinson’s   PLRX 



  Accuracy LVs NNs   Accuracy LVs NNs   Accuracy LVs NNs 

Global  0.8718 6 N/A  0.8661 7 N/A  0.7143 1 N/A 

Local 

Euclidean  0.9487 2 79  0.9071 8 37  0.7143 1 63 

Manhattan  0.9460 5 77  0.9221 7 47  0.7091 1 46 

Cosine  0.9601 3 78  0.9076 10 54  0.7254 1 45 

Correlation  0.9515 3 79  0.9076 10 54  0.7254 1 47 

1/2  0.9315 1 32  0.9174 8 40  0.7088 1 57 

1/3  0.9346 2 54  0.9224 9 44  0.7085 2 54 

1/5  0.9317 1 46  0.9171 8 30  0.7143 2 59 

PLS-DA 
  Sonar   Wine         

  Accuracy LVs NNs   Accuracy LVs NNs     

Global  0.8219 7 N/A  0.9775 8 N/A     

Local 

Euclidean  0.8938 3 22  0.9889 11 59     

Manhattan  0.8940 7 11  0.9944 10 59     

Cosine  0.8798 3 34  0.9944 12 44     

Correlation  0.8938 3 22  0.9886 11 59     

1/2  0.8938 8 18  0.9778 9 23     

1/3  0.8990 3 13  0.9778 11 27     

1/5   0.9038 3 10   0.9889 12 59     

 

 
Fig.3. Latent projections of training data on the classification of 197th sample in Sonar dataset: global (A) and local Euclidean (B) 

PLS-DA. The LVs in (A) and (B) is 7 and 3, respectively. The NNs in (B) is 22. 

  



 

Fig.4. Average accuracies of local PLS-DA with LVs and NNs represented in color map: Euclidean (A) and fractional 1/2 (B) 

distance in Breast Tissue dataset. 

 

 

Fig.5. Average accuracies of local PLS-DA with LVs and NNs represented in color map: Euclidean (A) and fractional 1/5 (B) 

distance in ECOLI dataset. 

 

 
Fig.6. Average accuracies of local PLS-DA with LVs and NNs represented in color map: Euclidean (A) and cosine (B) distance 

in ionosphere dataset. 

 



 

Fig.7. Average accuracies of local PLS-DA with LVs and NNs represented in color map: cosine (A) and correlation (B) distance 

in Parkinson’s dataset. 

 

 

Fig.8. Average accuracies of local PLS-DA with LVs and NNs represented in color map: cosine (A) and correlation (B) distance 

in PLRX dataset. 

 

The second experiment deals with the classification of NIR-Cookie dataset. The average results of 

10-fold cross validation within training set are presented as a 3D plot in Fig.9 where a peak area 

indicates high classification accuracy. For instance, when the number of NNs is around 30 and the 

number of LVs is 5, local PLS-DA based on Euclidean distance reaches near 98% accuracy for the 

validation of fat response as depicted in Fig.9-A. The same observation and result are valid for the case 

where the Manhattan distance is used as shown in Fig.9-B. The validation and classification results of 

both parameters in local PLS-DA are given in the boxplot of Fig.10. There are 208 pairs of accuracy 

(LVs×NNs) in each distance function; the edges of the box are the 25th and 75th percentiles while the 

central mark is the median value. The whiskers extend to the most extreme data points not considered 

to be outliers; the outliers are plotted individually. The horizontal red dot line in Fig.10 shows the 

highest accuracy that global PLS-DA can achieve. It can be seen that local PLS-DA based on the first 

five distances in Fig.4 reach the highest accuracy of 98%; among these distances the Euclidean 

distance achieves slightly lower performance than the other four at the median central mark, 25th and 

75th percentiles edges. Further, the classification results using selected NNs and LVs parameters in 

validation phase are shown in Table 4. A typical case is the validation and classification of water 

response based on Euclidean distance. As shown in Fig.9-C, the highest validation accuracy attains a 



local peak value of 89.67% where NNs and LVs are 20 and 6 respectively. However, in classification 

phase 78.13% accuracy can be obtained by using such parameters. From the second experiment, when 

dimensionality becomes higher in NIR cookie dataset, the highest accuracy obtained by global 

PLS-DA is either comparable or above the 25th percentile of local PLS-DA; however it tends to not 

attain the highest accuracy, in particular in local PLS-DA based on fractional distance. 

 

Fig.9. Average accuracies (10-fold cross validation) of local PLS-DA with Latent Variables and Nearest Neighbors represented in 

3D plots: Euclidean (A) and Manhattan (B) distance in fat response & Euclidean (C) and fractional (p = 1/3) distance (D) in 

water response. 

 

 

Fig.10. Comparisons within local PLS-DA based on Euclidean (Euc), Manhattan (Man), fractional (p = 1/2, 1/3 and 1/5), Cosine 



(Cos) and Correlation (Corr) distance in NIR cookie dataset: validation (A) and classification (B) in fat response & validation (C) 

and classification (D) in water response. The red dot line (horizontal) represents the highest accuracy obtained by global 

PLS-DA. 

 

Table 4 Comparison of global PLS and local PLS-DA performance on NIR cookie dataset: classification accuracy (%) of Fat 

and Water categories. 

Classification (%) PLS-DA 

Local PLS-DA 

Euclidean Manhattan  
Fractional 

Cosine Correlation 
p=1/2 p=1/3 p=1/5 

Fat Accuracy  90.63 93.75 93.75 96.88 96.88 96.88 84.38 84.38 

Parameters 
LVs 4&5 5 5 5 5 5 4 4 

NNs N/A 30 30 30 30 30 35 35 

Water Accuracy  84.38 93.75 93.75 96.88 96.88 93.75 86.33 86.33 

Parameters 
LVs 14 4 4 4 4 4 3 3 

NNs N/A 32 32 32 32 32 30 30 

 

The third experiment has been carried out on the ARCENE dataset. The accuracies of global PLS-DA 

with LVs ranging from 1 to 20 are shown in Fig.11. In task-1, the accuracy starts from a minimum 

value of 0.60 and peaks at 0.86 when the number of LVs equals 3. With fluctuations before 12 LVs, it 

finally stabilizes at 0.82. In task-2, the PLS-DA accuracy begins at 0.63 and decreases to a minimum 

value of 0.55 in next LVs. Then it increases to a maximum of 0.90 when LVs equals to 8. After that, the 

accuracy appears to show the same trend as with task-1 but is 8% higher. There are 328 pairs of 

accuracy (LVs × NNs) presented in each of the distance function during validation. We calculate the 

mean accuracies of LVs with variation of NNs and select corresponding NNs returned from top 3 out of 

41 mean accuracies to define the parameters in classification phase. By using such parameters, the 

relatively optimal classification results are achieved as shown in Table 5. The Euclidean distance 

generally has lower performance than other distances in the validation of local PLS-DA; however it 

maintains a same level compared to other distances in classification phase. Most of the local PLS-DA 

results exceed global PLS-DA with fewer or equal LVs. In particular, in task-1 if LVs and NNs are 

equals to 1 and 27 for local PLS-DA based on Manhattan distance, respectively, an accuracy of 0.88 

can be obtained which is already above 0.86 of global PLS-DA. Similar case also exists in Euclidean 

and fractional for p = 1/3 distance. Another optimal parameter NNs is ranging from 22 to 32 in task-1 

which has connections with the size of clusters shown in Fig.2.  

 

Further, overall PLS-DA validation and classification result of both tasks are calculated and presented 

in Fig.12. The outliers shown in red dot under the whisker are identified based on the analysis of 

boxplot [33]. The number of identified outliers is less than 20 in each of the distance function. The 

overall classification accuracies are visualized in 3D in Fig.13; such outliers correspond to a lower 

region, for instance, when LVs and NNs are around 1 and 50, respectively. As previously observed in 

the second experiment, the highest accuracy obtained using PLS-DA is usually above the 25th 

percentile of local PLS-DA however it is still lower than the highest accuracy of local PLS-DA in both 

validation and classification phases. Among different fractional distance based local PLS-DA, 

Manhattan and fractional distance can obtain better results than Euclidean distance in the evaluation of 



whisker and box. A typical case is the validation in task-1, Manhattan and fractional (p = 1/2 and 1/3) 

can exceed Euclidean distance in maximum, medium, 25th and 75th percentiles. Another two distance 

functions, cosine and correlation yield a similar result in the classification of both tasks (Fig.12, B&C). 

In particular, they attain a peak value of 93% in task-2. By comparing the parameters in classification 

phase shown in Table 6, we can see that the optimal LVs of local PLS-DA in both tasks are usually 

smaller than that of global PLS-DA. 

 

 

Fig.11. Classification accuracy of global PLS-DA with the selection of latent variables, Task-1: training set is original training 

data while test set is original validation data; Task-2: training set is original validation data while test set is original training data. 

 

Table 5 The average validation and classification results (%) of local PLS based on 7 different distances: Firstly, the mean 

accuracies of LVs with variation of NNs are calculated. Then corresponding NNs returned from top 3 out of 41 mean 

accuracies are used to define the parameters in classification. 

Local PLS-DA (%) Euclidean Manhattan 
Fractional 

Cosine Correlation  
p=1/2 p=1/3 p=1/5 

Task - 1 
Validation 86.36 86.43 86.67 87.21 86.90 85.71 86.81 

Classification 89.00 89.00 87.00 86.00 88.00 89.00 89.00 

Parameters 
LVs 4 7 3 5 2 4 6 

NNs 25 27 24 32 24 22 26 

Task - 2 
Validation 81.88 81.92 81.66 82.54 82.55 81.96 81.39 

Classification 91.00 91.00 90.00 89.00 90.00 91.00 90.00 

Parameters 
LVs 5 4 3 3 3 4 5 

NNs 33 29 27 23 23 35 32 

 



 

Fig.12. Comparisons within local PLS-DA based on Euclidean (Euc), Manhattan (Man), fractional (p = 1/2, 1/3 and 1/5), Cosine 

(Cos) and Correlation (Corr) distance in ARCENE dataset: validation (A) and classification (B) in task-1 & validation (C) and 

classification (D) in task-2. The red dot line (horizontal) represents the highest accuracy obtained by global PLS-DA. 

 

 

Fig.13. Classification accuracy of local PLS-DA with Latent Variables and Nearest Neighbors represented in 3D plots: Euclidean 

(A) and Manhattan (B) distance in Task-1 & Euclidean (C) and Cosine distance (D) in Task-2.  

 



Table 6 Highest accuracies (%) obtained by different local PLS-DA with minimum number of LVs and NNs in the ARCENE 

dataset. 

Local PLS-DA (%) Euclidean Manhattan  
Fractional 

Cosine Correlation 
p=1/2 p=1/3 p=1/5 

Task-1 Accuracy 90.00 90.00 90.00 91.00 89.00 90.00 90.00 

Parameters 
LV  2 3 3 2 2 4 2 

NN 46 10 11 10 16 23 23 

Task-2 Accuracy  92.00 91.00 92.00 92.00 92.00 93.00 93.00 

Parameters 
LV  4 4 5 5 5 5 5 

NN 36 29 45 35 40 48 47 

 

Considering the experimental results, the following results and issues have been identified:  

 

 The local PLS-DA can significantly outperform global PLS-DA in most of the 8 UCI datasets. 

Compared with the global view of PLS-DA, the local PLS-DA only projects a group of 

similar data points to a low-dimensional latent space in which the intrinsic latent structure of 

local data is preserved. Also, the LVs in local PLS-DA is usually smaller than that in global 

ones. 

 As a JIT approach, local PLS-DA can analyse query data with effectiveness in terms of 

accuracy and flexibility of neighbourhood adapting; however it is highly reliant upon distance 

functions. In our experiment, the combination of fractional distance and local PLS-DA usually 

outperforms the Euclidean ones in 8 UCI datasets. Cosine distance is also preferable in 

datasets such as Ionosphere and PLRX. Therefore, distance functions need adoptions towards 

different data type. 

 Noteworthy, the optimal parameters selected in the validation step may not yield the highest 

classification accuracy. This reflects a real-world challenge in the analysis of some low 

resolution spectroscopy data when training and test samples are collected under two different 

conditions. As such, the classification result between two datasets may be drastically lower 

than the validation results within the same dataset. 

 Local PLS-DA cannot yield a global model. Moreover, a potential issue of local PLS-DA is 

additional parameter NNs is involved, thus distance between data need to be calculated and 

sorted. Also, individual model is established for each query data. These will lead to high 

modelling time when dimensionality and sample-size are extremely large. 

 

5. Conclusion 

 

Local PLS-DA can construct classification models in local sample space. They not only inherit the 

advantage of PLS in handling small-sample-size problems, they also avoid the influence from noise 

samples if nearest neighbors are properly selected. In this paper, we combine local PLS-DA and 

non-Euclidean distance in order to gain an insight, in particular, to find out how different distance 

functions perform on low- and high-dimensional data.   

 

Extensive experiments have been conducted using various distance functions with a local PLS-DA. The 

obtained results show that local PLS-DA based on fractional and cosine distance is preferred to the 



Euclidean distance in the classification of high-dimensional data. Furthermore, better classification 

performance usually can be achieved when the number of LVs in local PLS-DA is smaller than that in 

the global PLS-DA. This shows that the intrinsic dimension in local latent space is simplified yet 

effective in improving the classification accuracy compared with global one.  

 

Future work will optimize the number of NNs by effective noise detection techniques with better 

representation of local structures and computational speed. 
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