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Abstract. Two models are developed for updating opinions in social networks under situations 

where certain beliefs might be considered to be competing. These two models represent different 

attitudes of people towards the perceived conflict between beliefs. In both models agents have a 

degree of tolerance, which represents the extent to which the agent takes into account the differing 

beliefs of other agents, and a degree of conflict, which represents the extent to which two beliefs 

are considered to be competing. Computer simulations are used to determine how the opinion dy-

namics are affected by the inclusion of conflict. Results show that conflict can enhance the for-

mation of consensus within the network in certain circumstances according to one of the models. 
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1 Introduction 

There are many situations in social networks where each individual (agent) holds beliefs about two (or 

more) topics, e.g., two explanations of some phenomenon, which may be perceived to be competing. 

Examples include competing scientific theories of scientific data, or perceived conflicts at the interface 

between science and religion. The agents in the network interact with each other to exchange their 

opinions i.e., the beliefs of agents are updated by taking that of their neighbours into consideration. In a 

scenario where agents hold competing beliefs, questions such as, under what circumstances a) a con-

sensus emerges in the beliefs of the agents, b) they partition into two or more distinct groups, c) agents 

accept one of the beliefs but reject the other, immediately suggest themselves.  

Opinion dynamics in a group of interacting agents has been studied for a long time from a wide 

range of aspects, e.g., sociology, physics, politics, economics and philosophy (French 1956; Harary 

1959; Deffuant et al 2000; Krause 2000; Hegselmann and Krause 2002; Weisbuch et al 2002). In these 

models of opinion dynamics, a group of agents who hold beliefs about a given topic interact with each 

other to seek truth or reach consensus (Lorenz 2008). There are generally two types of opinion dynam-

ics models: continuous opinion dynamics and discrete opinion dynamics (Lorenz 2007; Acemoglu and 

Ozdaglar 2011). In continuous opinion dynamics models, the opinion is usually modelled as a real 

variable in the interval [0, 1], and the agents interact with each other to update their opinions. The 

bounded confidence model is a representative continuous opinion dynamics model, where agents only 

interact with neighbours whose opinions are similar to theirs, and the similarity is decided by the bound 

of confidence or tolerance (Zollman 2012). Among these models, the Deffuant-Weisbuch (DW) model 

and Hegselmann-Krause (HK) model have recently received considerable attention (Pluchino et al 

2006; Riegler and Douven 2009; Douven and Riegler 2010; Liu and Wang 2013; Fu et al 2015; Wang 
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and Shang 2015; Quattrociocchi et al 2014; Pineda and Buendía 2015). It has already been well estab-

lished that these models have consensus thresholds for the bound of confidence, above which a consen-

sus in the group is always achieved while the whole group may split into two or more non-interacting 

sub-groups with the same opinion in each of them when below the consensus thresholds (Lorenz 2007). 

Furthermore, several interesting modifications or extensions to these models have been introduced 

recently. Some of the modifications introduce heterogeneous bounded confidence such that the as-

sumption that all individuals in a given society have the same level of confidence is no longer neces-

sary (Fu et al 2015). The impact of external factors, e.g., mass media, on dynamics of opinions in real 

societies have also been analysed recently (Quattrociocchi et al 2014; Pineda and Buendía 2015). In 

this paper we adopt the HK model as the basic opinion update mechanism for the group opinion dy-

namics to update the two beliefs independently, and further update them by taking the conflict between 

them into consideration. 

The HK model involves just a single dimension (i.e. opinion about a single topic), but some exten-

sions to two or more dimensions have been reported. For example, Jacobmeier (2005) studied, based 

on the DW model (Deffuant et al 2000; Weisbuch et al 2002), the multidimensional opinion dynamics 

whose components are integers in a Barabasi-Albert network. Fortunato et al (2005) and Pluchino et al 

(2006) extended the HK model to a situation where opinions are multidimensional vectors representing 

the opinions on different subjects, e.g., politics and sports. Lorenz (2008) investigated multidimension-

al continuous opinion dynamics where the opinion space about d issues is R
d
. Riegler and Douven 

(2009) extended the belief states of the agents from single numerical beliefs to theories formulated in a 

particular language, built up from a number of atomic sentences and usual logical connectives. These 

existing multidimensional opinion dynamics mainly consider independent topics without perceived 

conflict between them, e.g., sports and politics. In these models, the opinion dynamics about independ-

ent topics do not really affect each other. However, for the cases where there are possible conflicts 

between two (or more) issues as stated previously, if the belief in one issue changes, the other will 

usually change accordingly, and therefore the existing multidimensional opinion dynamics models do 

not work well. In order to address this kind of problem, we propose two models in this paper focusing 

on opinion dynamics in social networks with conflicting beliefs. As a starting point, we consider two 

dimensions, resulting from two beliefs. 

The rest of this paper is structured as follows. We present two belief update models in Section 2, 

which represent different attitudes towards the belief update process. The analysis of the proposed 

models is provided in Section 3 based on computer simulations. Conclusions and discussions are drawn 

in Section 4. 

2 The Models 

Assume that we have a complete network of N vertices, representing agents, i.e., all the agents are 

linked to each other. Each agent holds two possibly conflicting beliefs about two topics, denoted as A 

and B, both of whose degrees can change along a set of discrete time points according to certain update 

mechanism and where A and B might be perceived to be in conflict. We propose two models for taking 

the perceived conflict between two beliefs into consideration when updating the belief degrees. Both of 

the models consist of two steps where the first step is to update the belief degrees of agents via network 

interaction and the second step involves an internal agent update process based on the network update 

results. The first step, network update step, of both models is the same, and uses the HK model to up-

date the degrees of two beliefs. The updated belief degrees are then further adjusted by taking the per-

ceived conflict between beliefs into consideration at the second step in the proposed models that reflect 

different attitudes of people towards conflict resolution.  
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The two models proposed in this paper are based on two common types of attitudes towards conflict 

resolution: one type of attitude is apt to pick the belief with larger degree but reject the other, and an-

other prefers to reach a consensus by adjusting both degrees of belief. Consequently, the first proposed 

model (Model I) attempts to resolve conflict by reducing the smaller degree of belief while leaving the 

larger degree of belief unchanged, whereas the second model (Model II) attempts to resolve it by ad-

justing both degrees of belief via normalization. 

2.1 Network update  

For the first step (network update), we extend the HK model so that it can handle two-dimensional 

beliefs. The HK model involves a complete graph, i.e., all the agents can contact each other directly, 

but the agents only interact with the neighbours who have opinions ‘close’ to theirs, where the close-

ness is decided by so-called bounded confidence. Suppose that Ai(t) and Bi(t) are the degrees of two 

beliefs A and B of the ith agent at time t, where Ai(t), Bi(t)  [0, 1], with 0, 1, 0.5 corresponding to total 

disbelief, total belief, and indifference respectively, for all i and t, then the new belief degrees for agent 

i at time t+1 based on the HK model are 

 




),(

1
)(),()1(

tiIj jAi
A

tAtiItA , 

 




),(

1
)(),()1(

tiIj jBi
B

tBtiItB .                                                (1) 

Here })()(:{),( AjiA tAtAjtiI   and })()(:{),( BjiB tBtBjtiI   are called epistemic 

neighbourhoods of agent i at time t with respect to belief A and B correspondingly, that is, the sets of 

agents whose belief degree in A or B at t is close to that of the corresponding belief of agent i at that 

time (Riegler and Douven 2009). The parameters 
A  and 

B , sometimes called tolerances (Zollman 

2012), decide the bounded confidence intervals for the two beliefs, and ),( tiI A
 and ),( tiIB

 represent 

the cardinalities of the corresponding sets. Tolerance provides a way to measure the level of an agent 

being ‘open-minded’. An agent is totally ‘open-minded’ if the associated tolerance degree is 1, and is 

totally ‘close-minded’ if the tolerance degree is 0. 

It seems that the two beliefs are updated using the HK model independently in Eq. (1), and we are 

just implementing the HK model for two single cases. However, the fact is that the belief degrees ob-

tained in this step will be further adjusted at the second step by taking the perceived conflict between 

them into consideration, that is, there will an internal agent update after each network update via net-

work interaction. Furthermore, we can also extend it such that both of the tolerances for two beliefs are 

considered jointly when updating each of them as in Eq. (2). This means that the agents only talk to the 

neighbours who have close opinions in both beliefs. Therefore, we have actually two strategies for 

updating the beliefs at the first step. 
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2.2 Internal update 

To consider conflict between the two beliefs, we propose two models at the second, internal update 

step, which represent different attitudes of people towards conflict. The degree of conflict is denoted as 
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c  [0, 1], where 0, 1 correspond to no perceived conflict and total conflict respectively. It is assumed 

here that all the agents hold the same conflict value.  

The first model (Model I) suggests that if there is no perceived conflict, i.e. c = 0, or if Ai(t), Bi(t) ≤ 

0.5, then the internal agent update will result in no change in both beliefs. Further, if one, or both of the 

belief degrees are greater than 0.5 and ci > 0, then the perceived conflict will decrease the degree of the 

lesser held belief, but not increase the degree in the other. Specifically, if ci = 1 then the lesser held 

belief should be rejected, i.e., set its degree to be zero. It means that Model I represents the attitude of a 

group of people who incline to accept only one of the beliefs with larger degree but reject the other one 

if there is conflict between them. A rule for achieving this can be given as 

*
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where the * superscript signifies an internal agent opinion update. It is noted that the last rule contains 

the assignment at probability of p to prevent a ‘stalemate’ at equality and so a complementary rule will 

apply for B, i.e., if we decrease the degree of A we don’t decrease that of B and vice versa. We usually 

set p = 0.5 based on the assumption that there is no bias between the two beliefs. 

Different from the first model, which decreases degree of the lesser held belief if there is perceived 

conflict, the second model (Model II) tries to make the sum of the two belief degrees closer to 1, reach-

ing unity when there is maximum conflict (c = 1). It is also natural to assume that the belief degrees 

will not change if there is no perceived conflict, i.e. c = 0. A model for achieving this is 
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It can be seen that, for c > 0, Model II will decrease the belief degrees of both A and B if A + B > 1, 

but it will increase them both if A + B < 1 and leave them unchanged if A + B = 1. This model makes 

the belief degrees of agents converge to A + B = 1 for c > 0. This model is more appropriate for cases 

where the agent is unlikely to reject or accept both beliefs and might apply, for example, in contexts 

where an explanation is needed and there are only two plausible competing explanations. 

The two proposed models represent two possible strategies for agents to update their beliefs when 

there is perceived conflict between them. The following section further analyzes their properties based 

on computer simulations. 

3 Simulations and Results 

The simulations are implemented in Matlab. Before going into the detail of simulations, we briefly 

discuss the real world interpretations of some parameter settings. 

Number of agents – It is possible for a real world network to have a very low number of agents or a 

large number of agents. In the performed simulations, the number of agents is chosen as 100. We have 

implemented the simulations on the network with up to 1000 agents and found that there was no signif-

icant difference in the results compared to the network with 100 agents.  
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Initial degrees of the two beliefs are both generated randomly (uniformly distributed) for each agent 

as in most of the existing multidimensional models based on the assumption that there is no pre-defined 

bias between the two beliefs. We have also another strategy for generating the starting belief degrees 

that will be detailed in Section 3.4. 

Number of runs – Given randomly generated initial belief degrees, simulations might show variant 

results even with the same settings. We therefore implement 100 runs with all the other conditions 

being the same. Note also that we can only select the simulation results under one run when showing 

the dynamics of belief update, but the selected results are typical (with 90% plus occurrence rate) 

throughout 100 runs unless otherwise stated. 

3.1 The case without conflict 

We start with simulations of the case where there is no conflict, i.e., c = 0, for comparison purpose. 

Although this has been done for single opinion case, it is worth looking at the results of two-

dimensional case when updating them independently or jointly. 

Fig. 1 shows the simulation results by updating the two beliefs of agents independently and jointly, 

i.e., based on Eq. (1) or (2) respectively, with 0.25A   and 0.05B  . The tolerance values are chosen 

based on the results of the single opinion case in the HK model (Riegler and Douven 2009). In these 

figures, the x-axis represents the steps taken for update, and y-axis stands for the belief degrees. It can 

be seen from Fig. 1 (a) that agents with larger tolerance value (> 0.25) usually achieve consensus while 

those with smaller tolerance value (< 0.25) maintain diversity. That is, ‘open-minded’ people are more 

apt to achieve consensus than ‘close-minded’ people. This shows the same performance as the single 

opinion case in the HK model (Riegler and Douven 2009). When updating the two beliefs jointly based 

on Eq. (2), Fig. 1 (b) shows that both of the beliefs maintain a diversity of values when there is a small-

er tolerance value (< 0.25), i.e., the smaller tolerance plays a more significant role in this case. The 

reason comes from the fact that the agents only interact with the neighbours who have close opinions in 

both beliefs when updating either of their beliefs. 

 
(a)     (b) 

Fig. 1. Belief update results without perceived conflict (c=0) when updating them independently (a) or jointly (b), 

where * represents belief A and ∆ for belief B 

The above results are sufficient to show the effect of considering the two beliefs independently or 

jointly using Eq. (1) and (2) without considering perceived conflict between them. In the following 

sections we consider the behaviours of the two proposed models by introducing the perceived conflict 

that takes value between 1 and 0 during the internal update process. To make the comparison clearer, 

we fix 0.25A   and 0.05B   in the following simulations. 
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3.2 Model I 

We implement the simulations for Model I firstly where the beliefs of agents are updated independently 

and jointly respectively during the network update process. We choose four conflict values, excluding 

0 that has been analysed above, for the simulations, i.e., 1, 0.8, 0.5, 0.2, where, as noted earlier, c = 1 

stands for total conflict between the two beliefs.  

Fig. 2 shows the simulation results of Model I for different conflict values with independent network 

update based on Eq. (1). It can be seen from the results that, if there is higher conflict  (1, 0.8 or 0.5), 

the belief with larger tolerance value, belief A here, converges to two values with one larger than 0.5 

and another one as 0, while this belief converges to a value around 0.5 in the no conflict case. On the 

other hand, the belief with smaller tolerance value, belief B here, maintains the similar diversity as in 

the no conflict case, but with belief B of some agents, whose corresponding belief A is larger than 0.5, 

go to zero. That is, Model I mainly divides the agents into two groups where one group with the degree 

of belief A larger than 0.5 and belief B valuing 0, and another group with belief A valuing 0 and a varie-

ty of the degree of belief B. This effect becomes less when the conflict is lower, and we can see from 

Fig. 2 (d) that belief A at c = 0.2 achieves consensus as it does for c = 0. 

  
(a)     (b) 

  
(c)     (d) 

Fig. 2. Belief update results of Model I with independent network update with conflict (a) c = 1, (b) 0.8, (c) 0.5, (d) 

0.2, where * represents belief A and ∆ for belief B 

Fig. 3 shows the simulation results of Model I for different conflict values where the beliefs are up-

dated jointly based on Eq. (2) during network update step. We can see that, for higher conflict, this 

model produces similar results to the case with independent network update, i.e., divides the agents 

mainly into two groups with one of the beliefs valuing zero. The difference is that belief A of more 

agents maintains diversity, and the reason is that the smaller tolerance affects both of the two beliefs 



7 

 

for joint network update. It seems also that the effect of conflict degenerates more quickly than in the 

independent case when the conflict is becoming smaller. 

  
(a)     (b) 

  
(c)     (d) 

Fig. 3. Belief update results of Model I with joint network update with conflict (a) c = 1, (b) 0.8, (c) 0.5, (d) 0.2, 

where * represents belief A and ∆ for belief B 

3.3 Model II 

We next implement the simulations for Model II using as before, with independent and joint network 

update strategies, and four conflict values, 1, 0.8, 0.5, 0.2, as well.  

 
(a)     (b) 
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(c)     (d) 

Fig. 4. Belief update results of Model II with independent network update with conflict (a) c = 1, (b) 0.8, (c) 0.5, 

(d) 0.2, where * represents belief A and ∆ for belief B 

Fig. 4 shows the simulation results of Model II for different conflict values when the beliefs are up-

dated independently during the network update step based on Eq. (1). It can be concluded that Model II 

usually makes both the beliefs reach consensus (even with low conflict, e.g., 0.2) if there is a larger 

tolerance (> 0.25) for one of the beliefs. It is also shown that the belief with larger tolerance always 

ends up with a greater degree of belief. The reason for this is that the belief with larger tolerance will 

achieve consensus during network update process, and Model II, according to Eq. (4), pulls the sum of 

degrees of the two beliefs close to 1 and so makes another belief to reach consensus consequently. 

 
(a)     (b) 

 
(c)     (d) 

Fig. 5. Belief update results of Model II with joint network update with conflict (a) c = 1, (b) 0.8, (c) 0.5, (d) 0.2, 

where * represents belief A and ∆ for belief B 
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The simulation results of Model II are shown in Fig. 5 for different conflict values where the beliefs 

are updated jointly based on Eq. (2) during network update step. It can be seen that the results are quite 

different compared with that of independent network update case. It seems that the conflict in Model II 

has no obvious effect under joint network update situation when there is a small tolerance (< 0.25) for 

one of the beliefs, i.e., the agents maintain diversity similarly for all conflict values. This is mainly 

because that Model II updates the beliefs gradually according to Eq. (4), whereas Model I can change 

the belief degrees sharply under certain conditions. Therefore, many agents cease being influenced by 

their neighbours, if there is a small tolerance, after several rounds of internal update which makes the 

sum of degrees of the two beliefs of agents close to 1 separately. 

3.4 The setting of initial belief degrees 

Besides setting both of the initial belief degrees randomly, we can also generate the belief values in 

such a way that the one belief degree, e.g. A(t), is generated randomly, and the belief degree B(t) is set 

to be 1 – A(t), based on the assumption that there is perceived conflict between them.  

  
(a)     (b) 

  
(c)     (d) 

Fig. 6. Belief update results of Model I with only belief A is initially generated randomly and independent network 

update for conflict (a) c = 1, (b) 0.8, (c) 0.5, (d) 0.2, where * represents belief A and ∆ for belief B 

Fig. 6 shows the simulation results of Model I for different conflict values with independent network 

update and the above initial belief degree setting option. We can see that Model I produces the similar 

results to the case when the initial degrees of both beliefs are generated randomly, i.e., divides the 

agents mainly into two groups with one of the beliefs being rejected. The difference is that there is no 

belief value between 0 and 0.5 if there is a perceived conflict. The reason for this is that this initial 

belief degree setting makes one of the two initial belief degrees of any agent larger than 0.5 when an-
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other one is less than 0.5, or both of them 0.5. Model I will set the belief degree which is initially less 

than 0.5, or one of them when both are 0.5, to zero if there is a higher degree of conflict. 

For the case that the beliefs are updated jointly based on Eq. (2) during network update step, Model I 

has the same effect as that for independent network update when only the initial degree of one of the 

beliefs is generated randomly. That is, it mainly divides the agents into two groups with one of the 

beliefs being rejected with no belief values between 0 and 0.5 if there is a perceived conflict between 

the two beliefs. Therefore, the simulation figures are not provided for this case. 

Model II produces almost the same results to the case where the initial degrees of both beliefs are 

generated randomly, i.e., both beliefs achieve consensus if there is a larger tolerance (> 0.25) with in-

dependent network update and maintain diversity with joint network update. That is to say, the setting 

of initial belief degrees has no obvious effect on Model II. The main reason for this is that Model II has 

already been pulling the sum of the degrees of the two beliefs close to 1.  

4 Conclusions 

This paper has investigated the two-dimensional opinion dynamics when there is perceived conflict 

between the two beliefs. Two models have been proposed for taking the conflict into consideration 

during belief update. Compared with the results when there is no conflict between the two beliefs, 

Model I has a similar effect on the consensus for both the network update strategies, i.e., the agents 

partition into several distinct groups with one of the beliefs being rejected. On the other hand, Model II 

makes both the beliefs achieve consensus for independent network update if there is a larger tolerance, 

but produces similar results to the no conflict case with the joint network update. Based on these two 

models, we have also examined the effect of varying the fraction of the population having given con-

flict and tolerance degrees to investigate group behavior (Chen et al 2015). The results show that the 

fraction of the group having a particular tolerance degree introduces consensus in Model I only if the 

tolerance degree is high enough, but it has little impact on the consensus in Model II. On the other 

hand, the fraction of the group holding perceived conflict causes more diversity in the agents based on 

Model I, but introduces a higher consensus level among agents when the fraction becomes larger in 

Model II. 

This paper considers two competing beliefs, but the ideas contained herein are generalizable to cases 

where there are a larger set of beliefs. The investigation of these two models was done on a complete 

graph as in the original HK model, and we are currently analysing the performance of the proposed 

models under different network topologies. Furthermore, the current paper considered the case that the 

agents only update their beliefs according to the beliefs of their neighbours. In future work this will be 

extended so that the agents can take reported information, external to the network, into consideration 

when updating their beliefs. 
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