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Automatic Prediction of Health Status using
Smartphone Derived Behaviour Profiles

Daniel Kelly†, Kevin Curran†, Brian Caulfield‡

Abstract—Objective: Current methods of assessing the affect a
patients’ health has on their daily life are extremely limited. The
aim of this work is to develop a sensor based approach to health
status measurement in order to objectively measure health status.
Methods: Techniques to generate human behaviour profiles,
derived from smartphone accelerometer and gyroscope sensors,
are proposed. Experiments, using SVM regression models, are
then conducted in order to evaluate the use of the proposed
behaviour profiles as a predictor of health status. Results: Ex-
periments were conducted on data from 171 participants, with an
average of 114 hours of data per participant. Regression models
were trained and tested on the 10 SF-36 self-ratings. Results
showed that the 8 individual SF-36 scales and 2 component
scores could be predicted with an average correlation of 0.683
and 0.698 respectively. General Health was predicted with an
average correlation of 0.752. Conclusion: Research shows that
the Clinically Important Difference for SF-36 self-ratings are
approximately 10 points. Health status prediction errors in this
work were 11.7 points on average. While the problem has not
been fully solved, this work present a hugely promising direction
for health status prediction. Significance: Using the proposed
techniques, health status could be measured using unobtrusive,
inexpensive and already available hardware. It could provide a
means for clinicians to accurately and objectively assess the daily
life benefits of treatments on an individual patient basis.

I. INTRODUCTION

CHRONIC diseases are the most common causes of death
and disability throughout the world [1]. In the UK, for

example, 70% of all healthcare costs are chronic disease
related [2]. Treatments for chronic diseases, such as medi-
cation and lifestyle change, can result in improved clinical
health outcome measures such as physiological measurements,
hospital re-admission rates or mortality rates. However, while
these outcome measures are important, they do not fully
represent the experiences of an individual patient and their
response to particular treatments [3]. Health status measure-
ments, such as Health Related QOL (HRQOL), are patient
reported measures used as a means of quantifying the impact
of disease on patients daily life [4]. These measures have
become a central feature in many chronic disease studies
[5]. Research has shown that poor health status scores were
associated with mortality, hospital readmission and increased
healthcare consumption [4].

Studies on health status questionnaire reliability indicate
that, while most measures are reliable for group comparisons,
the majority of measure are not reliable for individual com-
parisons. For example, 7 of the 8 measures from the Short
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Form 36 (SF-36) health status questionnaire were consistently
shown to not be of sufficient reliability to assess patients on
an individual basis [6]. There is therefore a need for more
accurate and reliable methods of measuring health status such
that clinicians can assess health status on individual basis. The
overall aim of our work is to utilize novel sensor technology in
the community to objectively measure a persons health status.

Modern smartphones, equipped with multiple sensors built
within the common and non-invasive form factor of a mobile
phone, have the potential of tracing human activities at scales
that were previously unattainable. The aim of this work is
to develop an unobtrusive smartphone sensing system which
can objectively measure a persons’ longitudinal behaviour and
make accurate predictions about their health status based on
their behaviour. In order to accurately model the mapping
between mobile sensor data and health status, a participant
set, with a broad spectrum of health measurements, is required.
Recording patient data alone would represent a small window
in the health status spectrum. Thus, before patient specific
investigations are carried out, general methods of mapping
sensor data to health status must be investigated. Therefore,
the aim of this work is to analyse daily life measurements,
and health status information, from adults in the general
population with a diverse set of health measurements. We
propose using motion sensors, built within a smart-phone, to
measure a persons behaviour by recording longitudinal motion
patterns. Our hypothesis is that motion sensor data, through
a procedure of feature extraction and machine learning, can
be used to predict the health status of a person. To test our
hypothesis, we conduct a study in which participants record
their motion patterns using a smart-phone and record their
health status using a self-reported questionnaire. Experiments
are then performed on the data to discover if, and to what
extent, behaviour based features, extracted from recorded
motion data, can be used to predict health status.

A. Related Work

To the authors knowledge, there are no related works
specifically investigating methods to automatically predict
patient reported health outcomes, such as health status, using
unobtrusive motion sensing. Motion sensing has however been
utilized for different types of health based monitoring [7].
Studies have mainly been conducted in controlled conditions
with patients wearing specialized sensors [8]. For example,
a number of works have used multiple motion sensors to
develop instrumented versions of the timed up-and-go test for
identifying gait impairments related to Parkinsons Disease [9]
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and falls risks [10]. Cook et al. [11] conducted a study to
analyse the impact health conditions, Parkinsons Disease in
particular, have on daily behaviour. Subject behaviour was
monitored using a combination of smart home environment
sensors and motion sensors. Feature extraction and machine
learning techniques were applied to the data. Results showed
that statistically significant behaviour differences existed be-
tween two groups and that the two groups could be recognized
automatically by a machine learning classifier. Recently, re-
search has shown that smartphones can be utilized to infer
health related information. For example, Juen et al. describe a
smartphone based walking monitor for patients with Chronic
Obstructive Pulmonary Disease (COPD) [12]. Kelly et al. [13]
conducted a case series, performing a preliminary investiga-
tion on differences in movement patterns of COPD patients
reporting problems versus COPD not reporting problems.

In terms of automatic methods to predict health status,
there has been a number of works investigating the use of
machine learning models for the prediction of health status.
However, none of these works utilize automatically generated
observations, such a motion sensing, in order to make health
predictions. One such work is that of Yang et al. [14], where
experiments are carried out to evaluate machine learning
techniques as predictors of two health status metrics (Cornell
Scale for Depression in Dementia (CSDD) and Physical Self-
Maintenance Scale (PSMS)). Experiments were based on
15 Geriatric Patients and feature vectors, describing patient
behaviour, where manually built using visual observation of
each patient using video footage. The prediction problem was
mapped to a binary problem, where the aim of the classifier
was to classify sub-categories of the health status scores as
good or bad. Average precision rates of 0.86 and 0.91 were
reported for the classification of categories in the CSDD and
PSMS health status scales respectively. Paskhomov et al. [15]
use automated natural language techniques to extract health
descriptors from manually recorded patient medical records.
Machine learning techniques were utilized in order to make
predictions about patient health status, as measured using SF-
36 and EuroQol five dimensions (EQ5D) measurement tools.
Experiments show ’moderate’ agreement between patient re-
ported health status and machine learning predicted health
status. The best concordance between automatic classification
and patient reported health status was achieved for the ’pain’
component, with a positive and negative agreement of 0.76
and 0.78 respectively (using Cohens Kappa coefficient).

While there is a large body of research work in the general
area of sensors and health and well-being, there exists few
works dealing specifically with automatic prediction of health
status without the need for costly, time consuming and invasive
manual observations. In this work, we perform an investigation
into the use of smartphones as a method of automatically
generating behaviour observations for the purpose of health
status prediction. In particular, we aim to investigate the use
of non-invasive motion sensors to identify links between a
persons’ activity and a person’ health status.

II. METHODS

A. Data Collection

A custom Android App, named “Health-U”, was developed
in order to facilitate a crowdsourced approach to motion sensor
and health status data collection. This App was published
on Google Play, allowing anyone with an Android phone to
participate in the study. The App was designed to record raw
Accelerometer and Gyroscope data throughout the day for
each participant. Raw sensor data is processed at the end
of each day and summary measures, describing movement
profiles for each hour, are generated and uploaded to a central
server. To improve user retention within the experiment, func-
tionality was added to the App to provide users with visual
feedback on the duration and intensity of their activities over
time using graphs and statistics (see Figure 1).

Fig. 1. “Health-U” App - (Left) Visual feedback showing current activity,
(Middle) Activity history showing daily activity, (Right) Health Status Ques-
tionnaire.

The App was designed to include a health status mea-
surement tool in order to record participant health status.
A requirement of the study is to record data for a set of
participants with a broad spectrum of health measurements.
However, while participants can include adults from the gen-
eral population for this study, our overall aim in the future is to
evaluate patients with chronic illnesses, such as COPD. Thus,
in order for this study to lead onto any patient specific studies
in the future, a health status measurement which is valid for
healthy participants and patients with a chronic illness must
be used. The measurement tool must therefore be a general
purpose health questionnaire that is not illness specific but
must be valid in the context of accessing patients with chronic
illnesses [3]. The SF-36 questionnaire meets this criteria. SF-
36 is a non-illness specific health status measure which has
been validated in a general adult population [16] and in a
chronic illness patient population [17], [18]. The SF-36 was
therefore chosen as the measurement tool for this study.

The SF-36 is a general health instrument that measures
eight health related concepts: physical functioning (PF-10
items), role limitations due to physical problems (RP-4 items),
bodily pain (BP-2 items), general health perceptions (GH-5
items), vitality (VT-4 items), social functioning (SF-2 items),
role limitations due to emotional problems (RE-3 items), and
perceived mental health (MH-5 items). Each question has
multiple choice answers, with each answer having a predefined
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numerical score between 0-100. Answers relating to positive
health contribute to a higher score, while answers relating
to negative health contribute to a lower score. Each of the
eight component scores are then computed using an average
of specific question scores related to that component. Z-scores
are then computed for each of the eight component scores and
combined using weighted averages to compute two summary
component measures: the Physical (PCS) and Mental (MCS)
Component Summary Scores [19]. Both summary scores, PCS
and MCS, are computed such that the mean and standard
deviation, of a set of scores in a population, are 50 and 10
respectively. A questionnaire UI screen was integrated into the
App to allow users to answer the SF-36 questions via radio
buttons (See Figure 1(Right)).

1) Participant Health Statistics: After downloading and
launching the App for the first time, participants are shown
a participant consent screen where details about the study,
and data collected during the study, are explained. Participants
are then given the choice to consent via a button labelled “I
Consent” or to reject via a button labelled “Do not partici-
pate”. Ethical approval for this study was granted by Ulster
University Ethics committee and the contents of the participant
consent screen were reviewed by the Ethics Committee.

The App was downloaded by a total of 1751 users, of
which 760 completed the SF-36 questionnaire. Table I details
the mean and standard deviation SF-36 self-ratings, for the 8
different concepts and the 2 summary measures, of participants
based on categories of gender, age and country. It can be
seen, for example, that PF is generally higher in younger
participants. Conversely, MH is generally higher for older
participants.

B. Data Processing

In this section methods used to process smartphone recorded
motion data are described. Two processing stages are im-
plemented. However, prior to describing the two processing
stages, we describe some preliminary investigations aimed at
improving our understanding of the data.

1) Stage 0 (Preliminary Data Analysis): It was initially
postulated that features relating to activity duration could
potentially be used as a health status indicator. In order to
investigate this we investigated two duration based measures:
1) Total Movement Duration (TMD) and 2) Average Stationary
Period (ASP). TMD specifies the total amount of time in
which the phone was detected as moving during a given
day. The phone was deemed to be moving if the variance
of the accelerometer magnitude was greater than a predefined
threshold. For each n second window where the phone was
deemed to be moving, n seconds were added to the overall
TMD measure for that day. ASP was calculated as the average
of a set of stationary period durations for a given day.
The set of stationary period durations store the set of times
between when the phone stopped moving and when the phone
started to move again (i.e. the amount of time the phone was
stationary). ASP therefore stores the average period of time
a participants phone was stationary for during a given day.
During calculation of ASP, stationary periods longer than 4

Υ (TMD) Λ (ASP)
Mean (SD) Mean (SD)

Gender
Female 1h:27m (4m:28s) 22m (14m)
Male 1h:51m (5m:19s) 21m (14m)
Age
18-21 1h:34m (5m:13s) 15m (15m)
22-25 1h:48m (3m:58s) 18m (11m)
26-30 1h:56m (5m:58s) 20m (12m)
31-35 1h:38m (3m:48s) 17m (14m)
36-40 1h:32m (5m:41s) 24m (16m)
41-50 1h:35m (4m:28s) 21m (13m)
51-60 1h:36m (5m:12s) 22m (12m)
60+ 1h:22m (4m:4s) 29m (12m)
Overall 1h:37m (4m:55s) 21m (14m)

TABLE II
DURATION BASED MEASURES BY GENDER AND AGE

hours were discarded in order to discount sleep time and times
when the participant placed the phone on a flat surface.

Table II shows the overall mean and standard deviation
of the 2 duration based measures for different age groups
and genders. It can be seen that, on average, a participants’
phone moved for a total of 1 hour and 37 minutes per day.
Additionally, it can be seen that, on average, a participants’
phone stayed stationary for an average period of 21 minutes.
For the remainder of this work, we denote TMD and ASP as
Υ and Λ respectively.

A qualitative analysis of movement data was performed in
order to investigate potential links between movement and
health status. Figure 2 shows movement duration data (TMD),
and individual SF-36 self-ratings, for two female participants
(both aged 40-50). A potential link between health status and
movement can be seen. Participant A has low SF-36 self-
ratings and relatively little movement, while Participant B has
high SF-36 self-ratings and significant and regular movement
between 10am and 11pm.

Fig. 2. Sample Movement Durations, Υ, for each day and hour, for 2
participants. Blank (black) areas of the graph denote no motion recorded
for that hour. This can be due to the sensor being turned off, or because the
phone remained stationary for the entire hour

Further to the qualitative analysis above, we performed a
quantitative evaluation to further investigate potential links be-
tween SF-36 self-ratings and movement durations. Correlation
between each of the SF-36 self-ratings and the two duration
measure Υ and Λ were calculated. Results showed an average
correlation of 0.16 and 0.03 between the 8 SF-36 scales and
Υ and Λ respectively. The largest correlation between SF-
36 and Υ was for the PCS component, with r = 0.201.
The largest correlation between SF-36 and Λ was for the
BP component, with r = 0.042. The Λ measures showed
no statistically significant correlation with the health status
measures. However, results did show that while correlation
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PCS MCS PF RP BP GH VT SF RE MH
N Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD) Mean (SD)

Gender
Female 446 48.9 (9.0) 48.5 (9.4) 72.5 (26.0) 76.2 (29.9) 65.9 (28.1) 52.5 (22.7) 45.1 (20.9) 62.6 (28.7) 61.0 (32.9) 54.6 (23.2)
Male 312 51.4 (7.8) 52.0 (7.9) 76.5 (27.1) 79.6 (29.6) 73.3 (23.2) 58.8 (21.1) 53.0 (18.6) 68.5 (27.8) 68.6 (30.7) 62.5 (20.9)
Age
18-21 132 50.4 (8.0) 49.6 (8.8) 76.4 (25.7) 76.5 (30.3) 72.9 (25.3) 56.0 (20.3) 48.4 (19.2) 64.0 (28.6) 62.4 (33.3) 56.3 (22.7)
22-25 108 51.0 (7.7) 49.1 (8.9) 79.7 (22.3) 83.4 (23.6) 70.8 (23.8) 54.4 (22.5) 46.5 (19.6) 65.1 (27.7) 61.3 (31.4) 54.5 (22.6)
26-30 97 50.2 (8.0) 49.5 (9.8) 77.0 (24.2) 78.3 (30.2) 72.5 (24.6) 53.9 (21.4) 46.6 (21.4) 64.4 (27.8) 62.2 (31.5) 57.9 (24.5)
31-35 89 49.1 (8.1) 48.9 (8.5) 71.5 (26.4) 74.9 (27.8) 70.0 (24.4) 52.6 (22.3) 48.1 (21.2) 59.6 (28.1) 61.3 (33.1) 54.8 (20.9)
36-40 79 48.6 (8.7) 49.2 (8.6) 68.9 (27.4) 73.9 (31.0) 67.9 (28.7) 53.0 (22.7) 48.1 (19.1) 61.4 (29.3) 57.5 (32.1) 57.8 (22.3)
41-50 124 48.6 (10.0) 49.6 (8.7) 71.1 (31.8) 75.3 (35.8) 63.8 (29.0) 51.9 (24.0) 46.1 (20.0) 63.3 (29.5) 67.8 (30.6) 58.6 (21.7)
51-60 73 50.7 (9.1) 52.8 (9.8) 71.0 (26.2) 78.3 (29.2) 65.5 (29.2) 61.4 (23.2) 52.9 (21.8) 74.3 (28.4) 73.0 (32.5) 64.2 (22.7)
60+ 52 51.3 (8.3) 53.0 (7.5) 74.6 (23.6) 81.3 (24.3) 64.8 (24.8) 61.6 (19.1) 55.2 (19.4) 72.9 (24.1) 72.1 (29.1) 64.3 (21.2)
Country
UK 227 50.1 (9.2) 49.5 (9.4) 76.6 (28.1) 81.1 (30.0) 68.2 (28.2) 52.9 (21.9) 46.6 (20.6) 64.5 (29.9) 64.8 (33.7) 57.1 (23.6)
USA 139 49.8 (8.8) 50.9 (9.6) 72.4 (27.2) 76.2 (29.9) 66.0 (24.9) 58.0 (23.5) 48.6 (22.6) 68.6 (29.5) 68.7 (32.5) 60.1 (24.2)
Ireland 88 51.1 (8.7) 50.4 (9.1) 77.4 (24.7) 80.0 (28.7) 73.1 (28.4) 57.3 (22.9) 49.2 (20.8) 65.8 (29.1) 67.2 (31.8) 57.7 (23.9)
Canada 82 50.1 (7.2) 49.3 (8.1) 77.8 (22.1) 80.7 (28.2) 70.4 (22.7) 51.6 (20.0) 45.1 (19.6) 63.4 (27.5) 63.8 (30.9) 57.8 (20.2)
Spain 30 52.8 (7.0) 53.3 (8.0) 78.6 (20.6) 81.1 (25.5) 78.2 (27.3) 62.7 (16.3) 55.7 (18.6) 70.8 (28.2) 71.1 (31.6) 64.7 (20.0)
Australia 55 48.5 (8.5) 48.7 (7.8) 69.0 (26.8) 73.5 (29.4) 65.1 (24.5) 52.5 (22.7) 48.4 (18.0) 64.1 (22.7) 55.0 (29.6) 55.3 (19.5)
New Zealand 39 50.3 (6.8) 49.1 (7.8) 76.9 (23.1) 80.5 (27.3) 69.0 (24.7) 56.0 (19.9) 46.3 (16.5) 61.6 (30.1) 63.3 (28.3) 55.9 (19.7)
Other 100 48.4 (8.4) 49.8 (8.4) 65.8 (27.0) 67.3 (31.1) 69.7 (25.6) 55.1 (24.1) 52.3 (18.5) 61.5 (25.4) 57.6 (30.5) 56.8 (21.4)
Overall 760 49.9 (8.6) 49.9 (9.0) 74.2 (26.5) 77.6 (29.8) 69.0 (26.4) 55.0 (22.4) 48.3 (20.3) 65.0 (28.5) 64.2 (32.2) 57.9 (22.6)
Burholt et al. [20] 13917 N/A N/A 77.8 (30.0) 78.3 (32.3) 70.1 (28.9) 66.2 (24.0) 57.3 (22.3) 80.2 (28.1) 87.0 (26.0) 74.0 (19.9)

TABLE I
SF-36 SELF-RATINGS FOR PARTICIPANT DEMOGRAPHICS (GENDER, AGE, COUNTRY).

between Υ and different SF-36 components were not strong,
the correlations were statistically significant.

Due to only small correlations between movement duration
and health status, we conclude that movement duration alone
cannot be utilized to consistently infer health status. We
postulate that this is due to the real world and inherent
uncontrolled nature of this study, where participants use the
sensing modality without researcher supervision. It is possible
that periods of inactivity relate to periods where the phone
was simply not being worn/carried by the participant. During
these periods, the sensor would infer that the person was being
sedentary when it is possible that the person was in fact being
active. We refer to these as ”periods of unknown”.

The preliminary investigates therefore informed our overall
approach for extracting meaningful health related information
from motion data. In particular, ”periods of unknown” must
be accounted for in our approach. An ”unknown” occurs when
no movement is recorded from the sensor. During this period,
it cannot be determined whether (a) the participant is wearing
the phone and being sedentary or (b) not wearing the phone
(and being active or sedentary). In this work, we address this
problem by dealing only with periods of time when we can be
almost certain that the participant is wearing the phone. These
periods relate to periods when movement is occurring and the
screen is off.

Our approach must consider the following 2 points: 1) Uti-
lize data during periods of activity, while removing unknowns
by discarding data during stationary periods. 2) Include fea-
tures which are not based on quantifying the duration of
activity, as it is possible that a participant is active during
discarded periods. Based on these 2 points, features will
therefore describe the type of movement a person performs
and will discard movement information during periods of
inactivity.

2) Stage 1 (Smart-phone processing): As previously men-
tioned, a two-stage procedure was implemented in order to
process motion data. This section describes the first stage.
It was not feasible to upload all raw motion data due to
participant network constraints and server storage constraints.

Stage 1 of data processing was therefore performed on the
Smartphone in order to reduce the quantity of data uploaded
to the server. At the end of each day, raw motion data was
automatically converted into hourly summary measures and
uploaded to a central server. Stage 2 of data processing was
conducted on the server and computations were performed to
generate an overall behaviour descriptor for each participant
using hourly summary measures from Stage 1.

a) Signal Processing: In order to measure a participants’
motion, 3-axis Accelerometer data Ax, Ay , Az and 3-axis Gy-
roscope data Gx, Gy , Gz , were recorded during periods when
the was App enabled. The Madgwick Attitude and Heading
Reference System (AHRS), where beta = 0.2, was used to
combine accelerometer and gyroscope data to calculate the
orientation quaternion Qθφ representing the pitch (θ) and roll
(φ) of the phone [21]. Yaw was not found to be of relevance
due to the unconstrained sensor placement. Overall magnitude
of the acceleration is defined as Am =

√
A2
x +A2

y +A2
z and

the overall magnitude of the angular velocity is defined as
Gm =

√
G2
x +G2

y +G2
z .

Data collection was performed with real world uncontrolled
conditions. It was therefore highly probable that participants
used the sensing device in many different ways, including
placing the phone in many different positions and orientations
on their body. Due to the unconstrained sensor orientation,
useful information such as movement in a particular direction
could be lost. In order to overcome this problem, while still
retaining information relating to directional movement, a set
of orientation independent features were used. We utilized the
technique described by Kelly et al. [22] to compute orientation
independent features by using a global reference frame to
measure acceleration and rotation with respect to gravity.
A rotation matrix Rθφ was computed from the orientation
quaternion Qθφ and the global acceleration frame, calculated
using a matrix transformation, defined as Ā = A×Rθφ, where
A = {Ax, Ay, Az}. The acceleration vector Ā represents
acceleration relative to gravity. Due to the unconstrained
orientation of the phone, there is no way of determining
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the mediolateral and dorsoventral axis. We therefore combine
horizontal axis x and z into a single horizontal measure.
Acceleration on the horizontal plane, Ah, is therefore defined
as Ah =

√
Ā2
x + Ā2

z while vertical acceleration, Av , is defined
as Av = Āy . Similarly, the global gyroscope frame is defined
as Ḡ = G×Rθφ, where G = {Gx, Gy, Gz}. Rotation around
the vertical plane, Gv , and horizontal rotation, Gh, are defined
as Gv = Ḡy and Gh =

√
Ḡ2
x + Ḡ2

z respectively.
In order to describe behaviour at a given time t, a number of

different features were calculated from 2 seconds windows of
the accelerometer signals Am, Av, Ah, the gyroscope signals
Gm, Gv, Gh and the orientation angles θ and φ. A sliding
window system was used to calculate features for each 2
second window. A set of features were calculated utilizing the
aforementioned signals above and the following feature pro-
cessing techniques. Feature processing techniques were based
on methods described by Kelly et al. [22] for a smartphone
activity recognition system.

• Min(x): Min value of signal x.
• Max(x): Max value of signal x.
• µ(x): Mean of signal x.
• σ(x): Variance of signal x - variance is higher for more

dynamic activities.
• s(x): Skewness of signal x.
• k(x): Kurtosis of signal x.
• IQR(x): Refers to the Interquartile range of signal x.

IQR of Gyro can be important for identifying sit to stand
activity.

• ROC(x): Refers to the rate of change of a signal x.
• FFT (x): Frequency domain analysis of signal x, calcu-

lating frequency with the greatest amplitude.
• MSV (x): Refers to the most significant velocity of the

signal. This is computed by identifying zero crossings
from the mean subtracted signal. The velocity is then
defined as the maximum rate of change at zero crossing
points.

Using the 8 motion signals and the above 10 measurements,
a set of 80 features were computed. Additionally, two correla-
tion based features were utilized in order measure interactions
between vertical and horizontal motion signals:

• Corr(Av, Ah): Refers to the correlation of vertical ac-
celeration and horizontal acceleration.

• Corr(Gv, Gh): Refers to the correlation of vertical rota-
tion velocity and horizontal rotation velocity.

In total, a set of (8×10)+(2) = 82 features were computed
to create an overall feature vector f(t).

b) Feature Summary: In order to generate a feature
summary, only features, f(t), which had a corresponding ac-
celerometer variance, σ(Amt ), greater than a pre-set threshold,
T = 0.35, were used in the generation of a behaviour profile
vector. Additionally, features which were recorded during
periods when the participant was interacting with the phone
were discarded. For a specific day, d, feature vectors f(t)
were calculated using a 2 second sliding window. Therefore,
for each hour, a maximum of 1800 feature vectors would be
calculated if the participant was active for the entire hour
and did not interact with the phone. For each hour, h, all

feature vectors, which have an acceleration variance greater
than the threshold, were averaged to compute a single feature
vector Fdh which described the overall behaviour profile of a
participant for hour h on day d. If there was no motion for an
entire hour, then no behaviour profile was generated for that
hour. Duration measures, Υ and Λ, were then normalized in
order to represent duration measures as a fraction of an hour,
where Υ̃ = Υ

1Hour and Λ̃ = Λ
1Hour such that 0 ≤ Υ̃ ≤ 1

and 0 ≤ Λ̃ ≤ 1. The hourly behaviour profile, Fdh, was
then augmented with the normalized duration measures such
that Fdh = {Fdh, Υ̃dh, Λ̃dh}. Where Υ̃dh and Λ̃dh represent
normalized TMD and ASP measures respectively, for day
d and hour h. The overall hourly behaviour profile, Fdh
was therefore comprised of (82 + 2) = 84 features. The
normalized duration measure Υ̃dh was also used to determine
the weighting of each hour block in generating an overall
behaviour profile. For example, if there were two hourly be-
haviour profiles, one which comprised 3 minutes of movement
and the other which comprised 53 minutes of movement,
the behaviour profile which comprised 53 minutes should be
given more influence in the generation of an overall behaviour
profile. For each day d, the entire set of behaviour profiles,
F = {Fd0, Fd1, ..., Fd23}, was uploaded to the server along
with the set of duration weights W = {Υ̃d0, Υ̃d1, ..., Υ̃d23}.

3) Stage 2 (Server processing): The second data processing
stage was performed on the central server. A database on
the server stores hourly behaviour profiles F , and movement
duration weights W , as uploaded by each participant’s smart-
phone App (described in Section II-B2). The aim of stage 2
processing was to generate a single overall behaviour profile
which described the average behaviour for each participant.

The first server processing step grouped hourly behaviour
profiles, for each participant p, into hourly bins, F ph . Where
F ph = {F p0h, F

p
1h, ..., F

p
Dh}, and F ph represents all behaviour

profiles for participant p for a specific hour h for all days from
day 0 to day D and D was the total number of days recorded.
A time specific average behaviour profile, which represents the
average behaviour of a participant during a specific hour h for
all days, was computed using a weighted average as defined
in Equation 1.

F
p

h =

D∑
i=0

(
F pih ×

Υ̃p
ih

W p
h

)
(1)

W p
h =

D∑
i=0

Υ̃p
ih (2)

Ψp
α =

23∑
i=0

(F pi × ω
p
i ) (3)

Ψp
σ =

23∑
i=0

(
(Ψp

α − F
p
i )2 × ωpi

)
(4)

Ψp
δ =

23∑
i=1

(
(F pi − F

p
i−1)× ωpi

)
(5)

ωpi =

∑D
j=0 Υ̃p

ji∑23
k=0

∑D
j=0 Υ̃p

jk

(6)
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The average hourly behaviour profile, F
p

h, represents the
average behaviour of a participant at a certain time of the
day. For example, F

p

10 represents the average behaviour of
a participant between 10am and 11am for all the days a
participant had the App enabled. The sequence of average
hourly behaviour profiles, F

p
= {F p0, ..., F

p

23}, represents all
hourly behaviour profiles over the course of an average day
for participant p. The hourly sequence of behaviour profiles,
F
p

was used to calculate the overall behaviour profile, Ψp for
participant p. Equations 3 - 6 detail the different components
used to create the overall behaviour profile, which we define
as Ψp = {Ψp

α,Ψ
p
σ,Ψ

p
δ}.

The first behaviour profile component, Ψp
α, defines the

overall weighted average behaviour profile over the course
of the average day. The weighting factor ωpi is defined as
the movement duration ratio of movement occurring during
hour i versus the total movement for all hours and days
for participant p. The overall average behaviour profile, Ψp

α,
therefore combines all hourly behaviour profiles into a single
behaviour profile, where hours containing longer movement
durations have more influence on the final average behaviour
profile when compared to hours which contained short move-
ment durations. The second behaviour profile component, Ψp

σ ,
defines the overall weighted variance of the hourly behaviour
profiles over the course of the average day. This measure
takes into account the overall variability of individual hourly
behaviour profiles over the course of an average day. Fi-
nally, the third behaviour profile component, Ψp

δ , defines the
weighted rate of change of the hourly behaviour profiles over
the course of the average day. This measure takes temporal
patterns into account and evaluates how the behaviour of a
participant changes from morning to night. As discussed in
Section II-B2b, an hourly behaviour profile is comprised of
a total of 84 different features. The overall behaviour profile,
generated from the three feature vector components, therefore
contains (84 × 3) = 252 features. While it is possible that
different smart-phone models will have sensors with varying
levels of accuracy, potential issues relating to accuracy are
filtered out during the feature summary process.

C. Feature Selection

Feature selection is performed in order to reduce the number
of features used, enhance the generalization of models and
reduce the chances of over fitting during training [23]. A
Steepest Ascent Hill-Climbing based feature selection method
was implemented in this work. In order to denote chosen
features, and discarded features, a binary feature selection
mask B = {b0, ..., b216} is defined. Where B[n] = 1 denotes
that a feature is selected and B[n] = 0 denotes that a feature
is discarded. An initial solution is chosen such that B[i] = 0
for all i. A fitness function f(x, y,B) is then used to evaluate
the fitness of B, where x and y are the training and test data
sets respectively.

At each iteration, a candidate mask Bi is generated for all i,
where 0 ≤ i ≤ 252. Each candidate mask Bi is a copy of mask
B, with the exception that bit i is inverted. In other words,
each candidate mask represents a different individual feature,

i, being added to the overall set of selected features. For each
candidate mask, Bi, the fitness f(x, y,Bi) is computed. At the
end of the current iteration, if f(x, y,Bmax) > f(x, y,B) then
the feature selection mask is updated such that B = Bmax.
Where Bmax represents the candidate mask with the max-
imum fitness as defined in Equation 7. If f(x, y,Bmax) <
f(x, y,B) then the termination criteria has been reached and
the selection process will stop. At this point, the bits which
are enabled in B represent the selected features.

Bmax = arg max
Bi

f(x, y,Bi) (7)

During preliminary experiments, a number of different
regression modelling techniques were evaluated in order to
determine the best technique to carry out detailed experiments
on. Results from preliminary results showed that Support
Vector Machine (SVM) regression [24], using a Radial Basis
Function (RBF) kernel, performed best. We therefore utilize
SVMs, using RBF, for the core experiments of this work.

SVMs will be used to build the regression models such that
health status predictions can be made from behaviour profiles
Ψ. In order for feature selection to find features that best suit
the learning algorithm, a wrapper subset feature selection is
performed [25]. The fitness function f(x, y,B) is therefore
based on an SVM regression model, trained on training set
x and tested on test set y using features defined in B. The
fitness function measures the Pearson Correlation between
predicted health status δ(MB

x , y
Ψ
i ) and the actual health status

y
′

i. Where δ is the prediction function, MB
x is the regression

model trained using feature vectors x and feature mask B, and
yΨ
i is the ith behaviour profile in the test set.

D. Repeated Double Cross Validation

In order to avoid feature selection bias in the regression
performance evaluation, we implemented a repeated (M =
10) double k-fold (k = 5) cross-validation structure modelled
after that of Filzmoser et al. [26], and also utilized in a
recent study by Reynolds et al. [27]. Three nested loops
where implemented: 1) a repetition loop, 2) an outer cross-
validation loop, and 3) an inner cross-validation loop which
is contained within a Hill-Climbing Wrapper Subset feature
selection procedure. Since each participant has only a single
feature describing their behaviour, the cross validation for this
study is inherently subject-independent. Figure 3 gives a visual
overview of the cross validation method used. The outermost
loop (the repetition loop) is used to repeat the double k-fold
cross validation 10 times to assess the variability associated
with the particular data segmentation. Within each iteration of
the repetition loop, the data are randomly split into five random
segments. For each iteration of the outer cross validation loop,
one segment is set aside as the test group. The other four
segments are considered the calibration set. The calibration set
is sent to the inner cross validation loop and repartitioned into
5 segments. Each iteration uses 4 of the calibration segments to
perform feature selection and uses the remaining test segment
to compute the fitness. A set of 5 individual feature masks, Bk,
are generated for each iteration k. The individual masks are
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then combined to create a single feature mask, B, by selecting
the most common features from all individual masks. A feature
is deemed common, if it is enabled in at least 60% of the
individual feature masks.

E. Evaluation Metrics

A number of experiments were conducted to evaluate our
overall hypothesis and test if, and to what extent, motion data
can be used to predict health status. Specifically, experiments
were conducted to test the ability of our proposed behaviour
profiles to predict the 10 different SF-36 self-ratings using
behaviour profiles Ψ. Experiments used the repeated double
cross validation protocol, described in Section II-D, to perform
feature selection, training, testing and ultimately calculate
overall evaluation metrics. Three different evaluation metrics
are utilized. Firstly, Pearson correlation (ρ) is used to measure
the linear correlation between predicted health status and
ground truth health status. Secondly, Mean Absolute Error
(MAE) is used to calculate the average absolute difference
between predicted health status and ground truth health status.
Finally, Relative Absolute Error (RAE) computes the MAE
as a percentage of the standard deviation of the health status
measure.

III. RESULTS

In this Section, we discuss the results of experiments. As
discussed in Sections II-A and II-B, an Android App was
utilized to collect health status and behaviour profile data from
a set of participants from the general population. In total,
the App was downloaded 1751 times and an average of 114
hours of data was uploaded by each participant. Of the 760
participants completing the SF-36 questionnaire, a total of 371,
249 and 196 of these uploaded at least 1, 24 and 48 hours of
motion data respectively.

The proposed behaviour measures rely upon constructing
an average behaviour profile over a number of days. In order
for the average behaviour profile to accurately reflect the
actual average behaviour of a participant, the measure must be
generated from data recorded over large enough period of time
such that generalizations can be made about behaviour. We
first discuss an experiment aimed at discovering the minimum
number of hours required to generate an average behaviour
profile. An hour threshold is utilized in order to specify
the minimum number of hours of data a participant must
provide in order to be included in the experiment. For this
experiment, we evaluate 4 possible hour thresholds (24, 48, 72
and 96). For each hour threshold, the repeated double cross
validation protocol was used to compute performance metrics
for each of the 8 SF-36 concepts and the 2 component scores.
Different hour thresholds produce different size training sets.
For example, an hour threshold of 24 hours will result in more
participants being utilized when compared to an hour threshold
of 96. In order to remove any bias in results caused by training
set sizes, each of the training sets, for each of the 4 hour
thresholds, are sub-sampled such that all training sets have the
same number of participants. The 96 hour threshold produces
the smallest training set (N=148). Therefore, participants were

N=148
Threshold ρ MAE RAE
> 24 Hours 0.568 13.73 61.1%
> 48 Hours 0.639 13.49 60.3%
> 72 Hours 0.696 11.62 51.0%
> 96 Hours 0.692 11.81 51.7%

TABLE III
HOUR THRESHOLDS - PREDICTION METRICS

72 Hour Minimum
N=171

Measure ρ (SD) MAE (SD) RAE (SD)
PCS 0.707 (0.042) 4.99 (0.33) 49.9% (3.3%)
MCS 0.690 (0.059) 5.89 (0.74) 58.9% (7.4%)
PF 0.632 (0.013) 13.8 (0.62) 52.0% (2.3%)
RP 0.658 (0.053) 14.6 (1.19) 48.9% (3.9%)
RE 0.670 (0.018) 16.6 (0.81) 51.5% (2.5%)
VT 0.645 (0.048) 12.1 (1.31) 59.6% (6.4%)
MH 0.705 (0.022) 11.2 (0.51) 49.5% (2.2%)
SF 0.705 (0.045) 13.6 (1.12) 47.7% (3.9%)
BP 0.697 (0.009) 13.8 (0.35) 52.2% (1.3%)
GH 0.752 (0.021) 10.6 (0.64) 47.3% (2.8%)
Average 0.686 (0.033) 11.7 (0.76) 51.9% (3.6%)

TABLE IV
REGRESSION PREDICTION EVALUATION METRICS

removed from other training sets such that each training set
comprised 148 participants. Random participants are removed
at each iteration of the repetition loop during the execution
of the double cross validation protocol. Priority was given
for participants to remain in a sub-sampled training set if
the number of hours for that participant is close to the hour
threshold currently being tested.

Table III details the average valuation metrics, for the 8
individual SF-36 self-ratings, achieved by training the system
on the 4 different hour thresholds. Results show that 72 and
96 hour thresholds perform best with correlations of 0.696
and 0.692 respectively. While both these thresholds appear to
perform well, we utilize a 72 hour threshold for the remaining
experiments in this work. This is due to the fact that the 72
hour threshold will produce a bigger dataset, compared to 96
hour threshold, to carry out additional evaluations.

We now describe an in depth experiment, evaluating the
ability of the proposed behaviour profiles to predict individual
SF-36 self-ratings. Experiments utilize an hour threshold of
72 hours, producing a dataset comprising 171 participants.
Behaviour profiles were computed for each participant and the
repeated double cross validation protocol was used to compute
performance metrics for each of the 8 SF-36 concepts and the
2 component scores. Table IV details the individual perfor-
mance metrics for each of the SF-36 self-ratings. Individual
performance metrics shown in Table IV represent the average,
and standard deviation, evaluation metrics obtained from the
10 repetition loops during the repeated double cross validation
protocol.

Results show that, on average, the proposed behaviour
profile can be utilized to predict health status with an aver-
age MAE of 11.7. Component scores, PCS and MSC, were
predicted with a correlation of 0.707 and 0.69 respectively.
Figure 4 plots the PCS predictions for 1 of the repetition loops
in the repeated double cross validation protocol. The most
accurate predictions were made based on the GH scale, with
a correlation and MAE of 0.752 and 10.6 respectively. Figure
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Fig. 3. Feature Selection, Training and Testing Protocol Overview

5 plots the GH predictions for 1 of the repetition loops in
the repeated double cross validation protocol. Predictions for
the PF and VT scores produced the lowest evaluation metrics,
with correlations of 0.632 and 0.645 respectively. Figure 6
plots the VT predictions for 1 of the repetition loops in the
repeated double cross validation protocol.

Fig. 4. Sample PCS Predictions: Correlation (ρ) = 0.726, RAE = 47.8%.

Results indicate that the proposed behaviour profiles can be
used to predict SF-36 self-ratings with an average correlation
and MAE and 0.686 and 11.7 respectively.

A. Feature Selection

As described in Section II-C, a feature selection process
is performed in order to improve prediction performance.
In this section we give details relating to features which
were selected, for the different SF-36 self-ratings, by the
hill-climbing wrapper subset feature selection process during
the repeated double cross validation protocol. Table V details
the most common features which were selected for different
SF-36 self-ratings. It can be seen that correlation between
horizontal and vertical acceleration is an important feature in

Fig. 5. Sample GH Predictions: Correlation (ρ) = 0.747, RAE = 46.9%.

Fig. 6. Sample VT Predictions: Correlation (ρ) = 0.647, RAE = 59.5%.
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SF-36 x F Ψ SF-36 x F Ψ

PCS, MCS,
BP, GH, PF,
RE, RP, SF

Av , Ah COR δ PCS, MCS,
BP, VT, GH,
MH

Am Min σ

MCS, MH,
PF, RE, RP

Am K α PCS, MCS,
BP, VT, PF

Av MSV α

PCS, MH,
PF, RP, SF

Av MSV δ MCS, BP,
RE, SF

Av µ α

PCS, BP, PF,
RE

Am µ σ PCS, VT,
GH, PF

Av , Ah COR σ

BP, PF, RP,
SF

Av µ δ GH, RE, SF Av , Ah COR α

PCS, MCS,
SF

Gv IQR α MCS, BP,
MH

Am Min σ

PCS, BP,
VT

Av MSV σ PCS, BP,
GH

θ ROC α

PCS, MCS,
GH

Λ - σ PF, RP, SF Am Min δ

PCS, BP, PF Am FFT σ PCS, MCS,
RE

Λ - δ

MCS, BP,
SF

Υ - σ MCS, MH,
RE

Am FFT δ

x = Motion Signal
F = Signal Processing Method
Ψ = Component Processing Method, as detailed in Equations 3 - 6

TABLE V
FEATURES SELECTED FOR DIFFERENT SF-36 SELF-RATINGS

predicting health status, and was selected to predict 8 of the
10 SF-36 self-ratings (PCS, MCS, BP, GH, PF, RE, RP, SF).
Additionally, the vertical acceleration signal, Av , was the basis
for a number of features.

IV. DISCUSSION

No matter how health status is measured, it is important
that the results are interpretable. In the context of a clinical
trial, for example, a treatment group might show a 5 point SF-
36 difference when compared to a control group. However, it
is important to have a benchmark to evaluate whether this
difference actually matters. This benchmark is referred to as
Clinically Important Difference (CID) or Minimal Clinically
Important Difference (MCID). Research has shown, based on
a systematic review of 38 studies using different HR-QOL
instruments, that the MCID was consistently close to half a
standard deviation of the health status measure [28][29]. Half
a standard deviation equates to approximately 5 points for the
SF-36 component scores (PCS and MCS) and approximately
10-16 points for individual SF-36 concepts. This has been
backed up in the literature, where approximately 10, 20 and 30
points have been suggested to represent a small, moderate and
large CID respectively for COPD patients for the 8 individual
SF-36 self-ratings [30].

Some SF-36 self-ratings performed better than others. Pre-
dictions for PCS, RP, MH, SF and GH achieved error rates
under 50% standard deviation. Two results of particular inter-
est were GH and PF, with contrasting correlations of 0.753 and
0.632 respectively. Initially, we would have assumed that PF
would perform better due to the assumed direct relationship
between the PF and measures extracted from motion sensors
(i.e. physical movement). Results contradict this however.
Investigating this further, we postulate that PF performs poorer
due to the distribution of training data. Specifically, it can be
seen in Table I that the averages and standard deviations for
PF are skewed such that the majority of the distribution is
concentrated on the upper end of the scale. The limited number
of participants on the lower end of the PF scale could possibly

skew the training of the model and result in higher PF results.
This could be a potential limitation of this work where there
is relatively low number of participants which measure on the
lower end of the SF-36 scale. Additional participant numbers
would be required in order to evaluate the performance of
regression models trained on non-skewed subsets.

While overall RAE results are not consistently below 50%,
as advised in the literature, general results certainly indicate
that automatically generated behaviour data can be used to
make predictions relating to health status. To our knowledge,
this is the first work which investigates the use of sensors
for the prediction of health status and the results indicate that
this work is an important step towards automatic and objective
health status measures.

In terms of specific features that indicate health status,
experiments revealed that the vertical acceleration signal, Av ,
was significant in making SF-36 predictions. We postulate that
vertical acceleration, particularly in conjunction with the MSV
processing method, could indicate regular performance of
activities with significant vertical motion. Significant vertical
motion could relate to activities such stair climbing and sit-
to-stand movements. Measures of low vertical motion could
indicate impaired ability to perform these activities. While
measures of high vertical motion could indicate performance
of these activities with good strength and balance and could
also indicate the occurrence of more intense activities such
as running and jumping. While preliminary results indicated
that Λ on its own showed no correlation with health status, it
is likely that it complimented a number of other features as
results show Λ was the basis for two of the selected features.

A potential limitation of this work relates to the method of
SF-36 administration, where questionnaires are self-completed
by participants. Research has shown that self-completed SF-
36 results are likely to be lower than if scores were obtained
through interviewer-administration [31]. In Table I it can be
seen that the majority of the average scores are lower when
compared to the study conducted in 2007 by Burholt et al.
[20]. Another limitation relates to the method of dealing with
“periods of unknown”. Our approach solves the problem of
assigning sedentary features to a participant who is potentially
active. However, in doing this, we are discarding some data
during sedentary periods which could potentially hold relevant
health status information. Future work should consider alter-
native solutions of discovering when a participant is actually
wearing the phone and is sedentary vs. not wearing the phone.

V. CONCLUSION

Research has shown that there is a need for new accurate and
objective methods for measuring patient health status. Current
state of the art methods of making automatic predictions
relating to health status rely on costly and time consuming
manual observations about a patient’s behaviour. This paper
investigates the use of modern smartphones as a means of
computing automatically generated behaviour observations.
Moreover, investigations of how automatically generated be-
haviour observations can be used to infer health status are
carried out. Methods were proposed to compute a behaviour
profile for a participant utilizing motion sensor data from a
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Smartphone. Evaluations were then performed using a crowd-
sourced data set comprising motion sensor data and health
status information from 171 participants. Results show that, on
average, the 10 different SF-36 self-ratings could be predicted
within 51.9% of the standard deviation of the SF-36 self-
ratings. This is comparable to the suggested CID of 50%.
It can be concluded that, while prediction accuracy should
be further improved before use in a clinical setting, this work
represents an important first step towards making health status
predictions without the need for manual observations. The key
innovation of this work is that health status can be measured
using unobtrusive, inexpensive and already available hardware.
The significance of this is that it could have major benefits for
clinicians in treating patient with chronic conditions where
health status and daily life function is of relevance to treat-
ment. Without additional cost or infrastructure, it could enable
clinicians to accurately and objectively assess the daily life
benefits of treatments on an individual patient basis. Moreover,
due to the automatic nature of the system, health status could
be tracked on an ongoing basis. This could allow clinicians
to assess health status trajectory over time without the need
for a healthcare professional to record information or without
the need for patients to actively participate in the recording of
information.
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