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Abstract— This paper concerns the square lattice to hexago-
nal lattice conversion in practical hexagonal image processing,
and presents a simplified conversion method that converts the
common two-dimensional (2-D) interpolation approach to one-
dimensional (1-D) interpolation. This paper is motivated by
the sampling interval relationship between the square lattice
and the hexagonal lattice, and assumes the 2-D interpolation
kernel as separable, then changes the 2-D interpolation into
successive 1-D interpolations, and finally reduces to the 1-D
interpolation along the horizontal direction only. Compared with
the common 2-D interpolation approach, the proposed simplified
conversion method is more simple and more computationally
efficient, and it is also more suitable for parallel processing.
Finally, the experimental results verify the correctness as well
as the computational efficiency.

Keywords— Square sampling, hexagonal sampling, lattice con-
version, separable filtering

I. INTRODUCTION

The hexagonal lattice is the optimal sampling scheme for
circularly band-limited analog images [1]. Compared with
the common square lattice, the hexagonal lattice will pro-
vide 13.4% fewer samples, which means that the hexagonal
sampling and processing will be more efficient in terms of
both storage and computational costs; on the other hand, the
hexagonal lattice is also superior with respect to its geometric
properties, such as equidistant neighbors and uniform connec-
tivity, as shown in Fig. 1. Besides, the hexagonal lattice is
common in the structure of biological visual sensors, such as
compound eyes of insects [2] and retina of human eyes [3],
thus it has attracted the researchers in computer vision since
the early years. In recent years, hexagonal image processing
research has spread to applications such as edge detection
[4], [5], image registration [6], [7], image restoration [8],
hexagonal Gabor filtering [9], ultrasound image processing
[10], computed tomography reconstruction [11], and adaptive
beamforming [12].

However, the practical world predominantly uses the tra-
ditional rectangular/square lattice owing to its simplicity,
especially the familiar Cartesian coordinate system. As a
result, current commercial imaging devices, including imaging
sensors (CCD and CMOS) and displays, are almost completely
based on the square lattice. Therefore, in order to process
the hexagonal images at the present time, the first task is
to obtain the hexagonal lattice data by resampling from the

Fig. 1. Illustration of the equidistant neighbors and the uniform
connectivity geometric properties between the square lattice (left) and the

regular hexagonal lattice (right).
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Fig. 2. Illustration of the square to hexagonal lattice conversion by the
pixel clustering approach. (a) one square pixel is mapped to a new pixel

with 49 sub-pixels (7⇥7), (b) every 56 sub-pixels are clustered together for
the corresponding hexagonal pixel, and (c) the value of each hexagonal
pixel is by the average intensity of the sub-pixels within each cluster.

original square lattice. Generally, lattice conversion is a two-
dimensional (2-D) interpolation problem, and it can be easily
understood from the reconstruction and resampling frame-
work. That is, according to sampling theory, if the Nyquist
criterion has been fulfilled, the original analog image can be



completely reconstructed, and the new sampled data on the ex-
pected lattice can be obtained by resampling the reconstructed
image with the according lattice [13]. In practice, simple 2-D
interpolation kernels are often used, such as nearest-neighbor
interpolation [14] and bilinear interpolation [15]. To reduce
aliasing artifacts in classical interpolation methods, Ville et
al. [16] proposed to use hexagonal spline functions. Later,
Condat et al. [17] proposed a reversible conversion method that
is similar to the 3-pass shear rotation algorithm. In addition,
an intuitive and commonly used approach is based on pixel
clustering [18], [5], as illustrated in Fig. 2, in which the
original square lattice data are first upsampled to a more denser
version and then several square sub-pixels of the intermediate
data are clustered together to be mapped into an equivalent
hexagonal pixel.

In hexagonal image processing research, it is inevitable that
researchers will perform comparisons between an algorithm on
the hexagonal lattice and its counterpart on the square lattice;
therefore, for better comparison, it’s preferred that the source
data on both sides are equivalent in the experiments, i.e., high
quality lattice conversion is important in such cases. To reach
this goal, more accurate but also larger interpolation kernels
are generally needed. However, due to the 2-D interpolation
nature, the computational costs will be dramatically increased.
For this matter, this paper aims to simplify the conversion
process and convert the 2-D interpolation problem to 1-D
interpolations along the horizontal direction only.

This paper is mainly motivated by the relationship between
the square lattice and the hexagonal lattice. If we sample a
circularly band-limited analog image using the square lattice
and the regular hexagonal lattice separately and compare
the interval values of the two sampling lattices in the cor-
responding directions, we can observe that, if aliasing is
avoided exactly, according to the sampling requirements [1],
the interval values in one of the two orthogonal directions are
different but the interval values in the other direction are the
same (for further details, see Sec. II). This hints that the lattice
conversions may be implemented only along the direction that
has different interval values. In this paper, this direction is the
horizontal direction. Indeed, if we treat the 2-D interpolation
kernel as a separable one, we can convert the 2-D interpolation
into successive 1-D interpolations, and can further reduce the
successive 1-D interpolations to 1-D interpolation only along
the horizontal direction. Obviously, compared with the original
2-D interpolation approach, the proposed conversion method
is more simple and more computationally efficient, and it is
also more suitable to utilize the common parallel computation
resource. Finally, experiments are performed to verify the
correctness and the efficiency.

This paper is organized as follows. Section II summarizes
the 2-D sampling theory, including the square lattice sampling
and the hexagonal lattice sampling. Section III introduces
the proposed conversion method. Section IV provides the
experimental results and presents analysis of these results.
Finally, a conclusion is presented in Section V.

(a)

(b)

Fig. 3. Illustration of sampling lattices and the corresponding band regions
(redrawn from [1]). (a) denotes the rectangular lattice and (b) denotes the

hexagonal lattice.

II. 2-D SAMPLING THEORY

2-D sampling theory is the basis for the reconstruction and
resampling framework, and it is also the motiviation for the
proposed conversion method, thus we briefly introduce the 2-D
sampling theory.

Given a 2-D analog image xa(t1, t2), we consider sampling
it with the rectangular lattice and the hexagonal lattice, respec-
tively. First, the 2-D rectangular sampling is straightforward
to the 1-D sampling and can be expressed as x(n1, n2) =
xa(n1Tr1, n2Tr2), where Tr1 and Tr2 are the horizontal
and vertical sampling intervals, respectively. If xa(t1, t2) is
rectangular band-limited, as shown in Fig. 3(a), the sampling
intervals to avoid aliasing must meet:

Tr1  ⇡

Wr1
and Tr2  ⇡

Wr2
, (1)

where Wr1 and Wr2 are the horizontal and vertical bandwidths
in radians, respectively.

The hexagonal sampling lattice is illustrated in Fig. 3(b), in
which the two sampling directions are skewed but note that the
sampling intervals are defined in the two orthogonal directions.
In this case, the sampling expression is given by x(n1, n2) =
xa((n1 � 1

2n2)Th1, n2Th2). If we assume that xa(t1, t2) is
band-limited with a hexagonal band region with Wh1, Wh2,
and Wh3 defined in the figure, the sampling intervals to avoid
aliasing must fulfill [1]:

Th1  4⇡

2Wh1 +Wh3
and Th2  ⇡

Wh2
. (2)

Then, we consider the special case of the circularly band-
limited images that are common in practical imaging systems,
and check the sampling requirements of the two sampling
lattices in this special case. We define the circular band region



Fig. 4. Illustration of a circular band region embedded in a square region
(left) and in a regular hexagonal region (right) (redrawn from [1]).

as Xa(⌦1,⌦2) = 0, if ⌦2
1+⌦2

2 � W

2, where ⌦1 and ⌦2 are
the horizontal and vertical frequencies and W is the radius. To
avoid aliasing exactly, the band regions in Fig. 3(a) and Fig.
3(b) should be able to hold the circular band region exactly,
as shown in Fig. 4. In this special case, the rectangular lattice
becomes the square lattice, and the hexagonal lattice becomes
a regular one. Accordingly, the sampling requirements of (1)
and (2) become the following:

Tr1 =
⇡

W

and Tr2 =
⇡

W

(3)

for the square lattice and

Th1 =
2⇡p
3W

and Th2 =
⇡

W

(4)

for the regular hexagonal lattice.

III. PROPOSED METHOD

For the sampling of the circularly band-limited 2-D image,
as shown in (3) and (4), it is clear that the vertical intervals
in both the square lattice and the regular hexagonal lattice
have the same value ⇡/W , but only the horizontal intervals
are different for the square lattice and the regular hexagonal
lattice. This signifies that it may be possible to perform
the square to hexagonal lattice conversion only along the
horizontal direction, and it will largely reduce the square to
hexagonal lattice conversion. This is the main starting point
of the proposed method. In the following, we will prove that,
if we assume the 2-D interpolation filter as separable, this
simplification is possible and theoretically correct.

To clearly introduce the method, we choose to use the
reconstruction and resampling framework. That is, we define
the sampling intervals for square lattices as Ts1 and Ts2 and
the sampling intervals for regular hexagonal lattices as Th1

and Th2. Next, we start with the square samples xs(n1, n2) =
xa(n1Ts1, n2Ts2), reconstruct the analog image xr(t1, t2), and
then resample to get the hexagonal samples xh(k1, k2) =
xr((k1 � 1

2k2)Th1, k2Th2).
We define the interpolation kernel hr(t1, t2) in the recon-

struction as a separable one:

hr(t1, t2) = hr1(t1)hr2(t2) . (5)

Then, we can reconstruct the original analog image xr(t1, t2)

through the 2-D interpolation:

xr(t1, t2)

=
X

n1

X

n2

xs(n1, n2)hr(t1 � n1Ts1, t2 � n2Ts2)

=
X

n1

X

n2

xs(n1, n2)hr1(t1 � n1Ts1)hr2(t2 � n2Ts2)

=
X

n1

hr1(t1 � n1Ts1)
X

n2

xs(n1, n2)hr2(t2 � n2Ts2) .

(6)

Finally, we resample the reconstructed analog image xr(t1, t2)
using the hexagonal lattice:

xh(k1, k2) = xr((k1 �
1

2
k2)Th1, k2Th2)

=
X

n1

hr1((k1 �
1

2
k2)Th1 � n1Ts1)

X

n2

xs(n1, n2)hr2(k2Th2 � n2Ts2) .

(7)

As shown in (3) and (4) before, we have Th2 = Ts2 in
this case. Moreover, as a common interpolation function like
Sinc, hr2(t2) has an important property that hr2(0) = 1 and
hr2(kTs2) = 0, when k 2 Z and k 6= 0, and this results
in

P
n2

xs(n1, n2)hr2(k2Th2 � n2Ts2) = xs(n1, k2), i.e., the
interpolation along the vertical direction has been eliminated.
Then, we can obtain the following result:

xh(k1, k2)

=
X

n1

hr1((k1 �
1

2
k2)Th1 � n1Ts1)xs(n1, k2) .

(8)

It’s clear that the interpolation in (8) is indeed along the
horizontal direction only, and the 2-D interpolation has been
converted to a 1-D interpolation matter. In addition, in the
hexagonal lattice array, the odd rows stagger horizontally from
the even rows by half the horizontal interval, and this is
also clearly shown in (8). Therefore, in the 1-D interpolation
processing, we should treat this matter between the odd rows
and the even rows.

For each convolution output, its computational costs are
generally proportional to the convolution kernel size. Consider
a 2-D interpolation kernel with size N ⇥N , the size will be
reduced to 2N if the separability assumption is adopted, and
the effective size can be further reduced to N in the proposed
conversion since the vertical direction computation has been
eliminated. Obviously, the proposed method simplifies the
common 2-D interpolation conversion approach with a factor
of N . Therefore, the proposed method is more efficient in both
computational cost and the implementation.

IV. RESULTS AND DISCUSSION

In this section, we implemented the proposed conversion
method and performed experiments for two main goals, one
is to verify the correctness of the proposed method, and the
other is to demonstrate the computational efficiency against



Fig. 5. Test images used to verify the correctness of the proposed method
in the experiments: “Lena” (left), “Mandril” (middle), and “Peppers” (right).

the counterpart of the 2-D interpolation approach. Note that
the proposed method is not a specific square to hexagonal
lattices conversion method but a simplified version of the 2-
D interpolation counterpart. In this section, we implemented
three common interpolation kernels, i.e., nearest-neighbor,
linear, and cubic spline.

Firstly, we performed the conversion on test images. To
verify the correctness, we chose to compare the visual effects
among the different methods. To do this, we simulated each
hexagonal pixel with one hexagonal patch according to the
positions of the sampling lattice, and displayed the whole
hexagonally sampled data on the simulated hexagonal display.
Three test images were used, including “Lena”, “Mandril”, and
“Pepper”, as shown in Fig. 5, and the conversion results are
shown in (a) and (b) of Fig. 6, Fig. 7, and Fig. 8, respectively.

To verify the correctness, we directly compared between the
two implementations with respect to a specific interpolation
kernel, for example, the 1-D linear interpolation of the pro-
posed method and the 2-D bilinear interpolation. These results
are shown in the part (c) of the three figures, and we can
find that difference output is completely dark, indicating the
two results are the same and there is no difference. Therefore,
these results can verify the correctness of the proposed method,
i.e., the simplification of the common 2-D interpolation to
1-D interpolation. Then, we continued to compare the three
common interpolation kernels. For each test image, we chose
the result of the cubic spline kernel as the ground truth,
and computed the differences between each result and the
ground truth. The results are presented in part (d) of the three
figures. It is clear that the nearest-neighbor kernel performs the
worst, and the linear kernel performs better than the nearest-
neighbor kernel; these results are consistent with the common
conclusion.

Finally, to demonstrate the computational efficiency gained
against the 2-D interpolation approach, we performed experi-
ments on images with different sizes, and then compared the
run times between the proposed method and the 2-D interpo-
lation counterpart. In these experiments, a total of 16 color
images were used, and results listed in Table 1, in which the
unit of run times is in second (‘s’). Note that the methods were
implemented in Matlab, and the experiments were performed
on a desktop computer with Intel(R) Core(TM) i7–3770 CPU

(a)

(b)

(c)

(d)

Fig. 6. Conversion results and the comparisons on the test image “Lena”.
(a) are the conversion results of the proposed method, from left to right,

nearest-neightbor, linear, and cubic; (b) are the conversion results of the 2-D
interpolation approaches, from left to right, nearest-neightbor, bilinear, and

bicubic; (c) are the differences between (a) and (b), respectively; (d) are the
difference (10 times) of (a) against the bicubic result of (b).

@ 3.4 GHz and 16 GB RAM.
From Table 1, it is observed that the run times of the

proposed methods are faster than those of the 2-D interpola-
tion counterparts, particularly with higher resolution images.
Furthermore, for the linear kernel with N = 2, the proposed
method consumes less than 50% of the time when compared
with the 2-D bilinear interpolation approach; for the cubic
kernel with N = 4, the proposed method consumes approxi-
mately 27% of the time when compared with the 2-D bicubic
interpolation approach. These time saving values are generally



Table 1. Comparisons of the run times (in seconds) between the proposed method and the 2-D interpolation counterpart.

Images Input sizes Output sizes Proposed method 2-D interpolation
nearest linear cubic nearest bilinear bicubic

1st 678⇥1024⇥3 678⇥ 886⇥3 0.0356 0.0369 0.1675 0.0817 0.0880 0.5312
2nd 667⇥1000⇥3 667⇥ 866⇥3 0.0375 0.0429 0.1480 0.0851 0.0899 0.5246
3rd 1080⇥1728⇥3 1080⇥1496⇥3 0.0856 0.1159 0.4292 0.2097 0.2753 1.5707
4th 1080⇥1920⇥3 1080⇥1662⇥3 0.0948 0.1124 0.4647 0.2318 0.2624 1.7377
5th 1200⇥1600⇥3 1200⇥1385⇥3 0.0848 0.1040 0.4773 0.2240 0.2438 1.5990
6th 1333⇥2000⇥3 1333⇥1732⇥3 0.1458 0.1606 0.6560 0.3314 0.3611 2.2568
7th 1335⇥2000⇥3 1335⇥1732⇥3 0.1466 0.1796 0.6724 0.3370 0.3765 2.3085
8th 1366⇥2048⇥3 1366⇥1773⇥3 0.1693 0.1909 0.7772 0.3748 0.4166 2.5484
9th 1836⇥2448⇥3 1836⇥2120⇥3 0.2136 0.2716 1.1717 0.5220 0.5933 4.1543

10th 1944⇥2592⇥3 1944⇥2244⇥3 0.2098 0.2600 1.3257 0.5633 0.6522 4.9262
11th 2048⇥2560⇥3 2048⇥2217⇥3 0.2776 0.3352 1.5083 0.7338 0.8065 5.0292
12th 2136⇥3216⇥3 2136⇥2785⇥3 0.3091 0.4456 1.8248 0.7714 0.8622 6.4165
13th 2115⇥3676⇥3 2115⇥3183⇥3 0.3596 0.4916 2.1329 0.9349 1.0919 7.5219
14th 2896⇥1944⇥3 2896⇥1683⇥3 0.2426 0.3276 1.4679 0.6422 0.7070 5.3262
15th 2828⇥4272⇥3 2828⇥3699⇥3 0.5073 0.6973 3.4205 1.4217 1.6410 12.4434
16th 3280⇥4928⇥3 3280⇥4267⇥3 0.7691 0.9518 4.6304 2.0932 2.3662 16.8526

consistent with the theoretical analysis completed in Section
III.

V. CONCLUSION

In this paper, we have presented a square to hexagonal
lattice conversion method, which performs 1-D interpolation
along the horizontal direction only. Compared with the original
2-D interpolation approach, the proposed method is more sim-
ple and computationally efficient than the existing approaches,
and experimental results have verified the correctness as well
as the efficiency. In short, the proposed method simplifies
the common 2-D interpolation approach to 1-D interpolation
only, presenting an approach that would be suitable to utilize
the common parallel computation resource. Therefore, the
proposed method is valuable for practical hexagonal image
processing. Furthermore, the method can be easily modified to
perform conversions along the vertical direction, maintaining
the same accuracy and computational gain presented in this
paper.
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Fig. 7. Conversion results and the comparisons on the test image “Mandril”.
(a) are the conversion results of the proposed method, from left to right,

nearest-neightbor, linear, and cubic; (b) are the conversion results of the 2-D
interpolation approaches, from left to right, nearest-neightbor, bilinear, and

bicubic; (c) are the differences between (a) and (b), respectively; (d) are the
difference (10 times) of (a) against the bicubic result of (b).

(a)

(b)

(c)

(d)

Fig. 8. Conversion results and the comparisons on the test image “Peppers”.
(a) are the conversion results of the proposed method, from left to right,

nearest-neightbor, linear, and cubic; (b) are the conversion results of the 2-D
interpolation approaches, from left to right, nearest-neightbor, bilinear, and

bicubic; (c) are the differences between (a) and (b), respectively; (d) are the
difference (10 times) of (a) against the bicubic result of (b).


