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Abstract—The accurate detection of changes has the poten-
tial to form a fundamental component of systems which au-
tonomously solicit user interaction based on transitions within an
input stream for example, electrocardiogram data or accelerom-
etry obtained from a mobile device. This solicited interaction
may be utilised for diverse scenarios such as responding to
changes in a patient’s vital signs within a medical domain or
requesting user activity labels for generating real-world labelled
datasets. Within this paper we extend our previous work on the
Multivariate Online Change detection Algorithm subsequently
exploring the utility of incorporating the Benjamini Hochberg
method of correcting for multiple comparisons. Furthermore we
evaluate our approach against similarly light-weight Multivariate
Exponentially Weighted Moving Average and Cumulative Sum
based techniques. Results are presented based on manually
labelled change points in accelerometry data captured using 10
participants. Each participant performed 9 distinct activities for a
total period of 35 minutes. The results subsequently demonstrate
the practical potential of our approach from both accuracy and
computational perspectives.

Index Terms—Multivariate change detection, Online change
detection, Soliciting user interaction

I. INTRODUCTION

Many practical problems that are prevalent in areas such
as fault detection and recognition-oriented signal processing
can be modelled parametrically [1]. In these problem areas
change detection refers to the identification of time points
in which the parameters of a model are subject to sudden
changes in characteristics at previously unknown time instants
[1]. Change detection algorithms have been applied to di-
verse application domains such as detecting faults to ensure
quality in a manufacturing process [2], detecting changes
in seismic data to autonomously segment signals [3] and
detecting changes in a patient’s vital signs to alert medical
personnel [4]. A further, emerging application domain for
change point detection is autonomously identifying transitions
in human activity, for example from ‘stand’ to ‘walk’. Upon
identification these transitions can then be utilised as the
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Fig. 1. Overview of the Crowd Labelling Application. The user performs
an activity which is detected by the Activity Recognition module. Upon
transitioning to the activity ‘standing still’ they are prompted for a label
denoting the activity they have just transitioned from and relevant sensor data
is subsequently uploaded to cloud-based storage. [6]

starting location for window-based activity recognition [5] and
solicitation of manually labelled activity data [6].

The autonomous, accurate detection of changes forms a
fundamental component of systems that require a level of end-
user engagement upon identifying transitions within an input
data stream. Nevertheless, autonomously detecting changes in
a data stream that correspond to a user’s perception of change
represents a key challenge in the overall utility and usability
of such systems: prompting a user too little may diminish the
impact of the application whilst prompting a user too often
may negatively affect their level of engagement.

In [6] we present the Crowd Labelling Application (CLAP)
which aims to facilitate the large-scale gathering of labelled
activity data. This labelled data has the potential to provide the
research community with an invaluable resource for training
and testing activity recognition (AR) algorithms using truly
representative data collected in a free-living environment.
In Figure 1 an overview of the implemented framework is
illustrated. This framework enables the collection and labelling
of data via an Android based mobile application (app) and
currently contains two primary components: an AR module
and a labelling prompt module. The AR module identifies the
user’s current activity and contains both stationary activities,
for example ‘standing still’ and non-stationary activities, for
example ‘running’. The AR module detects activities based
on three second windows with a total of three consecutive
windows (i.e. nine seconds of data) being required. Features
within the time and frequency domains are computed for
each three second window with the three consecutive windows
subsequently assigned membership of an activity class using
a Gaussian Mixture Model. Upon detecting a transition from
an activity to ‘standing still’ the AR module initiates the label
prompting module. This module displays a screen to the user
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enabling them to click an icon representing the activity they
have just transitioned from thus providing ground truth for the
dataset.

Whilst the current version of CLAP enables data collection
in a relatively free-living scenario there are two fundamental
constraints imposed by the overall framework. Firstly, the
requirement that a user transitions from an activity to ‘stand-
ing still’ results in potentially informative inter-activity data
pertinent to real-world situations being lost. For example, the
sequence {stand still - walk - jog - run - jog - walk - stand
still} may be considered as a typical series of activities for
running. Such inter-activity data could subsequently be utilised
for training models which predict, in real-time the activity that
a user is transitioning to, thus expediting the AR process by
enabling the selection of appropriate classifiers. Secondly, the
number of false requests for interaction that a user receives is,
to some extent controlled by requiring three consecutive three
second windows containing the same activity. This results in
a delay between the user finishing an activity and receiving a
prompt. Furthermore, this approach to controlling the number
of erroneous prompts results in activities which may have an
inherently short duration, for example traversing a short flight
of stairs remaining undetected by the AR module.

Within this paper we extend our previous work on the
Multivariate Online Change detection Algorithm (MOCA) [7]
which detects changes in a multivariate data stream without
requiring prior knowledge of the component distributions.
MOCA provides two main benefits to user-facing applications
requiring autonomous change detection such as CLAP. Firstly,
MOCA includes parameters such as window size and signif-
icance values which may be adjusted depending on available
computational resources and required magnitude of change.
This ensures that MOCA is sufficiently generic and in an
integration with CLAP would negate the requirement that a
user transitions to a pre-determined activity before receiving
a prompt. Secondly, MOCA can identify the commencement
and cessation of an activity. This may be potentially integrated
with the CLAP AR module to enable active sampling [8] of
minority or previously unseen classes with the user only asked
to provide labels for such classes thus maximising the utility
of user interaction.

This paper offers two main contributions to knowledge:
firstly we measure the utility of integrating the Benjamini
Hochberg method [9] of correcting for multiple comparisons
within the domain of change detection using accelerometry
data; secondly, we evaluate our method from both an accuracy
and real-world computational perspective against the Multi-
variate Exponentially Weighted Moving Average (MEWMA)
and the Cumulative Sum Control Chart (CUSUM) based
technique developed by Mei (2010) [10]. The accuracy eval-
uation was conducted using a labelled dataset obtained from
10 participants who performed 9 activities over 35 minutes
each. The remainder of this paper is structured as follows: in
Section II we present an overview of related work pertinent
to change detection. In Section III we discuss the change
detection algorithm. In Section IV we outline our data capture
methodology with offline and online evaluations presented in
Sections V and VI respectively. Finally, conclusions and future

work are outlined in Section VII.

II. RELATED WORK

The overall aim of change point detection is to identify
transitions within an input data stream that exhibit sudden
changes in metrics such as mean or variance thus representing
a change point in time series data [11]. Change point detection
can be either classified as online or offline and is based
on the target deployment and the intrinsic characteristics of
an algorithm. The objective of online change detection is to
monitor and process a set of data points upon arrival with
a real-time constraint that processing should complete before
the next set arrives. The number of new data points within
successive sets depends on the target application, for example
in a sliding window implementation with increments of one
data point only the start and end data points will be changed.
In the offline case, data is firstly collected and then analysed
to detect change points. Online change detection algorithms
are sequential, fast and minimise false alarms whilst, on the
other hand offline change detection algorithms seek to identify
all possible change points in order to attain higher levels of
sensitivity (true positives) and specificity (true negatives) [12].

Within the literature there are a number of algorithms
for online change point detection in sensor data. One such
example is CUSUM which is considered a relatively effective
approach that utilises the mean of a process for detecting small
shifts. In [13] Zhang et al. (2009) a framework for detecting
changes in cardiovascular events using CUSUM is presented.
The core methods used in the framework are an online AR
method, a biometric extraction method and a process control
method used by the physiological monitoring module. In [10]
a CUSUM-based change detection algorithm for multivariate
data is presented that detects a change based on the global sum
of locally calculated CUSUM statistics. Results are presented
based on simulation that demonstrate optimality in minimising
detection delays. Nevertheless, a criticism of CUSUM is that
it may be inaccurate when detecting sudden shifts in data
that are not from the same distribution [14]. The univariate
change detection algorithm proposed by Jain and Wang (2014)
[15] has been used to detect changes in independent random
sequences. The algorithm consists of two stages: in the first
phase the most likely change point within a processing window
is identified. In the second stage the hypothesis that the most
likely change point is significant is proved or disproved. The
main advantage of the algorithm is that it does not require
knowledge of the underlying distribution, has a small memory
footprint and a relatively low computational cost.

The early drift detection method (EDDM) [16] has been
developed for detecting gradual and abrupt changes in time
series data. This algorithm is based on the distance between
two classification errors which are computed from the average
distance between two errors and the standard deviation. The
change point is detected if the calculated distance is less than
a threshold otherwise the new instance belongs to a previ-
ous instance. The Exponentially Weighted Moving average
(EWMA) [17] has a similar concept to EDDM however, can
update the estimate of error faster by using the exponentially
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weighted moving average. The One-Class Support Vector
Machine algorithm (OCSVM) [18] has been used for change
detection in human activities. In this approach the data is
modelled by a high dimensional hypersphere with changes in
the radi of the hypersphere corresponding to transitions within
the datastream. The Dynamic Time Warping (DTW) approach
[19] is a template matching algorithm which has been used
for gesture detection and biomedical signal processing. DTW
utilises one template for each activity with the number of
templates used directly impacting upon computational perfor-
mance.

The support vector change point detection (SVCPD) al-
gorithm utilizes the algorithm by Camci et al. (2010) [11]
to detect change points in a datastream. To detect a change
point, the algorithm uses the feature space, hypersphere and
hypersphere radius to determine the location of new data
points. The SVCPD evaluates each data point with the current
hypersphere model used to identify changes within the data
stream. An autoregressive model was used in Ombao et al.
(2004) [20] for online change point detection in time series
data and compared with likelihood based methods. The output
of this technique may be poor, however, if the structure of the
model differs significantly from an observed AR process. The
distributional change detection algorithm [21] detects distribu-
tional changes in multivariate data. The relative entropy is used
to calculate the statistical measure between two distributions
and is computed using sliding windows. Information-theoretic
techniques have also been used for detecting distributional
changes.

Offline change detection approaches have also been used
to detect changes in a time series structure. The subspace
identification algorithm was proposed in [22] for change point
detection in time series data. The underlying principle is
that the subspace spanned by the columns of an extended
observability matrix are approximately equal to those spanned
by the sub-sequences of time series data. In this technique, a
change point is detected based on the extended observability
matrix column space and assessing if the new observation
is contained in this subspace. The main advantage of this
approach is that it can accommodate more abundant types
of time series data as it utilises generic state-space models
(SSMs) as opposed to AR models or constrained SSMs. A
Bayesian algorithm was proposed by Adams and MacKay
(2007) [23] for change point detection in time series data. The
algorithm calculates the probability distribution of the current
run with the Gaussian mean and variance used as features.
The algorithm is relatively straightforward and has reasonable
computational cost.

An adaptive sliding window (ADWIN) algorithm [24] has
been used for change detection using a variable length window
containing recently observed items. The window size is recom-
puted online according to the rate of change observed from the
data with larger windows used for relatively static data and
smaller windows used for dynamic data. The adaptive win-
dowing algorithm is integrated with a Naive Bayes predictor
to detect changes within the data stream. The Kullback-Leibler
Impotence Estimation Procedure (KLIEP) [25] has been used
for change point detection in time series data. KLIEP uses the

density ratio estimation on population data however, this may
be computationally expensive to compute in high dimensional
data. The primary advantages of KLIEP are its convergence
properties and automatic model selection however, there are
criticisms surrounding its speed, robustness and that it has
convex optimisation problems. A change detection method
with feature selection for high dimensional time series data
has been proposed in [26] and is termed the additive Hilbert-
Schmidt Independence Criterion (aHSIC). It uses the weighted
sum of HISC scores between features and their corresponding
binary labels. The HSIC is also known as a kernel based
independence measure because it uses feature selection during
its detection measure estimation enabling the method to use
features which are most indicative of an abrupt change.

Overall, many algorithms within the literature require prior
knowledge about the characteristics of change points and the
data stream’s underlying distributions which may result in
them being ineffective for our target application. Addition-
ally, most require the observation of numerous estimation
parameters and also necessitate the tuning of parameters prior
to execution with a primary emphasis on accuracy rather
than efficiency. Given our exemplar target application of
soliciting data labels from users via a smartphone app upon
commencement of a new activity we require an algorithm
that has a low computational and memory footprint, does not
require prior knowledge regarding a data stream’s underlying
distributions and can be executed in real-time. These require-
ments ensure that the algorithm can be executed on limited
computational hardware such as a smartphone, can operate in
diverse scenarios for multiple users with potentially different
activity characteristics and can utilize the most recent sensor
observations.

III. MULTIVARIATE ONLINE CHANGE DETECTION
ALGORITHM (MOCA)

Within this section we present the Multivariate Online
Change detection Algorithm (MOCA) which does not require
prior knowledge of the underlying data distribution(s) and
can be executed in real-time. MOCA autonomously detects
changes in an input data stream such as accelerometry data
as follows: consider a data stream of length q consisting
of data points x1,x2, . . . ,xq . Each data point x is a B
element vector where B is the number of sensor observations
for each variable. The data stream may contain points from
multiple distributions, for example x1,x2, . . . ,xk−1 may have
distribution D1 whilst xk,xk+1, . . . ,xq may have distribution
D2. It is therefore the overall aim of the algorithm to identify
the position in the data stream of change points k (1 ≤ k ≤ q).

MOCA follows an hypothesis-and-verification principle: in
the hypothesis step a point is detected within the window under
consideration which maximises the test statistic. In the second
stage the hypothesis that a detected change point is significant
is verified.

A. Hypothesis Generation

In the hypothesis generation stage we pass an analysis
window of length n over the data stream assuming that there is
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a maximum of one change point per window. The movement
of the window over the data stream may be either distinct in
which case the start of a new window (other than the first)
is at position m + cn + 1 where m is the padding size and
c is the number of previous windows. Alternatively, a sliding
window version of the algorithm may be executed with the
start position incremented by a predetermined number of data
points. For ease of notation we denote the data points within
a window as x1,x2, . . . ,xn regardless of their actual position
within the data stream. Following Jain and Wang [15] we
pad either side of the window with m data points such that
the analysis window contains data points x1−m, . . . ,xn+m

therefore containing a total of n+2m data points. This padding
ensures sufficient data to compute summary statistics at the
window extremities and is particularly crucial when executing
a distinct window version of the algorithm; however, results
in a minimum latency of m data points.

Within each window we slide an index variable, l, 1 < l ≤ n
subsequently computing summary statistics of the component
distributions separated at l. Specifically, we compute the
means, f̄1(l) and f̄2(l), which contain the mean of obser-
vations, in addition to variance-covariance matrices, S1(l)
and S2(l), which contain the variance of observations in the
diagonals and their covariance in the off-diagonals. To ensure
that the change detection algorithm can operate in online
scenarios we compute f̄1(l), f̄2(l) and S1(l), S2(l) recursively.
Thus as index l increments to position l + 1 the summary
statistics are calculated as follows (equations 1-4):

f̄1(l + 1) =
m+ l − 1

m+ l
f̄1(l) +

f(xl+1)

m+ l
, (1)

f̄2(l + 1) =
n+m− l + 1

n+m− l
f̄2(l)− f(xl+1)

n+m− l
, (2)

S1(l + 1) =
m+ l − 1

m+ l
S1(l) +

1

m+ l − 1

×[xl+1 − f̄1(l + 1)]
′
[xl+1 − f̄1(l + 1)], (3)

S2(l + 1) =
n+m− l + 1

n+m− l
S2(l)− 1

n+m− l
×[xl+1 − f̄2(l + 1)]

′
[xl+1 − f̄2(l + 1)], (4)

where f(xl+1) is the value of the datastream at position l+1.
Having calculated summary statistics before and after l we
proceed to compute the F statistic at position l, Fl as follows
[27]:

Fl =
n1 + n2 −B − 1

B(n1 + n2 − 2)
T 2, (5)

where n1 = m+ l−1, n2 = n+m− l+1, B is the number of
variables and T 2 is the Hotelling T-squared statistic calculated
as [27],

T 2 = (f̄1 − f̄2)
′
{
Sp

(
1

n1
+

1

n2

)}−1

(f̄1 − f̄2), (6)

where Sp is the pooled variance-covariance matrix,

Sp =
(n1 − 1)S1 + (n2 − 1)S2

n1 + n2 − 2
. (7)

Under the null hypothesis (i.e. equal distributions) and assum-
ing Gaussian distributions this has an F distribution [27]. We
choose the point l which maximises Fl as the most likely
change point within a window and proceed to the hypothesis
verification phase.

B. Hypothesis Verification

A hypothesis verification stage is executed to prove or
disprove the null hypothesis that a significant change did not
occur at point l. Firstly, we compute the probability of finding
an F value lower than that calculated in Equation 5 resulting
in d. The F Cumulative Distribution Function is utilised for
this phase with B and n1 + n2 − b degrees of freedom. The
test’s p-value is then computed as,

p = 1− d. (8)

In the sliding window version of the algorithm the hypoth-
esis verification stage is conducted multiple times for a set
of datapoints which will have changed only by the window’s
increment value, i.e. only the start and end data points will
have been replaced. Thus in our previous we work we used
Bonferroni correction [28] to compute an updated threshold t,

t = α/n. (9)

This adjusts the original confidence value, α to reflect the
confidence for the entire window of size n and not a single,
isolated value with the null hypothesis rejected if p < t.
The Bonferroni method controls the familywise error rate
(FWER) where, in our approach a ‘family’ is a group of
statistical tests of size equal to the window size, when using
the sliding window version of the algorithm with increments
of one datapoint. This method seeks to reduce the probability
of even one false detection. As reported in our previous work
[7] this results in datapoints within larger windows requiring
a higher test statistic in order to reject the null hypothesis
subsequently leading to an increase in false negatives. This
is in agreement with studies in alternative domains such as
Conservation Genetics which also found Bonferroni correction
to provide an overly conservative adjusted confidence value
when using larger sample sizes [29].

An alternative approach to correct for multiple comparisons
is to control the false discovery rate (FDR). FDR proce-
dures control the proportion of Type I errors (false positives)
within a group of tests as opposed to controlling the FWER
which is the probability of at least one false positive. Thus,
methods controlling the FDR have greater sensitivity at the
potential cost of increased Type I errors. A popular technique
within the literature for controlling the FDR is proposed by
Benjamini and Hochberg (1995) [9]. This method compares
p-values against their Benjamini-Hochberg critical value. It
subsequently results in an error rate that is equivalent to the
FWER when all the null hypothesis are true but is smaller oth-
erwise [9]. The Benjamini-Hochberg method is implemented
as described in Algorithm 1. In the sliding window version
of the algorithm with increments of one datapoint the set of
tests, T will be of equal size to the window size, n.
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Algorithm 1 Benjamini-Hochberg method for controlling
False Discovery Rate
Require: A set of tests, T

1: Sort associated p-values, Tp into ascending order such that
Tpi < Tpi+1 where i is an index variable, i = 1 . . . n and
n is the sample size.

2: for i = 1 : n do
3: Compute Benjamini-Hochberg critical value associated

with each p-value,

Tbi = (i/n)Q, (10)

where i is the index variable, n is the number of samples
and Q is the chosen false discovery rate, 0 < Q < 1.

4: end for
5: Find the index of the largest p-value, Tmaxi that is less

than the associated Benjamini-Hochberg critical value, i.e.
Tpi < Tbi.

6: Label all p-values as significant that have sorted index
i < Tmaxi.

IV. EXPERIMENTAL SETUP

To enable the quantitative evaluation of human activity
change detection algorithms a dataset was collected using 10
healthy participants (three female, seven male). Each partici-
pant wore a Shimmer sensing platform [30] on their wrist to
represent a smart watch with a sampling frequency of 102.4
Hz. Additional Shimmers were located on the participant’s
sternum and lower limb to facilitate future work analysing
the optimal sensor placement for detecting changes in human
activity.

Each participant performed a total of nine distinct sedentary
and non-sedentary activities as described in Table I. The
activities were categorised as either static indicating that the
participant was asked to remain comfortably still, i.e. small
natural movements were permitted; transitional indicating that
the data captures the transition between two activities; and,
dynamic indicating that the activity inherently contains pur-
poseful human movement.

Change points were manually labelled by a human expert
based on the recorded time a participant was asked to change
activity in addition to a visual inspection of the sensor data. In
the event of a participant being unable to complete the tasks
in succession they were permitted to rest with the start and
end time recorded and the relevant sensor data subsequently
removed from the dataset. The resultant dataset contains a
continuous data stream of approximately 35 minutes for each
participant with the activities performed according to the
order in Table I. There are 95 labelled transitions for each
participant, i.e. 950 in total. The majority of transitions are
from static to dynamic or vice versa, however the dataset also
contains transitions from dynamic to dynamic, for example
walking to running.

V. OFFLINE EVALUATION

Within this Section we present results (accuracy, precision,
sensitivity, specificity) based on executing MOCA, MEWMA

and a CUSUM-based algorithm1 developed by Mei [10] on
the dataset captured following the protocol described in Sec-
tion IV; this ensures that each algorithm is evaluated using
exactly the same data. The results are based on the true positive
(TP), true negative (TN), false positive (FP), false negative
(FN) rates and were obtained using a Matlab implementation
of the algorithms. We evaluate the impact provided by con-
trolling the FDR (MOCA (Benjamini Hochberg)) as opposed
to the FWER (MOCA (Bonferroni)) and additionally compare
our algorithm against MEWMA and Mei as they provide a
similarly light-weight approach to detecting changes in an
input data stream.

A. Multivariate Exponentially Weighted Moving Average

The EWMA is a statistical method for observing a process
that averages the input data based on a points position within
a datastream such that less weight is given to older data points
[31]. The primary aim is to quickly detect small shifts based
on the EWMA statistic which is an exponentially weighted
moving average of all prior data. The MEWMA is an extension
of EWMA for multivariate data [32] and is defined as:

Zi = RXi + (1−R)Zi−1, (11)

where Zi is the ith MEWMA vector, R is a diagonal matrix
with weighting parameters λ1, λ2, . . . , λp on the main diago-
nals where p is the number of variables and 0 < λ ≤ 1 and
Xi is the ith observation vector, i = 1, 2 . . . n. The MEWMA
chart identifies an out-of-control signal when,

T 2
i = (Xi − µ0)′Σ−1

Zi
(Xi − µ0) > h, (12)

where ΣZi is the variance-covariance matrix of Zi, µ0 is the
on-target mean vector and h(> 0) is chosen to achieve a
specified in-control.

B. Sum of CUSUM

In [10] a scalable scheme for online change detection is pro-
posed based on the sum of local cumulative sums calculated in
multiple datastreams. Results are presented based on numerical
simulations that demonstrate asymptotic optimality in mini-
mizing detection delays for all combinations of affected data
streams subject to a global false alarm constraint. The change
detection algorithm by Mei [10] identifies a change as follows:
at time ∆, for each datastream the local CUSUM statistic
W

(b)
∆ is calculated recursively, where b is the datastream under

consideration and B is the total number of datastreams. The
stopping time (i.e. the time at which a datapoint is labelled as
a change), Nsum(t), is defined as,

Nsum(t) = inf

{
∆ ≥ 1

B∑
b=1

W
(b)
∆ ≥ t

}
, (13)

where t is a predefined threshold.
The dataset collected according to the protocol described

in Section IV is multivariate in nature thus requiring change

1Subsequently referred to as ’Mei’.
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TABLE I
OVERVIEW OF ACTIVITIES IN DATASET

Execution Order Label Type Description
1 Standing Static Stand for 5 minutes (min)
2 Stand-sit Transitional Stand for 10 seconds (s), sit for 10s (15 repetitions)
3 Sleeping Static Lie on sofa for 5 min
4 Stand-walk Transitional Stand for 10s, walk for 20s (15 repetitions)
5 Sit-lie Transitional Sit for 10s, lie for 10s (15 repetitions)
6 Walking Dynamic Walk on treadmill at constant speed for 5 min
7 Running Dynamic Run on treadmill at constant speed for 5 min
8 Watching TV Static Sit on sofa for 5 min
9 Vacuum Dynamic Vacuum for 5 min

detection algorithms to analyse observations with more than
one variable, for example x, y, z accelerometry values. Ad-
ditionally to ensure timely change detection for applications
such as CLAP that require user engagement it is necessary that
developed algorithms can operate in real-time. In comparison
to many of the change detection algorithms and concepts de-
scribed in related work (Section II) MEWMA has been utilised
in real-time applications to autonomously detect changes in
human physiological data such as electroencephalography
(EEG) [33] and transitions between locations based on smart-
phone movements [34]. Similarly, the algorithm developed
by Mei has been utilised for autonomously detecting shut-
down periods in chemical plants by monitoring sensor values
such as temperature and pressure in real-time. [35]. Thus,
the properties of being multivariate in nature, not requiring
prior knowledge of the input datastream’s distribution and
being lightweight i.e. can be implemented to execute in real-
time on mobile devices results in MEWMA and Mei being
directly comparable with our approach (MOCA) whilst being
representative of alternative change detection approaches i.e.
weighted moving averages and cumulative sum.

C. Evaluation

We define the positive and negative detection cases as fol-
lows: a TP is a correctly identified change. When determining
true positives a one second margin of error was included
at either side of the manually labelled change point. This
was based on half a second to accommodate any subjectivity
present in the manual labelling in addition to half a second to
accommodate variation in the human reaction time between
receiving an auditory command and commencing a motor task
[36] [37]. Thus, a detected change point was considered true if
its index in the data stream, l ∈ {z−(f) . . . z+(f)} where z is
the index in the data stream of the manually labelled change
point and f is the sampling frequency in Hz. Furthermore,
when the sensor data at a change point is examined it can
be seen that the data values increase or decrease over a
range of data points. In the sliding window version of the
algorithm this results in multiple detected changes that are
in close proximity or sequential albeit indicitive of the same
‘event’. We therefore incorporate a refractory period [38]
that represents the minimum interval between two changes
in human activity. Within this work we have utilised a fixed
refractory period of one second. We define a TN as a non-
transitional point which is not labelled as a change.

A FP is a non-transitional point which is highlighted by the
algorithm as a change in activity. In terms of user experience
this type of error is likely to be the most detrimental as it will
result in them receiving unintuitive requests for interaction.
A FN occurs when the algorithm fails to detect a change in
the user’s activity. Bearing in mind our target application this
type of error would primarily impact upon the quality of the
dataset labels as the labelling program would not request user
interaction.

As the target application relies on identifying changes in
a user’s activity we experiment with window sizes based on
those suggested within AR literature specifically three and five
seconds [39]. Within [39] and [40] the authors propose win-
dows with no overlap and 50% overlap respectively for feature
extraction with window sizes of several seconds used to ensure
that a sufficient number of activity cycles are contained within
a window, for example walking or running. For the results
presented within this Section we use a sliding window with
increments of one data point to ensure that a labelled change
is detected as soon as possible. Autonomously determining an
appropriate window increment will form part of future work
and is likely to be dependent on the computational resources
available in addition to the user’s profile for example, their
typical daily routine such as sleeping patterns and device
state for example, battery level. For MOCA and MEWMA
we experiment with four significance/FDR values: 0.05, 0.025,
0.01 and 0.005 whilst for Mei we utilize empirically observed
thresholds of 70, 80, 90 and 100.

In Figures 2 to 5 results are shown based on execut-
ing MOCA with Bonferroni correction, MOCA with Ben-
jamini Hochberg correction, MEWMA and Mei on the la-
belled accelerometry data. Overall accuracy defined as TP +
TN/(TP + TN +FP +FN) (Figure 2) was relatively high
given the disproportionate number of TNs in the data. Accu-
racy ranged from 99.84% for MOCA (Bonferroni) to 99.60%
for MOCA (Benjamini Hochberg). From an accuracy per-
spective MOCA outperformed MEWMA for all significance
/ FDR values and similarly outperformed Mei for 7 of the 8
experiments. Utilizing Benjamini Hochberg correction resulted
in lower overall accuracy than Bonferroni correction. This
was caused by the Benjamini Hochberg procedure providing a
less conservative correction than Bonferroni which ultimately
resulted in a higher number of TPs at the expense of increased
FPs. Reducing the significance / FDR and increasing the Mei
threshold led to an increase in accuracy for all algorithms.
This was caused by hypothesised change points requiring a
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(a) (b)

Fig. 2. Comparison of overall accuracy between MOCA (Bonferroni), MOCA (Benjamini Hochberg), MEWMA and Mei using 3 (a) and 5 (b) second
windows.

(a) (b)

Fig. 3. Comparison of sensitivity between MOCA (Bonferroni), MOCA (Benjamini Hochberg), MEWMA and Mei using 3 (a) and 5 (b) second windows.

higher test statistic in order to reject the null hypothesis which
resulted in less FPs.

The sensitivity defined as TP/(TP +FN) is illustrated in
Figure 3. The maximum sensitivity was 86.38% (Mei) and the
minimum was 53.43% (Mei). This is intuitive as the imple-
mentation of MOCA and MEWMA utilises all points within
the window under consideration, i.e. the data points either side
of the sliding index variable are used when determining if a
hypothesised change is significant. On the other hand, Mei
only considers data points from the left most extremity of
the window up to the index variable thus making it more
sensitive to small variations across all sensor readings. The
sensitivity of each algorithm decreased as the significance /
FDR was decreased and the Mei threshold increased due to a
higher number of FNs. From the standpoint of collecting user
labelled activity data the sensitivity of the algorithm signifies
the magnitude of change in accelerometry required before

interaction would be requested. In Figure 4 the specificity
of each algorithm defined as TN/(TN + FP ) is illustrated.
The minimum specificity measured was 99.61% (MOCA
(Benjamini Hochberg)) with a maximum of 99.86% (MOCA
(Bonferroni)). As the significance / FDR was decreased and
the Mei threshold increased the specificity of each algorithm
increased caused by a reduced number of FPs.

The overall precision (Figure 5) defined as TP/(TP+FP )
was < 20% for all algorithms with MOCA (Bonferroni)
achieving higher precision than MEWMA and Mei for each
window size and significance / Mei threshold values. The
relatively low precision results were caused by the number
of false positives in the results, for example when utilizing
MOCA (Bonferroni) on a window size of five seconds with
a significance of 0.05 there were a total of 575 TPs and
3,328 FPs. From a user’s perspective the precision represents
the proportion of correct requests for interaction. Whilst our
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(a) (b)

Fig. 4. Comparison of specificity between MOCA (Bonferroni), MOCA (Benjamini Hochberg), MEWMA and Mei using 3 (a) and 5 (b) second windows.

(a) (b)

Fig. 5. Comparison of precision between MOCA (Bonferroni), MOCA (Benjamini Hochberg), MEWMA and Mei using 3 (a) and 5 (b) second windows.

approach (MOCA) outperforms MEWMA and Mei for both
window sizes and significance / threshold values a key part of
future work will be to increase the precision of MOCA. One
approach may be to integrate a two-step approach whereby
user interaction is only requested if a hypothesised change
is determined significant and an additional criteria is met for
example, the number of times a data point is identified as a
significant change by successive sliding windows.

Overall MOCA (Bonferroni) outperformed MEWMA and
Mei for accuracy, specificity and precision metrics whilst
MOCA (Benjamini Hochberg) provided higher sensitivity lev-
els than MOCA (Bonferroni) and MEWMA. MOCA (Ben-
jamini Hochberg) provided higher sensitivity levels than Mei
for FDR and threshold values less than 0.05 and greater than
70 respectively. As the window size increased from three
to five seconds the accuracy increased for all algorithms as
there was a reduced number of FPs. This was caused by the
formulation of Equations 9 (Bonferroni) and 10 (Benjamini-

Hochberg) which compute a threshold based on the window
size thus requiring change points within larger windows to
have a higher test statistic in order to reject the null hypothesis.

It is envisaged that the selection of MOCA algorithms will
be dependent upon the objective of the application. Where a
trade-off is required between accuracy, sensitivity and speci-
ficity with an emphasis on a higher TP rate MOCA (Benjamini
Hochberg) correction for a five second window with an FDR
of 0.005 provides a reasonable solution at the expense of an
increase in FPs. On the other hand if the application emphasis
is on a higher TN rate MOCA (Bonferroni) correction for
a five second window and a significance threshold of 0.005
provides a reasonable solution at the expense of an increase
in FNs. Given our target application of soliciting user inter-
action to obtain a labelled dataset these results indicate that
MOCA (Bonferroni) is the most suitable algorithm in order
to minimise spurious requests for interaction; however, a key
part of future work will focus on improving the precision of
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MOCA.

D. Latency

The latency of the change detection algorithm refers to the
elapsed time between a transition in a user’s activity occurring
and a detected change. Latency is calculated as the number of
datapoints from a TP to the end of an analysis window of
size n + 2m datapoints. It is useful to note that in a free
living scenario the datapoint at the right hand extremity of the
analysis window represents the most recent measurement with
the number of new datapoints consistent with the increment
value used, i.e. a sliding or distinct window. The padding
region, m is utilised to ensure that there is sufficient data to
perform calculations at window extremities; however, results
in a minimum latency, equal to size of m. In this work a static
size was used for each buffer region with the length of m set to
one second. Determining an optimum value for m is likely to
be dependent upon sampling frequency and target application
and will form part of future work.

In Tables II and III mean, µ and standard deviation, σ la-
tency values are presented for three and five second windows.
Across the four algorithms evaluated an increase in window
size from three to five seconds led to an increase in the µ
and σ latency values. In Equation 7 the number of points
before, n1 and after, n2 an hypothesised change point, l is
used to scale the variance-covariance matrices to calculate
a pooled variance-covariance matrix. Thus, the number of
points after l need to be sufficient to ensure that the values of
the variance-covariance matrix are represented in the pooled
variance-covariance matrix. Furthermore, the points after l
must represent a distinct change from those before.

A consistent trend in latency was not observed as the
significance/FDR decreased and the Mei threshold increased.
This may be caused by real transitions in human activity being
significant for very high confidence values. Across the four
algorithms Mei had the lowest overall latency for all window
sizes and significance values. When a transition in human
activity occurs the sensor values increase or decrease over a
range of data points with each successive data point becoming
increasingly indicative of a change. As previously mentioned
the implementation of MOCA and MEWMA considers all
data points in a window whilst the algorithm by Mei only
considers data points up to the sliding index variable. Thus,
Mei is sensitive to small changes in values that occur across
all sensors and subsequently TPs are detected earlier than the
alternative algorithms considered.

VI. ONLINE EVALUATION

Within this Section we present empirical timings for a
smartphone based implementation of MOCA thus demonstrat-
ing its potential to operate in online scenarios on limited com-
putational hardware. The change detection algorithm presented
in Section III was implemented in Java and targeted at Android
versions 4.1 and above. The Android platform was chosen as
it currently has the largest global market share [41] resulting
in a higher number of potential users.

TABLE IV
DEVICE SETUP FOR CAPTURING EXECUTION TIMINGS

Attribute Value
Device Motorola Moto G (2nd Generation)

Android Version 5 (Lollipop)
WIFI On - Connected to test access point

Bluetooth On - Not connected to any devices
Location On

Cellular Network Off - No SIM in phone
Screen Off - Device locked during tests

Applications Open Gmail, Chrome
Sensors Polled Accelerometer
Sensor Delay 20 milliseconds

A second generation Motorola Moto G smartphone [42]
was utilised as the hardware specification can be consid-
ered representative of a low to mid-range smartphone. The
device was set up as specified in Table IV with parameter
choices designed to be representative of a typical user. Primary
smartphone functionality such as WiFi, Bluetooth and location
services were activated. The cellular network was unavailable
as the device did not have a SIM card installed. The screen
was turned off during tests by locking the device which
would typically occur when a user carries the smartphone
in their pocket. The Gmail mailbox client and Chrome web
browser opened at a static webpage (www.bbc.co.uk/news) and
remained running in a background state.

To ensure consistency with the data captured following
the protocol described in Section IV we only polled the
accelerometer. A sensor delay rate of 20 milliseconds was used
which signifies the maximum interval between sensor events
dispatched to the change detection application. This results in
a sampling frequency of approximately 50 Hz.

Fig. 6. Comparison of empirical timings between MOCA (Bonferroni),
MOCA (Benjamini Hochberg), MEWMA and Mei

To capture execution timings the device was set up as
specified in Table IV. The device was placed on a desk for
all experiments and each change detection algorithm executed
for five minutes. In Figure 6 empirical mean execution times
are shown for window sizes of three, four, five and six
seconds with the standard deviation represented as an error
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TABLE II
MEASURED LATENCY IN SECONDS FOR A 3 SECOND WINDOW OBTAINED BY EXECUTING MOCA (BONFERRONI), MOCA (BANJAMINI HOCHBERG),

MEWMA AND MEI. NOTE: A ONE SECOND BUFFER WAS INCLUDED AT WINDOW EXTREMITIES.

MOCA (Bon.) MOCA (Ben.) MEWMA Mei
(Sig./FDR)/Thresh.

0.05/70 µ = 2.29 σ = 0.43 µ = 2.28 σ = 0.52 µ = 2.34 σ = 0.42 µ = 1.01 σ = 0.49
0.025/80 µ = 2.30 σ = 0.43 µ = 2.29 σ = 0.50 µ = 2.35 σ = 0.42 µ = 1.05 σ = 0.55
0.01/90 µ = 2.30 σ = 0.42 µ = 2.27 σ = 0.43 µ = 2.37 σ = 0.42 µ = 1.12 σ = 0.62

0.005/100 µ = 2.36 σ = 0.42 µ = 2.31 σ = 0.44 µ = 2.40 σ = 0.41 µ = 1.24 σ = 0.58

TABLE III
MEASURED LATENCY IN SECONDS FOR A 5 SECOND WINDOW OBTAINED BY EXECUTING MOCA (BONFERRONI), MOCA (BANJAMINI HOCHBERG),

MEWMA AND MEI. NOTE: A ONE SECOND BUFFER WAS INCLUDED AT WINDOW EXTREMITIES.

MOCA (Bon.) MOCA (Ben.) MEWMA Mei
(Sig./FDR)/Thresh.

0.05/70 µ = 2.58 σ = 0.80 µ = 2.39 σ = 0.76 µ = 2.60 σ = 0.79 µ = 1.61 σ = 1.26
0.025/80 µ = 2.59 σ = 0.82 µ = 2.47 σ = 0.79 µ = 2.58 σ = 0.77 µ = 1.64 σ = 1.30
0.01/90 µ = 2.57 σ = 0.80 µ = 2.43 σ = 0.67 µ = 2.58 σ = 0.77 µ = 1.78 σ = 1.38

0.005/100 µ = 2.64 σ = 0.86 µ = 2.47 σ = 0.66 µ = 2.62 σ = 0.78 µ = 1.54 σ = 1.29

bar. Intuitively the execution time increases with window size
with observed mean times ranging from approximately 21 mil-
liseconds (Mei) for a three second window to approximately
135 milliseconds for a six second window (MEWMA). Overall
Mei had the fastest execution time as it primarily involves
summation (Equation 13). MOCA (Benjamini Hochberg) and
MEWMA have a slower mean execution time than MOCA
(Bonferroni) due to increased computation when executing
Algorithm 1 and Equation 11 respectively. The main source
of variability is likely to be caused by background system
processes such as ‘system server’ which provides context for
other system services and ‘sensors.qcom’ which manages the
device’s sensors.

When executing MOCA on a smartphone in a real-time free
living scenario there is likely to be two main effects caused
by constraints imposed by the hardware. Firstly, the latency
between a change occurring and its subsequent detection
will be influenced both by the potential sensor sampling
rates in addition to the device’s processing power and its
current load. One approach to mitigating this effect may be to
implement dynamic window increments that are chosen based
on the current mean algorithm execution time. Secondly, the
offline tests discussed in Section V were performed using
a computer with a 64-bit processor. It is therefore possible
that the difference in representing values between 64-bit and
32-bit processing architectures may be sufficient to have an
effect on the accuracy, precision, sensitivity and specificity
of MOCA; however, this effect would also be observed for
many alternative algorithms such as Mei. Overall, the timings
indicate that MOCA can operate in real-time on limited
computational hardware such as a smartphone.

VII. CONCLUSIONS AND FUTURE WORK

In this paper we have presented an algorithm for detecting
changes in human activity based on accelerometry data. The
algorithm utilizes the mean and variance-covariance of sensor
values and, in comparison to placing a static threshold on
these values enables the required magnitude of a change to
be set via significance values. This adaptive approach ensures

that MOCA is sufficiently generic for a range of change
detection applications without requiring prior knowledge about
the characteristics of the underlying data streams. Detected
changes can be subsequently utilised by applications such
as CLAP to solicit user interaction or within an activity
classification framework by influencing the starting position
of processing windows. In this paper we have extended our
previous work on MOCA by exploring the utility of controlling
the FDR as opposed to the FWER and additionally by eval-
uating the algorithm against MEWMA and Mei from both
an accuracy and computational perspective. Overall, MOCA
outperformed MEWMA and Mei achieving higher accuracy,
sensitivity, specificity and precision. Controlling the FDR as
opposed to FWER resulted in higher sensitivity at the expense
of accuracy, precision and specificity. This was intuitive as
controlling the FDR provides a less conservative correction
than the FWER. The algorithm by Mei had the lowest mea-
sured latency whilst MOCA (Benjamini Hochberg) achieved
lower latency than both MOCA (Bonferroni) and MEWMA.
Execution results were based on an Android implementation
of MOCA, MEWMA and Mei and demonstrated that the
execution time increased with window size.

There will be two main areas of future work: firstly we
will conduct a small scale (N ≈ 10) data collection via an
Android app with users asked to manually label when they
have changed activity. Following our previous work [6] we
will follow a semi-structured experimental protocol whereby
participants will be asked to perform a high-level task such
as ‘walk to shop’ and are shadowed by a trained observer
who also records when the participant changes activity. The
primary motivation behind this phase is to gather a labelled
dataset from all available sensors on the Motorola Moto G
smartphone (Section VI). This will facilitate the empirical
selection and further evaluation of MOCA parameters such
as window size, window increments and significance / FDR
values on data containing labels focused towards a user’s
perception of change. Secondly, a key part of future work
will focus on enhancing the precision of MOCA using for
example, a voting mechanism whereby the number of times a
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data point is identified as a significant change by successive
windows is incorporated when rejecting the null hypothesis.
Overall, MOCA represents a viable approach to autonomously
detecting transitions such as changes in human activity from
sensor data and with the incorporation of identified future
work has the potential to become an integral component of
smartphone applications such as CLAP.
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