
Autonomic Sonar Sensor Fault Manager for Mobile Robots

Martin Doran, Roy Sterritt, George Wilkie

Faculty of Mathematics and Computing

University of Ulster

Jordanstown, N.Ireland

doran-M18@email.ulster.ac.uk, r.sterritt@ulster.ac.uk, fg.wilkie@ulster.ac.uk

Abstract—NASA, ESA and NSSC space agencies have plans to

put planetary rovers on Mars in 2020. For these future

planetary rovers to succeed, they will heavily depend on sensors

to detect obstacles. This will also become of vital importance in

the future, if rovers become less dependent on commands

received from earth-based control and more dependent on self-

configuration and self-decision making. These planetary rovers

will face harsh environments and the possibility of hardware

failure is high, as seen in missions from the past. In this paper,

we focus on using Autonomic principles, where self-healing, self-

optimization and self-adaption are explored using the MAPE-K

model and expanding this model to encapsulate the attributes

such as Awareness, Analysis and Adjustment (AAA-3). In the

experimentation, a Pioneer P3-DX research robot is used to

simulate a planetary rover. The sonar sensors on the P3-DX

robot are used to simulate the sensors on a planetary rover (even

though in reality, sonar sensors cannot operate in a vacuum).

Experiments using the P3-DX robot focus on how our software

system can be adapted with the loss of sonar sensor

functionality. The autonomic manager system is responsible for

the decision making on how to make use of remaining ‘enabled’

sonars sensors to compensate for those sonar sensors that are

‘disabled’. The key to this research is that the robot can still

detect objects even with reduced sonar sensor capability.

Keywords—autonomic, self-adaption, self-healing, self-

optimization

I. INTRODUCTION

For a mobile robot to be able to navigate within its
surrounding terrain, its sensors have to be at optimal
performance. Sensors send information, in the form of
electronic signals back to the robot controller. This
information is then processed and therefore allows the robot
to make a decision on its next command action. Sonar sensors
can be used to allow a mobile robot to detect objects within its
path. Sonar sensors usually are situated on the front and rear
of the robot. The sonar sensors are typically arranged in an
‘array’ configuration, were each sensor is angled separately so
that the sensors can cover a 180° range in front of the robot.
While the mobile robot is moving, one or more of the sonar
sensors can locate an object that may be on the robots path.
However, what if there was a hardware issue with some of the
sonar sensors? The ability to detect objects would be greatly
reduced.

Planetary rovers use both cameras and sensors to navigate
the terrain of a moon or a planet. Sensor failure would mean a
severe impact on mission objectives. Experimental planetary
rovers such as the SR2 [1], use range finders to help them

detect objects. Even before the autonomic concept [2],
researchers have been looking at fault tolerance as a
biological unit, were fault detection was handled with
adaptive sensor analysis [3]. Further has also shown that by
comparing the known state and actual sensor feedback of a
collection of sensor nodes, could lead to the detection of single
sensor drop-outs. If sensor failure is identified, then
compensation could be possible by using known values
instead of the measured ones [4].

The autonomic ‘self-adaptive’ approach implies that even
with reduced sensor functionality, it is possible to carry on
with mission objectives, by making use of what sensor
functionality is still available. Autonomic ‘self-awareness can
also be employed to detect early signs of degradation in
sensors. Using knowledge gathered from previous missions,
regular health checks can detect if a particular sensor module
is not performing at an expected level. Autonomic self-
adaptive principle reacts to an unforeseen situation, like
damaged caused to sensors. The autonomic self-awareness
can initiate a change in the mission strategy, if the predicted
failure could jeopardize mission objectives.

II. PREVIOUS WORK

Previous work [5] detailed how a damaged wheel on a
mobile robot caused the robot to veer off to the left (or right),
depending on what wheel was had faulted. Policies were
initiated within the autonomic management system to
compensate for the wheel alignment problem. The mobile
robot was able to self-adapt even with the wheel fault and
therefore continuing to function. For this paper, we want to
explore how a mobile robot can detect objects after it has
suffered failure to some of its sonar sensors. Using autonomic
principles, we want to investigate how self-analyzing can
detect faults within the sonar sensor array and then employ
self-configuration and self-adjustment protocols to
compensate for the limitation in sensor detection.

III. RELATED WORK

In our research, the detection of sonar sensor faults forms
part of our experimentation into self-diagnosis. Sensors faults
do not always show themselves as simply being non-
functioning or disabled. The intermittent fault or under-
performance fault are the most difficult to detect [13]. In this
research, the authors use Evidence, Fault and Value nodes to
recognize hardware faults by observing the change of the
sensor data over time. They described small deviation and big
deviation to evaluate the extent of the sensor error. In our

approach we use tolerance ranges to decide if a sensor is
performing correctly.

Detection of abnormal behavior in sensors can also be
achieved by comparing sensor data with neighboring sensor
data [14]. In this research the authors take input readings of
the sensors and subject them to a correlation test that
determines which sensors are correlated to each other. In our
research, the data from suspected sonar sensors is checked by
using adjacent sonar sensors; if the results between the sonar
sensors do no match, then we can declare the suspected sensor
as being faulty.

There have been several activities in the US regarding the
research in loss of sensor function. For example, in [12], the
authors use Organizational-based Multi-agent System model
(OMAS), to describe sonar sensor capability loss in robots. If
a sensor losses functionality, then another sensor is
substituted, that can carry out at least some or all of its
predecessor capability. Organizational rules are applied to
decide what agent roles can one sensor be applied to another
sensor.

The Related Work contributions all involve detection of
sensor failure from a fault tolerance and diagnosis approach.
Our research centers on detection, analysis and adjustment of
sensor faults using autonomic principles; by employing
specialized algorithms, we can adapt the affected hardware
systems to continue to function even when functionality has
been greatly reduced.

IV. AUTONOMIC MODEL

In 2001, IBM made a commitment to the conceptual ideas
of autonomic computing. The main goal was to create systems
that could self-manage and take appropriate action when
facing system failure [19].

Self-diagnosis is not only concerned with the discovery of
potential fault but also the severity and consequences relating
to the fault [15]. Self-configuring has the ability for a system
to automatically adjust itself when faced with changing
conditions. Self-healing is concerned with recovery and
repairing itself when dealing with unexpected faults. Self-
optimizing has the knowledge of tolerance and performance
values. It can then use known policies to maintain optimal
performance and employ new policies to improve
performance. Self-protecting is part of the autonomic system
that can detect and mitigate possible threats. It can also
establish what could potentially be a threat and use known
policies to handle this threat [5].

The autonomic computing system requires sensor
channels to sense possible changes within the internal and
external environment; it will also require motor channels to
react to those changes [16]. Including autonomic principles in
the software design of a robotic architecture, could extent the
robot operating time in the field. The main challenge in
designing an autonomic system is that all possible fault
scenarios cannot be anticipated; rather design a system that
can detect and resolve problems at run-time [17].

The MAPE-K (Monitor-Analyse-Plan-Execute over a
knowledge base), feedback loop model is the standard model
to describe autonomic and self-adaptive systems [2]. The
Knowledge component collects and maintains data from

managed system and retains policies which can be shared with
the MAPE components. See Figure 1. The Monitor (M) takes
in data in from sensors and stores the data in (K) Knowledge.
The Analyse (A) performs analysis to establish if adaptive
measures are required. If adaption is required, then the
information is passed onto Plan (P) to trigger a policy
algorithm that will compensate for the fault condition. The
Execute (E) will deliver the policy commands via the effectors
[18].

Figure 1. MAPE-K feedback loop.

The components found in the MAPE-K feedback loop can
be adapted to form the architecture of the Autonomic Sonar
Manager (see Figure 2).

Figure 2. The Sonar Manager Architecture (AAA-3).

The Sonar Manager Architecture comprises of three
layers; the Awareness Layer, Analysis Layer and Adjustment
Layer (AAA-3). The AAA-3 layers are based on the MAPE-
K components from Figure 1. The AAA-3 Layer
configuration is used to map our sonar sensor manager
architecture, rather than using the traditional MAPE
configuration. However, there is over-lapping between the
MAPE and AAA-3, regarding components such as Analyse
and Execute (see Figure 2). The Main Task loop controls the
normal robot operations. The ‘health check’ loop runs at
periodic intervals, to determine the health of the sonar sensors.

1. Awareness Layer

The Awareness Layer can only perform a limited amount
of processing. The main function of the Awareness Layer is to
decide if there is a failure within the sonar sensors. If failure
is detected, then the information is passed to the Analysis
Layer for processing. The Awareness Layer can detect if there
are unusual readings between adjacent sonar sensors; the
Awareness Layer will then record those sonar sensors under
suspicion and pass this information to the Analysis Layer.

2. Analysis Layer

The Analysis Layer uses data received from the
Awareness Layer to establish the extent of the sonar sensor
failure. This Layer will map out what sonar sensors have been
disabled and pass this information to the Adjustment Layer.
The Analysis Layer will also check those sonar sensors that
have been marked as suspicious; it will use a checking
algorithm to verify if a sonar sensor is performing within
expected parameters. If a sonar sensor if reporting invalid
data, then that sonar sensor is marked as being disabled.

3. Adjustment Layer

The Adjustment Layer receives data from the Analysis
Layer showing what sonar sensors are currently disabled. The
Adjustment Layer will then decide what algorithm (from the
policy library) is appropriate to handle the fault condition.
When the algorithm has been executed, the instructions are
passed from the Adjustment Layer to the Effectors.

V. PIONEER P3DX ROBOT AND SONAR SENSORS

The Pioneer P3DX is a research laboratory robot that has
two independent drive systems for each wheel. The robot
contains an on board computer that can be uploaded with user
defined programs such as a Microsoft Windows operating
systems and .Net application. The P3DX is equipped with two
sets of Polaroid sonar sensors arrays. The Polaroid sonar
sensor array comprises of 8 electrostatic transducers and a
sonar ranging module, see Figure 3 and Figure 4. The
individual transducers are controlled by the ranging module.
The ‘echo’ signals captured by the transducers, allows the
ranging module to calculate ranges from 6” to 35ft [6].

Figure 3. Pioneer P3DX fitted with the Polaroid Sonar Array (front and

rear). There is also a Bumper Array fitted.

Figure 4. Polarid Sonar Sensor Transducer is used for operations in air at

ultrasonic frequencies.

The Sonar sensor array is manufactured in such a way that
each of the sonar transducer are set at different angles from
the center of the robot, see Figure 5. This allows for maximum
detection of the surrounding terrain and obstacles within the
robots path. Each sonar sensor is allocated a number; 0-7 for
the front array and 8-15 for the rear array.

Figure 5. The sonar sensors are arranged at different angles from the

center of the P3DX robot, so that maimum dectection coverage is achieved.

VI. SONAR SENSOR PROBLEMS

Ranging sensors like sonar are widely used in research and
industrial robotics. They allow a robot to see an object without
actually coming into contact with it. However, sonar sensors
are limited in range and can also suffer from ‘Ghost’ echoes,
where there is dense obstacle distribution and complex
surfaces on objects [10]. In this Paper, we are concerned only
with sonar sensors detecting objects; rather than the
performance level of sonar sensors detecting obstacles of
different shape and texture, located in varying environments.

If sensor hardware fails (or loses its calibration), then there
is no choice but to abandon the sensor [8]. When a sonar
sensor(s) becomes faulty, it can impact the robots ability to
navigate in various ways. A single sonar sensor fault would
only result in a minor reduction in the robots object detecting
ability. The faulty sensor can then be compensated for, if
necessary, by a neighbouring ‘working’ sensor. Detection of
a faulty sonar sensor on the P3-DX is typically discovered by
reading a value of ‘5000’, from the sonar array readings. This
can be a result in the failure of the sonar micro-controller or
where the physical connection to the sonar has been severed
[11]. However, a more difficult sonar fault to detect is where
the sonar is reporting some data but this data is inaccurate, due
to an impact (from the surrounding terrain) on the sensor
itself, which has distorted the readings. Figure 6 shows how
we classed various sonar sensors failures (states), for the P3-
DX robot.

Figure 6. Failure states for the Sonar Sensors on the P3-DX Robot. (a)

IsNormal – all sonar sensors are working as expected. (b) IsMinor – one or

two sonars are either disabled or reporting errornous data. (c) IsMajor – a

loss of 3 or more (but not all) sonars, providing only limited sensing ability.
(d) IsCatatrosphic – all forward facing sonars are disabled. No ability to

detect objects on immediate path.

VII. SOFTWARE FRAMEWORK

Software Development for this paper is carried using the
MRDS (Microsoft Robotics Developer Studio). MRDS is a
.Net based programming environment for building robotic

applications. Code development was implemented using C#
in Microsoft’s Visual Studio environment [7].

To create robot movement commands and sonar sensor
readings, it required implementation of event driven
commands that are integrated into state-based processing
behaviors using a standard state machine concept [7]. The user
Interface provides a means of controlling the movement of the
robot and also monitoring the sonar values from the front and
back sonar arrays. The user interface also provides error
reporting for any faulty sonar sensors; this includes sonar
sensors that are not showing any readings – (total failure) or
sonar sensors that are not reporting data as expected.

VIII. SONAR SENSOR FAULT EVALUATION

 From the failure states shown in Section VII, we will
evaluate states IsNormal, IsMinor and IsMajor. The states
IsMinor and IsMajor both involve sonar sensor faults but
these states are recoverable, in that, it is still possible to detect
objects even if some of the sonar sensors are disabled.

1. Frontal sonar sensor test (IsNormal)

In the first experiment, we tested the effectiveness of the
sonar sensor array to detect objects. A regular object was
placed at different angles from the robot; these angles were
calculated using the fixed position of each of the sonars on the
robot (see Figure 5.). Sonars 1-6 on the sonar array are only
used, as they are the forward facing sensors. As the robot
moves, sonar data is analyzed; when the data reported back
from the sonar sensors reaches a object range value, then the
robot is issued a STOP command. In this experiment, the
object range value was set at 250mm. Even with a STOP
command, there is some additional forward moment due to the
robots momentum before it comes to a complete stop. Table
I shows the values for each of the sonar sensors as they detect
the object in their path.

TABLE I. FRONTAL SONAR SENSOR TEST (NO SONAR FAULTS)

Angle of the

Object to the

Robot

Sonar Position on the array

1 2 3 4 5 6

50° 983 982 982 983 983 232
30° 817 818 817 817 237 818
10° 711 712 712 238 714 713

-10° 703 704 242 704 704 704

-30° 783 240 784 784 784 784

-50° 241 989 987 988 987 987

The grey cells denote the value of the sonar readings in

mm, when an object has been detected.

2. Single sonar sensor evaluation (IsMinor)

If a sonar sensor has become disabled, due to an internal
electrical fault or an impact from an object in the surrounding
environment, this is reported to the system ‘manager’ as a
reading of ‘5000’. However, in some cases, the sonar sensor
is reporting what looks like a valid reading (not 5000) but in
fact this reading could be false. The sonar may have received
some slight damage or there could be a possibility of electrical
data transmission becoming unstable.

 The Awareness Layer, discussed in Section IV, is
responsible for investigating suspicious readings reported

from the sonar array. While the robot is performing its allotted
tasks, a ‘health check’ loop is performed to assess the data
reported by the sonar sensors; for example, Sonar 4 in the
array is reporting value of 415, Sonar 5 a value of 245 and
Sonar 6 a value of 417; then Sonar 5 may need checking, as
its value is considerably lower than Sonar 4 and Sonar 6.
However, Sonar 5 could be detecting an object and reporting
a correct reading; this can be verified by using the adjacent
sensors to check the reading is valid.

Figure 7. Shows how the Sonar sensor tolerance range is calculated. This

calculation is used when comparing the distances between neighboring
sonar sensors and an object – show as (d).

When comparing the values of neighboring sonar sensors,
we need to take into account the location of the sonar sensors
on the P3-DX robot. The forward facing sensors on the sonar
array (1-6), are arranged as part of an octadecagon design.
Therefore, if a particular sonar sensor has detected an object
square-on, then the neighboring sensor can also detect this
object but at extended distance value. Figure 7 shows how the
difference value between two sonar sensors looking at the
same object, is calculated. The value is described as the
tolerance range.

𝑏 = (
𝑎1+𝑎2

𝐶𝑜𝑠(𝛼)
)

𝑡𝑟 = (𝑏 − 𝑎1) − (𝑎2)

The tolerance range value can now be applied to
Algorithm 1 (Table II), were all the sonar sensors are checked
for any unusual values. In Figure 7, Sonar five has detected
object (d), we therefore can use Sonar four and Sonar six to
check the distance value reported by Sonar five is indeed
correct. The Highlight Disparate Readings algorithm can

identify what readings are significantly different from their
immediate neighbors – see Table II (Algorithm 1). The
Highlight Disparate Readings algorithm is contained in the
Awareness Layer. If a sonar sensor requires checking, then
this information is passed to the Analysis Layer for processing
(see Table III).

TABLE II. (ALGORITHM 1) - HIGHLIGHT DISPARATE READINGS

1: sr[] = sonarReadings[] (readings from P3-DX sonars 1-6)

2: tr = tolerance range

3: sonarCheck[][] (write sonar position and distance reading)
4: x = 0

5: sn = 1

6: for (sn < number of sonars) do
7: if (sn is == 1) then

8: differenceValue = (sr[sn+1] – (sr[sn]

9: else if (sn is == 6)
10: differenceValue = (sr[sn-1] – (sr[sn]

11: else (sn is > 1 && sn is < 6)
12: adjacentDiffValue = (sr[sn-1] – (sr[sn + 1])

13: if (adjacentDiffValue is < tr) then

14: differenceValue = (sr[sn+1] – sr[sn]
15: end if
16: end if
17: Check the differenceValue a greater than the tolerance range
18: If it is greater, then that sonar will need checking

19: if (differenceValue > tr)

20: sonarCheck[x][0]= sn
21: sonarCheck[x][1]= sr[sn]

22: end if
23: x = x + 1
24: end for
25: return (sonarCheck)

If during the Highlight Disparate Readings process, a

sonar sensor is identified for checking i.e. sonarCheck[x], the
Checking Sonar Readings algorithm is then deployed. The
Checking Sonar Readings is contained in the Analysis Layer
and will issue commands to the robot to use the neighboring
sonar sensors adjacent to ‘sonarCheck[x]’ to check if the
reading reported by sonarCheck[x] was indeed correct.

TABLE III. (ALGORITHM 2) – CHECK SONAR READINGS

1: sonarCheck[][] contains the sonar position and readings

2: sr[] = sonarReadings[] (readings from P3-DX sonars 1-6)
3: sc = 0

4: col = 0

5: ra = 20°
6: for (sc < number of sonarCheck rows) do

7: if (sonarCheck[sc][col] == 1) then

8: RotateRobot(-ra)
9: checkReading = sr[sc+1]

10: end if
11: if (sonarCheck[sc][col]== 6) then

12: RotateRobot(ra)

13: checkReading = sr[sc-1]

14: end if
15: if (sonarCheck[sc][col] > 1 && sonarCheck[sc][col] < 6) then

16: RotateRobot(-ra)

17: SonarReadingA = sr[sc-1]
18: RotateRobot(ra)

19: SonarReadingB = sr[sc-1]

20: checkReading = SonarReadingA + SonarReadingB / 2
21: end if
22: diffValue = (checkingReading – sonarCheck[sc][col +1]

23: if (diffValue > tr) then

24: sonarCheck[sc][col] = disabled

24: end if

26: sc = sc + 1

27 end for

28: return (disabled Sonars)

The process performed by Algorithm 2 (Table III),
involves using two neighboring sonar sensors to be rotated to
the original position of ‘sonarCheck[x]’. If the readings
reported by both sonar sensors are different from
‘sonarCheck[x]’, then ‘sonarCheck[x]’ will be tagged as
being disabled. If ‘sonarCheck[x]’ is at position one or six,
then it will have only one neighboring sonar sensor available
for checking. If the reading reported by this one sonar is
different from ‘sonarCheck[x]’, then ‘sonarCheck[x]’ will be
tagged as being disabled. All sonar sensors tagged as being
disabled will be handled in section IX.

3. Frontal sonar sensor evaluation (IsMajor)

If a sonar sensor becomes disabled, it returns a value of
‘5000’ as a default to the sonar reader. Sonars sensors can also
become disabled if, when processed through Algorithm 2,
their distance readings proved to be unreliable. To emulate
sonar sensor failure, rubber caps can be placed over the
transducer to disable it. If the robot loses 50 percent of the
sonar sensors, it can be completely blind on one side. For the
robot to detect an object on its now ‘blind’ side, it will have to
rotate on its center and use those remaining sonar sensors to
locate the object. The amount of rotation required depends on
the number of sonar sensors that have become disabled and
the location of each sensor on the sonar array (see Figure 5).
We use the Awareness Layer to establish if there is a problem
with one or more of the sonar sensors. If a reading of ‘5000’
is reported by one or more of the sonar sensors, the P3-DX is
issued a STOP command; likewise, if the bumper sensor on
the P3-DX robot is also triggered, this action will also issue a
STOP command. The Analysis Layer is then notified that
there is a fault with one or more of the sonar sensors. Analysis
is then performed to establish what sonars are disabled and
their position on the sonar array. Each sonar position on the
sonar array also carries an angle value relative to the center of
the P3-DX (See Figure 5). This information is then passed to
the Adjustment Layer, so that calculations can be performed
to establish how the remaining enabled sonars sensors can be
used to compensate for the disabled sonar sensors.

IX. SONAR SENSOR FAULT COMPENSATION

1. Frontal sonar sensor compensation (handling disabled

sonar sensors)

The compensation policy deals with faults for the six
forward facing sonar sensors. The two side sonar sensors zero
and seven (see Figure 5), are not required for this
demonstration.

Compensation for the faulty sonar sensor will require a
deliberate ‘stop’ and ‘rotate’ strategy. The fully working sonar
sensors will need to be rotated to a position where they can
replace the faulty sonar sensor(s). The more sonar sensors that
are lost, then the more rotation commands by the robot are
required to locate an object. Using the six sonar sensors in an

array, there can be sixty-four possible combinations using
binary notation. Combination ‘1’ = 000000, all sonars are
working correctly (no action required) and combination ‘64’
= 111111, all sonars sensors are disabled (the robot has no
ability to detect an object); this leaves sixty-two possible fault
combinations. Table IV shows an example of how much the
robot needs to rotate (clockwise or anti-clockwise) in-order to
compensate for the loss of some sonar sensors. A single sonar
fault will only require one rotation of the robot whereas a loss
of three or more sonar sensors could require the robot to rotate
at three different stages. It must be noted, that if for example,
the robot is required to rotate +20 degrees to compensate for
a disabled sonar sensor: after the compensation reading has
been checked, the robot will be rotated back to its original
position. This guarantees that the robot is always pointing to
its original heading angle.

TABLE IV. FRONTAL SONAR SENSOR FAULT

Table IV shows the amount or rotation (degrees) required by the P3-

DX robot, in-order to locate an object using the available sonar

sensors.

Enabled sonar

sensor position

used to

compensate

Angle of

enabled sensor

on the sonar

array

Disabled Sonar

Sensor position

(and angle).

Rotation(s)

required

Scenario 1 – the sonar sensor at position 3 has become disabled

2 30° 3 (10°) -20°

Scenario 2 – the sonar sensor at position 3 and 2 have become disabled

4 -10° 3 (10°) +20°

1 50° 2 (30°) -20°

Scenario 3 – the sonar sensor at position 2, 4, 5 and 6 have become
disabled

1, 3 10°, 50° 2(30°), 4 (-10°) -20°

3 10° 5 (-30°) -40°

3 10° 6 (-50°) -60°

Scenario 4 – the sonar sensor at position 1, 2, 3 have become disabled

4, 5, 6 -10°, -30°, -50°
3 (10°), 2(30°),

1 (50°)
+60°

Figure 8 shows Scenario 4 (from Table IV), how the robot

is rotated to compensate for the disabled sonar sensors.

Figure 8. Shows sonar sensors (1-3) as disabled; they are ‘blind’ to object

OB. (a). The Compensation Policy is used to establish that a 60° clock-

wise rotation, can allow the P3-DX robot to detect object OB.

2. Frontal sonar sensor compensation (algorithm)

When disabled sonar sensors are first discovered, the P3-
DX robot is stopped and analysis takes places to evaluate the
extent of the fault. Table IV showed examples of what

rotation commands are required for various sonar fault
scenarios. The sixty-two possible sonar sensor fault
combinations will require different robot rotation
calculations, so that the P3-DX robot can utilize the remaining
enabled sonar sensors to compensate for the disabled sonar
sensors. Algorithm 3 (Table V), shows the rotation angles
are calculated for any of the sixty-two possible sonar sensors
fault scenarios.

TABLE V. ALGORITHM 3 - COMPENSATION FOR DISABLED SONAR

SENSORS

1: sonarArray[6] enabled/disabled sonar sensor positions

2: disabledArray[] disabled sonar angle position values

3: enabledArray[] enabled sonar angle position values
4: lsa = -50° lowest sonar sensor angle

5: hsa = 50° highest sonar sensor angle

6: ia = 20° incremental angle
7: av = 0 angle value for each sonar sensor

8: Calculate the array angle position for enabled/disabled sensors

9: i = 0
10: for (av = lsa ; av < hsa + 1; av = av + ia) do

11: if (sonarArray[i] == disabled) then

12: disabledArray[i]= av
13: end if
14: if (sonarArray[i] == enabled) then

15: enabledArray[i]= av

16: end if
17: i = i + 1

18: end for
19: Combine disabledArray[] and enabledArray[] values to establish

20: the difference value required for an enabled sonar array to take
21: the place of a disabled sonar array

22: combinationArray[] combined disabled/enabled array values

23: ii = 0 inner index
24: oi = 0 outer index

25: av = 0 reset angle value

26: for (da < number in disabledArray) do
27: for (av = ia ; av < hsa + 1; av = av + ia) do

28: if (enabledArray[ii] == (disabledArray[oi] + (-av))) then

29: combinationArray[ii] = av
30: end if

31: if (enabledArray[ii] == (disabledArray[oi] + (av))) then

32: combinationArray[ii] =- av

33: end if

34: ii = ii + 1

35: end for

36 oi = oi + 1

37: end for

38: Sort the CombinationArray[] according to the values closest to
39: Zero (The Robot centre line 0°). This ensures the robot will rotate

40: the minimum of times in-order to compensate for the disabled

41: sonar sensors. Store the results in the calcArray[]
42: calcArray[] sorted angle values needed for compensation

43: for (ca < number in combinationArray) do

44: var nearest = ca.OrderBy (x => math.abs(long) x-0)).First()
45: Remove the nearest value found from the combinationArray[]

46: combinationArray.RemoveAll(item => item == nearest

47: calcArray.Add(nearest)
48: end for
49: Use the calcArray[] to work out the rotationCommand values

50: foreach(int calc in calcArray) do
51: ii = 0 inner index

52: for(ea < number in enabledArray) do

53: if(disabledArray.Contains (ea[ii] + calc) then
54: disabledArray.Remove(ea[ii] + calc)

55: rotationCommand.Add = calc

56: end if
57: i = i + 1

58: end for

When Algorithm 3 has been executed, it will return the

rotation values required to compensate for the fault
(depending on the number of sonar sensors that are disabled).

3. Frontal sonar sensor compensation (rotation patterns)

Figure 9 shows a chart plotting the number of robot
rotations required for a particular sonar sensors fault
scenarios. Figure 9 shows thirty-one sonar sensor fault
combinations (alternate combinations from the sixty-two
possible sonar fault combinations on the P3-DX robot sonar
array). The position of the disabled sonars sensors on the
robots sonar array can result in different rotation
requirements. For example, in Figure 9, scenario 11 has three
disable sonar sensors and scenario 13 has also three disabled
sonars; however, it only requires one robot rotation to
compensate for scenario 11, whereas it takes two rotations to
compensate for scenario 13.

Figure 9. Shows how the increased number of disabled sonars sensors

will also result in a increased in robot rotations to compensate for the fault.

Discovery of a sonar sensor fault causes the robot to STOP
and triggers an evaluation process to establish the extent of the
fault. When the fault has been analyzed and the compensation
policy has calculated the robot rotation(s) (see Algorithm 3)
required, the robot can continue its allocated task. However,
because the P3-DX robot is in a failure mode, the robot is
stopped at pre-defined intervals to check if there any obstacles
in its path. Figure 10 shows that the P3-DX robot is stopped
every 200mm intervals; this is to ensure the robot does not
strike an object while in sonar failure mode. When the robot
is stopped, it then rotates on its axis according to the rotation
instructions established from using the compensation
algorithm (see Algorithm 3, Table V). The robot will only
declare an object has been detected, if that object is within a
certain threshold distance. If, after a robot rotation has been
executed and an object detected, then the robot can apply its
Obstacle Avoidance policy. The robot will have to maintain
the sonar sensor fault compensation policy for the remainder

of its task while the sonar sensors are reporting a fault
condition. Extensive sonar sensors faults will result in
multiple rotations by the robot at each STOP interval and
consequently result in the task taking a longer time to
complete. On a shorter journey this may not present any issues
but if the robot is executing a task involving a long distance,
then this could have an impact on resources like power
consumption.

Figure 10. When the robot has entered sonar failure mode; the robot is

stopped and rotated at specific intervals during its task; an object OB can

be discovered during a rotation event.

X. CONCLUSION AND FUTURE WORK

The purpose of this research paper was to apply autonomic
principles to the problem of managing sonar sensor hardware
failures. In our approach, we extended the current autonomic
MAPE architecture by introducing the AAA-3 layered
architecture. This approach gave us the ability to detect sonar
sensor faults, process the extent of the fault and finally make
the necessary adjustments to allow the P3-DX robot to detect
objects, even with reduced functionality. However, our
experiments showed that as the number of disabled sonar
sensors increased, then the time for the robot to complete its
task greatly increased. Recording the journey time and power
usage, was not part of this research paper but they would have
to be seriously considered if the experiment was extended for
real-time tasks.

An important lesson learned during this research is that
hardware failure cannot always be observed by the User,
especially those in sub-systems [9], as we found in sonar
sensors that reported inconsistent data.

In the future, we would like to adapt our Sonar Sensor
framework architecture to other mobile robot sensors,
including laser and stereo cameras. In the past we have
experimented with mobile robot wheel faults [5]. Our main
goal is to develop a autonomic generic framework that can
handle varying types of sensor and effector faults.

REFERENCES

[1] D. P. Miller, T. Hunt, M. Roman, S. Swindell, L.Tan and A.
Winterholler,“Experiments With a Long-Range Planetary Rover,”
University of Oklahoma Norman, OK, 73019 USA

[2] D. M. Chess, A. Segal, I. Whalley, and S. R. White, “An architectural
blueprint for autonomic computing,” IBM Corporation, 2004.

[3] T. Huntsberger,“Fault Tolerant Action Selection for Planetary Rover
Control,” University of South Carolina, Columbia, SC 29208, USA

[4] T. Kohler, E. Berghofer, “Sensor Fault Detection and Compensation in
Lunar/Plantary Robot Missions,” University of Bremen, 28359,
Germany

[5] M. Doran, R. Sterritt, G. Wilkie, “Self-Adaptive Wheel Alignment For
Mobile Robots,” IARIA Conference, Rome, 2016

[6] Adept Mobile Robots. Pioneer 3 Operations Manual, Version 6, 2010.

[7] Microsoft. Microsoft Robotics Developer Studio. [Online]. Available
from: http://www.microsoft.com/robotics/ [Accessed 10 September
2016]

[8] N. K. Melchior and W. D. Smart, “Autonomic Systems for Mobile
Robots.” Department of Computer Science and Engineering,
Washington University, MO, 63130 USA

[9] D. Crestani, K. Godary-Dejean, “Fault Tolerance in Control
Architectures for Mobile Robots: Fantasy or Reality?,” Laboratoire
Informatique Robotique Microélectronique de Montpellier Université
Montpellier Sud de France

[10] M. K. Habib, “Real Time Mapping and Dynamic Navigation for
Mobile Robots,” International Journal of Advanced Robotic Systems,
Vol. 4, No. 3 (2007) ISSN 1729-8806, pp. 323-338

[11] Sensor failure detection through introspection. [Online]. Available
from: http://hdl.handle.net/10945/3518 [Accessed 3 September 2016]

[12] E. Matson, S DeLoach, “Enabling Intra-Robotic Capabilities
Adaptation Using An Organization-Based Multiagent System,” IEEE
International Conference on Robotics and Automation (IEEE ICRA
04) on, May 2004, pp 2135-2140.

[13] O. Zweigle, B. Keil, M. Wittlinger, K. Haussermann and P. Levi,
“Recognizing Hardware Faults on Mobile Robots Using Situation
Analysis Techniques,” International Conference IAS-12 on, June 2012,
pp 397-409

[14] E. Khalastchi, M. Kalech, L. Rokach, Y Shicel and G. Bodek, “Sensor
Fault Detection and Diagnosis for Autonomous Systems,” 22nd
International Workshop on Principles of Diagnosis, October, 2011

[15] Y. Dai, Y. Xiang and G. Zhang, “Self-healing and Hybrid Diagnosis in
Cloud Computing,” DBLP Conference: Cloud Computing, First
International Conference, CloudCom, December, 2009, pp. 45 – 56

[16] M. Parashar and S. Hariri, “Autonomic Computing: an Overview,”
Proceedings of the 2004 international conference on Unconventional
Programming Paradigms, September 2004, pp. 257 – 269

[17] M. Scheutz and J. Kramer, “Reflection and Reasoning Mechanisms for
Failure Detection and Recovery in a Distributed Robotic Architecture
for Complex Robots,” in Robotics and Automation, 2007 IEEE
International Conference on, April 2007, pp. 3699-3704.

[18] P. Arcaini, E Riccobene and P Scandurra, “Modeling and Analyzing
MAPE-K Feedback Loops for Self-adaptation,” Proceedings of the
10th International Symposium on Software Engineering for Adaptive
and Self-Managing Systems, June 2015, pp. 13 – 23

[19] Computerworld. IBM Adds Autonomic Tools to Speed Up Error
Detection. [Online] Available from:
http://www.computerworld.com/article/2557731/networking/ibm-
adds-autonomic-tools-to-speed-up-error-detection.html [Accessed 27
September 2016]

