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Abstract— Removing artefacts from electroencephalographic 

(EEG) recordings normally increases their low signal-to-noise 

ratio and enables more reliable interpretation of brain activity. 

In this paper we present an evaluation of an automatic 

independent component analysis (ICA), a hybrid ICA - wavelet 

transform technique (ICA-W), for artefact removal from 

emotional-state correlated EEG. Frequency features in the brain 

rhythms and statistical measures were extracted to assess the 

performance of ICA-W against the regular ICA in terms of the 

accuracy of classifying emotional states from EEG. Support 

vector machines (SVM) were used to classify the emotional states, 

and the achieved accuracies on data from 14 subjects indicates 

that ICA-W performs better than traditional ICA in statistical 

and wavelet –based features from the brain rhythms whilst the 

best overall performance is achieved when combining ICA-W 

with statistical features, average accuracy of 73.50% for 

classifying four categories of emotion. ICA-W is therefore 

demonstrated to enhance EEG-based emotion recognition 
applications. 
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I. INTRODUCTION 

One of the current trends in EEG-based emotion 
recognition is to minimize the human intervention in the 
processing of the recorded EEG, automatizing emotion 
recognition systems as much as possible. This automatization 
should include noise and artefact removal techniques. The 
common artefacts in EEG include power line noise and 
physiological artefact  mainly originating from heart activity – 
electrocardiography (ECG), eye movements or blinking – 
electrooculography (EOG), head and neck muscle activity – 
electromyography (EMG), and potentials from the brain 
(cephalic noise) not associated with the task [1]. Emotion 
related brain activity involves several processes, including 
processing the emotional stimulus, production of an affective 
state in response to the stimulus, and the regulation of the 
affective state [2]. With all these processes in the brain, 
additional artefacts can be detrimental to the discriminability 
of emotions from EEG. 

Digital filters are widely used to reduce artefacts by 
extracting the relevant brain rhythms of interest, namely delta 
(0.1-4Hz), theta (4-8Hz), alpha (8-13Hz), beta (13-30Hz), and 

gamma (>30Hz), from the recorded data. Using appropriate 
bandpass filters artefacts can be reduced assuming the 
artefacts’ frequencies do not overlap with the targeted band. 
EMG artefacts cover a wide frequency range (from 0 to 
>200Hz) and are predominantly present in EEG frequencies 
higher than 20Hz [2, 3], especially in the temporal electrodes.  
In some studies EOG artefacts  are removed through adaptive 
filtering [5], however this method requires recording the EOG 
reference signal and may alter the non-artefactual EEG due to 
some EEG leaked in the artifact reference sensor. Other studies 
[6, 8] use independent component analysis (ICA), a blind 
source separation approach, to remove the EOG, EMG and 
ECG artefacts from EEG. ICA decomposes the signal into 
statistically independent components, and the artefactual 
components can be identified by visual inspection and 
removed. The cleaned signal is then obtained by recombining 
the remaining non-artefactual components. 

 Visually inspecting the independent components for 
artefacts requires some level of expertise, in identifying 
artefacts in the EEG signal, and can be time consuming when 
dealing with large datasets or data recorded from multiple 
subjects. To automate this inspection, various method 
including correlating the independent components with 
recorded reference artefacts [8] and thresholding based on high 
order statistics of the independent components [7] have been 
proposed. Castellanos et al [9] have proposed a wavelet 
transform based approach  to filter out artefacts from ICA 
generated independent components, an approach that can be 
automated. Other automation of ICA artefacts removal include 
artefact detection approach based on joint spatial and temporal 
characteristics to identify artefactual components, a method 
also known as ADJUST [10]. In this paper we compare for the 
first time, the performance of artefact removal of standard ICA 
and the ICA-wavelet transform hybrid on emotion-related EEG 
signals classification. The paper is structured as follows: 
Section II presents the concept used in ICA-based noise 
removal, and section III describes the experimental setup and 
tools. The results are discussed in section IV, and section V 
concludes the paper. 

II. ICA-BASED ARTEFACTS REMOVAL 

The ICA algorithm assumes that the recorded EEG is a 
linear combination of temporal, independent and spatially fixed 



signals, and the algorithm estimates these independent 
components. The artefactual components are removed, and the 
remaining components are recombined into cleaned EEG data. 
This approach has been effective in removing noise and 
artefacts from EEG data [6]. Assuming that EEG data were 
recorded using N electrodes, the ICA-based artefact removal 
can be summarized in these steps: 

 Decompose the EEG data, X, into statistically 
independent components S. Each signal (signal from 

each EEG channel) in X has M samples. S contains n  

independent components (with n N ), each with M 
samples. This decomposition is done with the 
assumption of linear mixing of the components and 
through estimation of an un-mixing matrix A: 

 *S A X   (1) 

 Inspect the independent components for artefacts, and 
set artefactual components to zero 

 Remix the resulting components with an inverse of the 
un-mixing matrix A: 

 1 *X A S  (2) 

The ICA algorithms usually assume that the number of 
sources contributing to EEG data are less than (or equal to) 
data channels, so ICA can only generate a number of 
independent components less than or equal to the number of 
channels. If the channels are very limited, some cortical 
activity may be lost into artefactual components leading to 
alteration of neural content of the EEG. One of the solutions to 
this problem is to separate the leaked cortical signal from the 
noise in the generated components. This separation can be 
achieved by applying discrete wavelet transform (DWT) on the 
components, decomposing them into artefactual segments and 
residual segments [9], then thresholding the resulting wavelet 
coefficients; note that the wavelet thresholding is applied after 
ICA (ICA-W). The wavelet thresholding process assumes that 
each of the components, especially an artefactual component, 
is a sum of neural signal and Gaussian noise. Components are 
reconstructed by applying inverse DWT, and resulting 
components are remixed into cleaned EEG signal as in (2). The 
computation complexity in ICA-W can be reduced by using 
spatial constrained ICA followed by wavelet thresholding of 
the resulting independent components [11]. The first step in 
this constrained ICA-W is to define the spatial constraints, 
usually done based on the signal sensor topographies. 

The ICA-W was previously compared with regular ICA on 
their effect on the neural content in EEG [9] using simulated 
data where ICA showed possible alteration in neural spectral 
content whereas ICA-W did not. In our evaluation, we compare 
the ICA-wavelet hybrid and regular ICA on their effect on 
classification of emotional states from real EEG data. 

III. METHODS 

A. Data Acquisition 

The data used in this study are taken from the database for 
emotion analysis using physiological signals, DEAP [12], 
acquired from Queen Mary University of London. In this 
dataset, 32 EEG electrodes placed according to 10-20 system 
were recorded at sampling rate of 512 Hz. The data were 
recorded from 32 healthy subjects while they watched selected 
videos. The videos were selected according to ratings attributed 
to them in terms of level of arousal and valence they stimulate 
in the subjects by volunteers prior the recordings. Forty videos 
were selected, 10 videos for each of the quadrants in the 
arousal-valence model [13], see Fig. 1, and each video was 60 
seconds long. In the current study, each of the quadrants is 
considered as one class of emotion, i.e. high/low arousal-
valence (HAHV, LAHV, LALV, and HALV). Besides, 
volunteers’ ratings, after each trial, the participant ranked the 
video’s valence and arousal on a continuous scale of 1 to 9. In 
order to reinforce trials labelling, only 14 participants who 
achieved correlation of 0.5 between their ratings and the 
volunteers’ rating were considered in the current study. 

 

Fig. 1. Valence-Arousal model used to map the participants’video ratings 

B. Preprocessing Units 

The raw EEG data were preprocessed using EEGLAB 
toolbox [14] and the DSP Toolbox under MATLAB®. The 
signals were re-referenced to a common average reference, and 
then down-sampled to 128 Hz. The resulting signals were then 
filtered with a pass-band filter of 4 and 45 Hz cut-off 
frequencies. The band-passed data are used as reference data. 
Then ICA and ICA-W were applied on the band-passed 
signals. The Runica function, an ICA algorithm included in the 
EEGLAB toolbox, was used in both regular ICA and ICA-W 
methods to find independent components. In the regular ICA 
case, the independent components generated by Runica were 
visually inspected for artefacts, and identified artefactual 
components were removed. Independently of the visual 
inspection, ADJUST was also utilized to automate artefactual 
components selection in a non-manual regular ICA as in [10].  
For ICA-W, a multiresolution analysis of each of the 
components was carried out. This analysis utilized the wavelet 
and scaling functions given by recursive functions in (3) and 
(4) respectively: 
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where j and k are scaling and shifting parameters respectively, 

with 0j being the arbitrary starting scale. Both j and k are 

nonnegative integers, with 0j j L  ; here L is the maximum 

decomposition level.  

Each component is decomposed into approximation 
coefficients (cA) and details coefficients (cD), computed as in 

(5) and (6) respectively: 
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where iS  is ith independent component, with 1,2,...,i n . 

Details coefficients from of each decomposition level were 
thresholded before reconstructing the components through an 
inverse wavelet transform. We adopted a level-dependent 
adaptive threshold, proposed in [15]; this threshold is 

computed based on the estimated standard deviation,  , of the 

noise in detail coefficients. The threshold  , and standard 

deviation,  , estimations in (7) and (8), respectively, were 
used in this work.  
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K is the length of the detail coefficients, ,j kcD . 

The thresholded details of level 1 to L and the 
approximation coefficients at the level l were used to 
reconstruct the component. Debauchies wavelet, ’bd4’, 
function was used in the wavelet transformations, and since the 
data were down-sampled to 128 Hz, 4 levels of decomposition 
are suitable to cover the main brain rhythms as shown in  

Table 1. Decomposition of EEG signal into various frequency bands 

and corresponding wavelet decomposition levels on data sampled at 
128 Hz. cD are detail coefficients whereas cA are approximation 

coefficients  

Frequency band (Hz) Wavelet level/coefficients 

0—4  (≈Delta) 0 (cA) 

4—8   (≈ Theta) 1 (cD) 

8—16  ( ≈ Alpha) 2 (cD) 

16—32  (≈ Beta) 3 (cD) 

32—64  (≈ Gamma) 4 (cD) 

 

C. Features Extraction and Classification 

From the 60 second trial data features were extracted from 
sliding windows with widths between 2 to 24 s, every 2 
seconds, with no overlap. A window starting 3s was used as a 
training and the segments later in the trial were used to test the 
trained classifier as shown in Fig. 2. For each training segment, 
all possible segments of the same size as the training segment 
were considered as testing segments. Also the distance between 
two successive testing segments varied from 2 to 8 seconds 
with 1 second increment; this allowed testing several portions 
of the trial beyond the training segment. Statistical measures of 
the preprocessed signals and spectral power in brain rhythms 
were then extracted from both training and testing segments, 
then a comparison between these features was conducted. 

 
Fig. 2. Training and testing segments. Win here represents the segment size 
in seconds and T specifies where the testing segment begins in the trial 

1) Statistical features   
 

The common statistical measures used in emotion 
recognition include the EEG signal power, mean, standard 
deviation, first difference, normalized first difference, second 
difference, and normalized second difference [16]. The 
extracted statistical measures in this study were: the power 

( xp ), mean ( x ), standard deviation ( x ), and first difference 

( x ), and these values are computed as in (9) to (12) 

respectively:  
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( )x t is the signal sample at the time t, with t = 1, 2, 3… m; m 

being the number of samples in the window. The statistical 
measures were extracted from training and testing segments of 
each trial in the format below: 



 : , , ,Statistics x x x xF p 32channels        

2) Spectral features  
Spectral band power in the theta (4-8 Hz), alpha (8-16 Hz), 

beta (16-32 Hz), and gamma (32-45 Hz) bands was extracted 
from the preprocessed data. Another version of spectral band 
power was extracted by first applying the wavelet transform to 
subdivide the preprocessed data into frequency bands relatively 
close to the brain rhythms, as shown in Table 1, then extracting 
the band power from bands corresponding to Theta, Alpha, 
Beta, and Gamma. The spectral band power extracted from the 
wavelet-generated frequency bands is referred to as wavelet 
features in this paper. The band power and wavelet features 
were extracted from each trial in the formats shown below: 

  :BandpowerF theta,alpha,beta,gamma ×32channels   

  :WaveletF theta,alpha,beta,gamma ×32channels   

3) Classification  
Regularized support vector classification of LIBSVM 

toolbox [17] was used for classification. LIBSVM uses one-
against-one approach [18] for multiclass discrimination. The 
features extracted on the training segment were used to train 
SVM model. The features were mapped in high dimensional 
space using a polynomial kernel in (13), the coefficient r , was 
set to 0 (its default value in LIBSVM). Other parameters 
including the degree of the polynomial, z, regularization 
parameter, C, and kernel parameter γ were set through 10-folds 
cross-validation. C controls the trade-off between minimum 
classification error and model complexity [19], large C leads to 
model with many support vectors and possible overfitting 
whereas small C may lead to underfitting. The parameter γ 
controls the width of the kernel, very large γ leads to 
overfitting [20].  The trained model, for each segment size, was 
tested over the corresponding testing segments. 

 ( , ) ( )T z
i j i jf x x x x r     (13) 

IV. RESULTS AND DISCUSION 

Fig. 3 shows a sample visual comparison of artefact-
corrected data for each of the two ICA based methods. Both 
the ICA and ICA-W eliminated the strong artefacts found in 
the band-pass filtered data. The ICA-W seems to preserve the 
original signal trend while regular ICA cleaned data tend to be 
flat at the artefactual segment. 

The three artefact removal methods for each of the three 
feature types were evaluated for different windows. The 
classification accuracy (CA) of the three feature-types, i.e. 
statistics measures, band power and wavelet features 
corresponding to band-pass filtering, ICA, ADJUST and ICA-
W for artefact removal methods are reported in Fig. 4. The 
reported CA are averaged across all the subjects for each 
segment size. The CA in the case of regular ICA (with visual 
inspection) were slightly higher than automated regular ICA 

(ADJUST). CA increased as feature window size increased for 
wavelet and statistical features in the ICA-W cleaned data 
whereas the CA first slightly increases then slowly decreases in 
the other methods. The band power features performed poorly 
(CA < 57%) and remained nearly the same across all the 
segments in all the three methods. Slight improvement in band 
power performance was observed in both the ICA and ICA-W 
compared to band-pass filtering. Considering only the segment 
sizes with highest CA, the achieved high accuracies, averaged 
across all the 14 subjects, are 55.83%, 60.00%, 56.66% and 
73.50% for pass-band filter, ICA, ADJUST, and ICA-W 
respectively, as shown in Fig. 5. Wilcoxon signed rank tests 
showed that ICA-W led to significant increases in 
classification accuracies over the regular ICA and band 
filtering methods in statistical features (p < 0.001). Also the 
ICA-W led to higher CA compared to ICA in the case of 
wavelet features (p < 0.005) and band-pass filtering (p < 
0.001). 

 

 
Fig. 3. A sample visual comparison  of the two ICA methodss on artefactual 

segment recorded at the channel Fp1 during one of the trials of subject 3 ( in 
the orginal 32 subjects of  DEAP dataset) 

The achieved CAs in ICA-W method for statistical features 

are significantly higher than in previous studies in which 

frequency band filtering [21] and visual inspection [22] were 

used as artefact removal methods. The observed higher CAs in 

the case of ICA-W method compared to traditional ICA 

suggests that ICA-W is more efficient for artefact removal 

than traditional ICA. Furthermore, statistical features were 
projected in two dimensions by t-distributed stochastic 

neighbor embedding (t-SNE) projection [23], and the 

distribution of features for each class in the case of band-

passed data, ICA and ICA-W filtered data as shown in Fig. 6 

for one of the subjects. Looking at the features distribution, 

the features for LALV and HALV on one side, are not 

separable enough, and on the other side LAHV and HAHV’s 

features are not significantly separable. The overall best 

features separability seems to be in the ICA-W case. 
 



 

 

 

(a) (b) 

(d) (c) 
 

Fig. 4. Classification accuracies (CA) over various segment sizes in the considered noise removal methods: (a) case of band-passed data, (b) case of ICA cleaned 
data, (c) case of ADJUST, and (d) case of ICAW cleaned. 

  

 

Fig. 5. Classification accuracies of the three features averaged across the 

participants using the best segment size for each of the considered denoising 
methods 

V. CONCLUSION 

The paper has presented a comparison of ICA and the 
automated version of ICA (ICA-W) as an artefact removal 
methods using emotion-related EEG datasets. Performance 

improvement and process automation of emotion recognition 
were investigated in this study. In additional to the automation 
advantage provided by ICA-W, the results suggest that EEG-
based emotion recognition is improved when ICA-W is used to 
preprocess the EEG data compared to the regular ICA. 
Significant increase were found when using statistical features 
for both methods with ICA-W significantly outperforming all 
other methods. An analysis of the feature distributions shows 
some improvement into features separability. Future work will 
focus on features selection and comparing the performance of 
ICA-W to other spatial filters and applying the approach in 
real-time emotion recognition based brain-computer interface 
(BCIs). 

 



 

 

 

  

Fig. 6. Two-dimension t-sne projection for features of four emotions 

extracted from (a) band-passed data, (b) ICA-cleaned data, and (c) ICA-W 
cleaned data.  
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