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ABSTRACT

In this work we investigate the use of symbolic repre-
sentation methods for Anomaly Detection in electromag-
netic sequential time series datasets. An issue that is often
overlooked regarding the performance of symbolic rep-
resentation methods with a sliding window in Anomaly
Detection is the use of a quantitative accuracy measure.
Until recently only visual representations have been used
to show the efficiency of such algorithms. In this respect
we propose a novel accuracy measure that takes into ac-
count the length of the sliding window and we present
its utility. For the evaluation of the accuracy measure,
HOT-SAX is used, a method that aggregates data points
by use of sliding windows. A HOT-SAX variant, with
the use of overlapping windows is also introduced, that
achieves better results based on the newly defined accu-
racy measure. Both methods are evaluated on ten dif-
ferent benchmark datasets. Based on the empirical re-
sults we also evaluate them on Earth’s electromagnetic
data gathered by the SWARM satellites and ground-based
sources around the epicenter of two seismic events in the
Yunnan region of China.

Key words: seismic anomaly detection, symbolic repre-
sentation, accuracy measure.

1. INTRODUCTION

Nowadays, the use of advanced data gathering methods
routinely generates large volumes of data. Due to this
trend, there are two approaches to the processing of large
volume of data: (i) the increase of processing power and
(ii) the reduction of the actual amount of data available.
Within the domain of Anomaly Detection (AD), the im-
portance lies in the fast indexing with minimum loss of
information in order to identify any sequential anomalies
and differentiate them from the normal cases. The use
of an accuracy measure is considered standard practice
for the evaluation and comparison of a method’s perfor-
mance. There are numerous different and useful methods
to visualize and present how a method performs. Each

one is more suitable for a particular task, as extensively
researched in [14].

The existence of large volumes of data, formalized the
need to transform these high volumes into a lower dimen-
sional space. Such methods are extensively discussed in
[8]. Within this large domain, there is a category of algo-
rithms that uses a sliding window to aggregate and rep-
resent the original data points into a single symbol. This
sliding window is usually user pre-defined. Such algo-
rithms, which among them, HOT-SAX is the most ubiq-
uitous [7], suffer from the problem that an accuracy mea-
sure, can not be applied. The issue arises because a mea-
sure that utilizes the length of the sliding window in its
computation remains elusive. As such, studies around
this area have been largely descriptive and qualitative.
There has not been a clear quantitative measure on the
performance of these methods.

A qualitative approach in the presentation of the results is
only useful to understand how an algorithm processes and
produces its outcome. Most improvement in numeracy
based research comes from a quantitative point of view.
Therefore it is imperative to define an accuracy measure
that takes into account the sliding window component of
such algorithms. Defining the accuracy, paves the way
for research to move forward. Moreover, this assists in
understanding an algorithms’ drawbacks, such as the ten-
dency to predict false positives or miss genuine anoma-
lies.

A fundamental contribution of this work is therefore,
the development and definition of the accuracy measure.
Its performance is evaluated in detail by evaluating the
original HOT-SAX in ten benchmark datasets. The re-
sults give us an understanding on how the algorithm
works, pinpointing issues that arise and what more can
be changed to improve it. Based on the accuracy and our
understanding, an improvement of the base HOT-SAX is
proposed. This variant introduces the use of an overlap-
ping sliding window. A sliding window is synonymous
with Fast Fourier Transformation (FFT). An overlapping
window is known to offer additional information in time
series processing. Anomalies or events, otherwise missed
from a non-overlapping window can be captured by us-
ing an overlap. Therefore although the idea is not new, it
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is a well established fact in the community [15]. The ac-
curacy measure is then used to compare both algorithms.
With the definition of the accuracy measure, the prob-
lem becomes trivial as it provides quantitative results for
comparison. This category of algorithms can then be fine-
tuned and improved based on the accuracy measure.

The rest of the paper is organized as follows: In Sec-
tion II, the background of the work is set and relevant
research is presented. In Section III, the methodology is
discussed and the accuracy measure is defined. Following
that, the original HOT-SAX algorithm and the proposed
variant are presented. In Section IV, the empirical results
are shown where both algorithms are evaluated against
ten benchmark datasets. Based on how their best perfor-
mance they are tested in real ground-based and satellite
data. Lastly, in Section V, the discussion and possible
future developments are proposed.

2. BACKGROUND AND RELATED WORK

Similarity search and AD in particular suffer from the
exponential growth of the search space caused by the
high volume of data, that makes efficient data processing
unattainable. In order to circumvent the curse of dimen-
sionality problem, the efficient processing of time series
data requires a lower dimensional approximation.

The focus of this work is on data adaptive methods,
specifically on the symbolic representation of time series
data. Some of the earlier methods on symbolic string rep-
resentation are SDA [2]. SDA requires the user to divide
a range from one point to another and the algorithm com-
putes the changes between these points. IMPACTS[3] yet
another method, incorporates a similar technique but it
computes the change ratio between one point and the next
in order to discretize them into equal sized bins and sym-
bolically represent them. Since then, research has come a
long way and most recently symbolic representation has
become popular for use with high volumes of data. A
good symbolic representation of time series data offers
high discretization, better scalability, high readability and
can benefit from other well-researched fields that utilize
similar methods such as text mining, bioinformatics and
chemoinformatics. For that reason one of the first novel
methods that was focused and designed for AD was first
introduced in [16]. The authors propose the idea of a neg-
ative selection mechanism based on the human immune
system. Self and non-self patterns, match the normal and
anomalous sequences for achieving the AD.

The struggle for simplicity and less parameter configura-
tion led to the development of one of the most popular
symbolic representations. HOT-SAX, that is going to be
reviewed later, uses the Piecewise Aggregate Approxima-
tion (PAA) as its core component. A multitude of variants
have been developed which include among others: HOT-
aSAX [17] that uses a k-means to decide the number of
breakpoints for the cartesian space to be segmented, 1d-
SAX [18] that together with the average provides an ad-

ditional level of resolution by computing the linear re-
gression of each subsequence or Symbolic Fourier Ap-
proximation [19] that uses Fourier coefficients from each
subsequence for the symbolic approximation.

All of the above methods share one common component:
they all make use of a user selected window to extract
and combine, albeit in a different way, all the subse-
quences involved in the time series. Determining a slid-
ing window requires prior-knowledge of the time series
data. Within the AD domain, usually the focus has been
on providing an anomaly score [13], or when using a slid-
ing window a visual interpretation or visual mining [6],
[7], [11] for the evaluation and comparison with other
methods. Most comparisons consider the pruning power
of each algorithm for dimensionality reduction, the num-
ber of calls to the distance function for a time efficient
AD or the mean wall clock time for computing how long
takes for a process to finish [9]. However, to our knowl-
edge, until now there has not been a comparison using
the accuracy for AD and thus a definition of a precise ac-
curacy measure that combines the window length and the
F1-score to make a unified accuracy measure is required.

Different assessment measures have been proposed de-
pending on the problem under scrutiny [1]. The assess-
ment methods yield different results based on their opti-
mization. Others underestimate certain classification ca-
pabilities, i.e by producing less false positives, whereas
other overestimate them. Ultimately, what an accuracy
measure should achieve is to indicate whether a method
can generalize well in unknown data within the same do-
main. The F1-score, in Information Retrieval, was devel-
oped for a common and more reliable measure than the
accuracy [1]. It can be interpreted as a weighted average
of the precision and recall. From Eq.1 we can see that
there is an inherent bias towards the anomalies, since the
F1-score does not measure the True Negatives. For that
reason there was a need to define a more balanced mea-
sure.

F1 = 2× precision× recall

precision+ recall
(1)

Drawing from the field of bioinformatics, there are mul-
tiple measures used to calculate the True Positives (TP),
False Positives (FP), True Negatives (TN), False Nega-
tives (FN) and their relations. These include the sensitiv-
ity, specificity, recall or ROC and AUC curves. Neverthe-
less, an important contribution was the Matthew’s corre-
lation coefficient (MCC) [10]. Its importance lies in the
fact that it gives balance to all the parameters in a classifi-
cation task. However, it can be high in cases where there
are very few FP and at the same time very few TP cases.
For reference, MCC is given by the formula:

MCC = TP×TN−FP×FN√
(TP+FP )(TP+FN)(TN+FP )(TN+FN)

The MCC therefore becomes an non balanced measure in
AD. Since any performance measure is based on the TP,
FP, TN and FN and their relation if any of these values is



overlooked it means loss of information. However, when
there is an interest in one class, as in AD, the F1-Score be-
comes the appropriate measure to use since it provides a
weighted average of the anomalies. As a consequence the
amount of TN is of no relevance to the proposed measure.
In order to address the issue of not taking into account the
length of the sliding window, we propose a measure for
binary classification that unifies both the F1-Score and
the window length for AD in data adaptive aggregation
methods.

3. METHODOLOGY

3.1. Definitions

The definitions that are used throughout the work are pro-
vided here:

Time Series: A time series C = c1, c2...cm of length m
is a set of real ordered values that follow a m-order.

Subsequence: From a time series C of length m a subse-
quence S of C is a series of length n ≤ m of adjacent po-
sition from C, that fulfils the equation, S = ci, ...ci+n−1

for 1 ≤ i ≤ m− n+ 1

Sliding Window: A sliding window, W , is a user defined
subsequence of length n, which can be used to extract all
given subsequences Si if we slide it across a time series
C of length m.

Overlap: An overlap or offset L is a user-defined param-
eter of size p, that covers a percentile of length n*p of the
previous sliding window and extracts all possible subse-
quences from a time series, C, of size m. The final num-
ber of the extracted subsequences is u = (m − n)/(n −
p)+ 1 , where n is the length of the subsequence, p is the
overlapping size and m the length of the time series.

Anomaly: A subsequence of length n, that begins from
the position p and is a part of the time series C. It is said
to be an anomaly when it has the largest distance from its
nearest non-self match.

The bruteforce algorithm that is used for the detection of
the anomalous subsequences uses the euclidean distance,

Euclidean Distance:

Given two time series A and B of length m, the euclidean
distance between them:

Dist(A,B) =

√√√√ m∑
l=1

(ql − cl)2 (2)

3.2. Data and Preprocessing

The ten benchmark data used were downloaded from the
physionet website1 and include more than one anoma-
lies from a variety of physiological signals. Out of them,

1https://physionet.org/cgi-bin/atm/ATM

two databases were selected: (i) the chf database, that
contains congestive heart failure data and (ii) the mit
database, that contains arrhythmia related data. Each
dataset contains two channel ECG recordings. The length
and the channel of the benchmark time series datasets
used are denoted by the subscript and the superscript re-
spectively, datasetcl . Finally, the annotated and exact
anomalous locations were marked by cardiologists.

The real satellite datasets used were acquired by the ESA
website2. They consist of 72 consecutive days of obser-
vations that three identical SWARM satellites gather at a
height of 450km for SWARM A and C and at 530km for
SWARM B. The observations range from 21st Novem-
ber 2014 to 31st January 2015. The data are in the Com-
mon Data Format (CDF) and consist of 22 different fields
with 86400 values, one for each second of a day. The
relevant data are extracted from the Vector Field Mag-
netometer (VFM) that cover our study area and measure
Earth’s electromagnetic field intensity. The area of inter-
est is around the vicinity of the occurred seismic events
and the central grid point is focused around the coordi-
nates [23.358o N, 100.5333o E], [23.336o 100.474oE]
where the seismic events, of a scale Mg = 5.6 occurred
on the 5th December at 10:20:01 UTC and 6th December
18:43:46 UTC respectively.

The terrestrial data are from the X and Y vectors
of Earth’s electromagnetic field gathered by a Control
Source Extremely Low Frequency (CSELF) observatory
in Jinggu, at coordinates N [23.30oN, 100.44oE]. The
data were averaged to form an 1-D vector of 72 obser-
vations from the same time range as the satellite data.
The area of the events is shown in Fig. 1 situated in the
Yunnan region of China.

Earth’s electromagnetic field, B is described by three or-
thogonal components: X , the northerly, Y the easterly
and Z the vertical intensity. The final intensity vector can
be calculated from the orthogonal components using Eq.3
[20]. The process followed for the data preprocessing is:

• Extract the values from the coordinates that belong
to the region of study.

• Convert the X , Y , Z orthogonal vectors to a single
vector.

| ~B| =
√

b2X + b2Y + b2Z (3)

• Subdivide the region of study by using the grid and
create nine different vectors.

• Take into account all the observations from the three
different satellites and form a single vector for the
72 days.

• Take the mean of each day for each vector.

2https://earth.esa.int/web/guest/swarm/data-access



• Create the 72 data point 1-D vector for each of the
nine grid elements. Each data point corresponds to
a single day.

Figure 1: The study area in the Yunnan region of China

It is worth noting that the preprocessing has some caveats.
Each satellite has 3 to 4 days revisit time. This makes ap-
parent the issue of the level of resolution that has to be
applied to the study. A very small study area might not
contain enough observations since the satellite revisit lo-
cation might be different. The very few data make this
idea unworkable and it forces the need to opt for a larger
area. The chosen area is 2000km x 2000km from [13 -33
, 90 E- 110 E]. Each grid point is 666.6km. The choice
was made because SWARM A and SWARM C that fly in
parallel, have a distance of 150km. Taking roughly four
times their distance ensures more observations within a
grid point. Nevertheless, the problem is not solved in its
entirety and missing values were interpolated by calcu-
lating the mean of the neighbouring points.

3.3. A Review of HOT-SAX

One of the most well known methods for time series sym-
bolic approximation is HOT-SAX. HOT-SAX utilizes a
piecewise aggregate approximation (PAA) and assumes
that the PAA follows a Gaussian distribution. It trans-
forms a numerical time series into a symbolic approxima-
tion of the original of a finite alphabet cardinality. SAX
works in three simple steps 2:

• Divide time series C into subsequences of length n.

• Calculate the mean of each subsequence S.

• Discretize each value into equidistant bins follow-
ing the Gaussian distribution based on an alphabet
of cardinality Y . The break up points can be calcu-
lated by a statistical look up table.

3.4. The HOT-SAX variant

HOT-SAX is very dependent on the user selected window
length. Every aggregation method is dependent on how
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Figure 2: A visual representation of the three SAX steps

much information is preserved. If the length, n of the
sliding window, W , is smaller than the anomaly, the ag-
gregation step can miss or smooth the anomaly. Similarly,
if the window is several scales of magnitude larger than
the length of the anomaly the anomaly can also be missed.
Although prior knowledge of the dataset is evidently re-
quired, the proposed addition of an overlap tries to alle-
viate this over-dependency on the user selected length of
the sliding window.

The overlapping window works by sliding the window
over the time series but with the inclusion of an overlap.
Effectively, this helps capture anomalies easier because
once an anomaly is present in the time series, the over-
lapping window carries the anomaly forward to the next
aggregation. Therefore because of the overlap the calcu-
lation leaves a residue of the anomalous data points onto
the next PAA, as seen in Fig.3.

Data
Points

A sliding window with
a length of 10 data points

0 5 10 15 20 25 30 Time

Figure 3: A sliding window with 50% overlap.

This addition helps focus on the granularity of the algo-
rithm and offers additional resolution. The algorithm can
identify anomalies even if the window length is smaller
than the anomaly. The improvement of the variant al-
gorithm over the base algorithm can be assessed by the
introduction of the accuracy measure in the next section.
With the accuracy measure, if an anomalous data point
falls within the user selected window it is considered as
a TP. If the anomaly lies outside the window it is consid-
ered to be a FP. If an identified anomaly falls within the
window but it is not a true anomaly it is a FN.

3.5. The Accuracy Metric

In order to define how different a prediction is from the
true value the definition of an error has to be given.
Therefore, the error from the predicted versus the true
anomalous location, is given by the following equation:

e = tw − pw (4)



where, tw is the true anomalous location and pw is what
the algorithm predicted.

The bruteforce algorithm pinpoints the exact locations of
the predicted anomalies. This is considered to be the mid-
point of the sliding window, W. Given the Equation 4 the
error, meaning how far the true anomalous location from
the predicted by the algorithm is, becomes a factor of the
window and has a range of pw−W/2 to pw+W/2 based
on the predicted location.

Now, let all the anomalous locations identified by the
bruteforce algorithm to belong to the set P . Therefore,

P = {p1, p2, ...ps} (5)

Let T be a set of the locations that the experts have iden-
tified as true. Thus, there is:

T = {t1, t2, ...tt} (6)

In all, the locations that interest us are formed by Eq.7.
The correctly predicted anomalous locations belong to a
new set N which is formed by the intersection of P and
T and represents the TP.

N = T ∩ P (7)

More specifically, during the AD a true anomalous loca-
tion might or might not fall within the range that is based
on the predicted location and the window. It is reasonable
to say that when both locations fall within this range, their
intersection will cause them to form a set on their own.
Therefore the final locations’ set will be:

N =

{
N ⊇ {T, P} , if e ≤W
N = P, otherwise

(8)

Consequently, the true locations that fall within the range
of the predicted anomalous locations form the elements
of the strict superset N, k. If more than one anomalies fall
within the same range, this case is treated by the algo-
rithm as a unique entity or a single anomaly. As a result,
the first case in Eq.8 is considered as a TP and the second
case as a FP. In the accuracy measure the TP values, the
positive class, that form the set N are used as the averag-
ing factor.

After the definition of the basic factors, the definition of
the accuracy becomes:

A =

k∑
1

F1 − (Zk × F1)

N
(9)

where,

Zk =
|tk − pk|

W
2

It is known that precision, recall and F1-Score ignore the
TN values and can have a positive bias. Nevertheless, be-
cause of that and since our interest lies specifically in the
positive class, meaning the class or set of correctly or in-
correctly predicted anomalous cases this set is used as the
main factor in the definition of our accuracy measure. As
already mentioned, the F1-Score is the harmonic mean
and an indication on how the precision and recall work.
In all, the defined accuracy gives the average error rate
for the correctly predicted values based on a factor of the
window length.

4. EMPIRICAL RESULTS

The results for the HOT-SAX variant show an improve-
ment of 30.25% on average from the base algorithm. The
use of overlapping windows for the symbolic representa-
tion of the time series makes the anomalies more ”visi-
ble” and impactful, as shown by the accuracy measure.

Table 1: Accuracy for HOT-SAX and HOT-SAX with
overlap

Dataset Overlap Parameters Bruteforce Accuracy
(%) (%)

chf0225001

0 P 10
100 3 62.6

0.5 P 15
100 6 69.6

chf0225002

0 P 15
50 2 37

0.6 P 15
100 2 56

mitdb108150001

0 P 15
100 5 30.52

0.6 P 15
100 6 55.95

mitdb108150002

0 P 15
100 5 45.8

0.4 P 10
100 7 61.7

mitdb10136001

0 P 15
400 3 27.5

0.5 P 15
400 3 71

mitdb10136002

0 P 15
100 4 28

0.4 P 15
400 5 82.5

mitdb100150001

0 P 15
1000 4 41.7

0.2 P 15
1500 15 69

mitdb100150002

0 P 15
1000 15 41.7

0.4 P 15
400 8 62.93

chf1236001

0 P 10
250 4 36.8

0.4 P 15
250 4 71.2

chf1236002

0 P 10
250 4 36.8

0.4 P 15
1000 4 60.98

The perennial issue of this kind of algorithms is the a-
priori knowledge of the datasets that is required for their
configuration. However, in real life this rarely happens.
The single most important parameter is the length of
the subsequence to consider to encode it into a symbol.
Nonetheless, given the intuitive nature of the parame-
ters, one can have an understanding on how the algorithm
works and what are its limitations.



One of the most important limitations is the length versus
the alphabet cardinality we need to consider. If the cardi-
nality is very small compared to the length of the window,
the algorithm produces unattainable results. Similarly,
an arbitrarily high cardinality number can be regarded as
simply noise. This occurs because a very high segmenta-
tion of the cartesian space provides very high resolution
and the PAA results become meaningless.
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(a) The full chf02 dataset with the anomalies marked by the experts
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(b) A subsection of the chf02 dataset and first location AD by both
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(c) A subsection of the chf02 dataset and second location AD by both
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Figure 4: AD process for both algorithms

Fig. 4 shows the AD in the dataset chf0225001 for both
algorithms. The actual anomalies are at points 403 and
2160. The base algorithm identifies an anomaly at points
400 and 2175 respectively. The variant algorithm in 412
and 2164. In this case the HOT-SAX variant performs
better, because although the base did better in the first
anomaly, in the second case the detection of the anomaly
is further away than the actual location. Both algorithms
also had a FP location lying outside the boundaries of the
more increased resolution versions as seen in the figure,
something that is also visible in their detection accuracy
in Table 1. The method’s user selected inputs, the al-
phabet cardinality and the anomaly length are denoted
as the superscript and subscript respectively, P r

a . For
all other datasets a similar detection process is followed
and we present the results for all the different benchmark
datasets Table 1. All benchmark datasets had more than
one anomalies present. Another aspect is how the accu-
racy measure performs. A factor of the F1 score is calcu-

lated each time for each of the anomalous detected points.
The accuracy is also affected by the length of the brute-
force window during the AD process. A saturation point
can be reached when a window comparable to the length
of the symbolic representation is selected. The same sat-
uration point can be reached much faster if a very small
alphabet cardinality is selected, as previously explained.
As a matter of fact, the AD does not work after the satu-
ration point. A graphical representation of the issue can
be seen in Fig. 5.
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Figure 5: The Saturation point of the AD

4.1. SWARM and CSELF Datasets

Equipped with the knowledge from the benchmark
datasets and knowing the limitations of the algorithms,
we use the same principles to the real datasets. From
the empirical results we follow the same rules accord-
ingly. The window length is set as 3, a larger window
compresses too much the original signal, and loses a lot
of information. For reference, the length of the final se-
quence from the base algorithm is 24 symbols since the
window is 3 days.The cardinality used is 15, the same
that achieved the best results in the benchmark datasets.
The bruteforce window was selected as 5 for the base al-
gorithm and for the variant, both based on the benchmark
datasets performance and taking into account the scale of
the real data after the symbolic representation. Lastly, the
overlap selected was 40%, again based on the empirical
results.

The results from all the grid-points are presented in
Fig.6. Although it is not possible to verify the findings,
the results are in line with other studies in the area of
earthquake precursory anomalies that identify anomalies
within a similar time frame [4],[5]. Other causes of mag-
netic interference or noise might be the cause of anoma-
lies. Nonetheless, the reliability and the results of both
data can be of use. By identifying the key differences
between terrestrial and satellite data the key question be-
comes our ability to understand anomaly patterns.

5. DISCUSSION AND FUTURE WORK

The evaluation of both algorithms on the benchmark
datasets from the accuracy measure helped us interpret
the experimental results in a new way. The understand-
ing of how to fine-tune state of the art algorithms based on
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Figure 6: Anomaly Detection for both algorithms applied to the real dataset, Top to Bottom: Grid point 1 to 9 and the 2
CSELF datasets. Solid vertical line: Occurred earthquakes, Dotted vertical line: HOT-SAX Variant algorithm prediction,
Dashed vertical line: HOT-SAX prediction



the proposed accuracy measure, further expands our abil-
ity to work and expand them to real datasets and novel re-
search. It is important to know how exactly an algorithm
fares when one parameter is changed and how much it
affects the other parameters and the final accuracy.

Symbolic representations prove to be accurate and with
the combination of their time efficiency they can be con-
sidered for online and real time AD. Ultimately the res-
olution versus the loss of information has to be weighted
in the final choice of representation. Their application in
the real datasets, showcases their advantages and reveals
some interesting results. Based on the comparison of the
terrestrial and satellite sources we can get an understand-
ing both on (i) the reliability of data and (ii) the resolution
required for further studies. The results follow a large re-
search that also is able to detect anomalies before seismic
events but they must be put under further scrutiny. Sym-
bolic representation has a lot to offer in processing large
datasets such as the ones used in this study from satel-
lites and offers new possibilities when used for AD. The
key question on the identification of anomalies as precur-
sors to earthquakes is still open and the results suggest
the need for further investigation.
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