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Abstract 

In this work, the thermal degradation of pine needles (from a Mediterranean species) was studied 

using a thermo-gravimetric analyser (TGA) and cone calorimeter that were coupled to FTIR 

spectrometer. The thermo-gravimetric analyses were carried out at four heating rates, in both air 

and nitrogen atmospheres. The evolution of gaseous components, mass loss and mass loss rate 

were recorded as a function of time and temperature. In order to account for the observed 

behaviours of the materials, we have also proposed a mechanism for the thermal degradation of 

pine needles, by primarily analysing both the evolutions of mass loss rate and gaseous 

components under nitrogen and air atmospheres. The kinetic parameters were subsequently 

estimated by using a genetic algorithm method. 

The cone calorimetric measurements were mainly conducted with a view to investigating the 

influence of thermal transfer processes, occurring in a porous bed of pine needles with regard to 

its thermal degradation. The experiments were conducted at five external heat fluxes under a 

well ventilated atmosphere. Measurements consisted of the mass loss, mass loss rate and the 

amount of gaseous emissions. The main gases emitted during the thermal degradation and the 

combustion of the pine needles were  found to be CH4, CO, CO2, NO and water vapour. In 

addition, the evolution of the temperature was measured by using a set of five thermocouples, 

placed in a vertical position at the centreline of the sample.  The results obtained showed that the 

bed of pine needles behaved as a thermally thick fuel. On the contrary at higher the external heat 

fluxes, the sample behaved as a thermally thin sample. 

Keywords  

Vegetation, Forest fire, Thermal decomposition, Cone calorimeter, Thermo-gravimetric analysis, 

Pyrolysis, Gaseous emissions, Kinetic model. 

Nomenclature 

A Pre-exponential factor (s-1) n Reaction order 

cp Specific heat capacity (j.kg-1.K) t Time (s)  
 

Ea activation energy (J.mol−1) T Temperature (°C) 
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K Reaction rate constant (s-1)  β Heating rate (°C.min-1) 

m Mass (g) m�  Mass flow loss rate (g.s-1) 

E Huggett’s constant (MJ.kg-1) TGA Thermo-gravimetric analysis 

MLR Mass loss rate (g.s-1) R Universal gas constant (8.3145 j.mol−1 .k−1) 

TML Total mass loss (g) δ Factor (1 under air and 0 under nitrogen) 

FPA Fire propagation apparatus DSC Differential scanning calorimeter 

i Species X� Mole fraction of species b in the exhaust gas 
measured by analyser 

CHF Critical Heat Flux (kW.m-2) FTIR Fourier transformed infrared spectroscopy 

Mi Molecular weight (g.mol-1) Vm Molar volume (l.mol-1) 

yO2 Mass fraction of oxygen HRR Heat release rate (kw.m-2) 

k Reaction number y Mass fraction of species 

A Sample area exposed to the heat flux 
(m2) 

IR Infrared 

PP Pinus Pinaster AU Arbutus Unedo 

EA Erica Arborea CM Cistus Monspeliensis 

MCT Mercury Cadmium Telluride V Volume (m3) 

GA Genetic algorithms ϕ Fitness  

ωi Reaction rate ʋ Stoichiometric factor 

 

1. INTRODUCTION 

Over the past several years, a number of devastating fires around the Mediterranean area alone 

have destroyed hundreds of thousands of acres of forest land. As it stands, the average number of 

forest fires occurring annually throughout the Mediterranean basin amount to about 50,000 [1]. 

Furthermore, the annual cumulated burnt acreage in the Mediterranean area is estimated to be 

around 600,000 ha [1]. Therefore, given the frequency, intensity and ferocity of forest fires, these 

devastating events have led to significant damages to the flora and fauna of the affected areas 

and have thus resulted in a huge drainage of the public revenue. The fuel load that feeds forest 

fires can be complex in nature, with varied physio-chemical properties, and a clear understanding 
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of the degradation behaviours and combustion attributes of the primary fuels involved is crucial 

in tackling wildland fires. 

The experimental investigation of each fire scenario is not an easy task given the fact that each 

fire is different, in terms of the intensity and duration of the ignition, the fuel load, and other 

environmental factors, such as temperature, humidity, wind etc.  However, modelling efforts in 

this area is more promising as several approaches, such as empirical [2-3], semi-empirical [4] 

and physics-based [5] are available. Among these, the physics-based models have the added 

advantage that the overall phenomena are described in detail. Thus, several numerical simulation 

codes have been developed by the scientific community for this purpose. These models also 

require the knowledge of the thermal properties of materials, as well as the determination of the 

mechanism(s) of thermal degradation and the associated kinetic parameters [6-10]. Such 

empirical parameters are often determined from small-scale tests such as TGA, DSC [11-16] and 

through medium-scale experiments like the cone calorimetry [17-21]. 

Several studies are already reported in the literature on the thermal degradation of forest 

vegetation that utilize mg of samples in a thermogravimetric analyser (TGA), or in a differential 

scanning calorimeter (DSC) [11-16]. Although the degradation parameters are generally well 

monitored in these tests, the results obtained are not sufficient to be able to describe real fire 

situations, where the heating rates are much higher than the heating rates employed, especially 

during those small-scale tests. Moreover, the propagation of the fire and associated diffusive 

phenomena cannot be taken into account at a mg scale. Hence, the results obtained will not 

facilitate the determination of  the rate of fire spread under different set conditions, as 

encountered in a typical forest fire (such as density of the fuel bed, wind, slope of the terrane, 

etc.). 

In the past, some studies were also conducted using the cone calorimeter bench scale [18-22], or 

a similar apparatus such as the fire propagation apparatus (FPA) [23], with a view to 

understanding the general behaviours forest fuels in fires. However, questions still remain on the 

understanding of the fundamental physio-chemical processes underpinning the thermal 

degradation of the vegetation and its numerical representation. This mainly arises as these 

investigations were focused on the influence of several parameters (the vegetation nature, the 
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density, the fuel bed (porosity) and the air entrainment) on the wildland fuel ignition. Indeed, in 

order to gather reliable information, the underlying heat and mass transfer processes should be 

characterized in the porous bed and at the interface between the flame and the surface of the bed. 

Furthermore, these processes should be investigated through both numerical simulations and 

additional experiments involving appropriate instrumentation 

It is relevant to note here that a review, published in 2002 [24], has demonstrated the emissions 

of gaseous species during wildland fires. The data primarily relates to the vegetation in USA in 

the context of wildfires and prescribed fires in forests and rangelands. Similarly, the Fire Paradox 

European project was set out to determine the importance of fuel dependent behaviour and other 

parameters affecting the combustion of forest fuels. This project also made recommendations 

regarding conducting future tests using smaller opening baskets and denser fuel beds [25]. 

Recently, using a laboratory-scale calorimetric experiment, a reported study [26] employed 

laboratory-cured samples with different moisture conditions (fresh or oven dry). The results 

showed that the least flammable samples were that of fresh live needles. It was also found that 

fresh live needles generally ignited about four times slower, and burned with ~60% lower power 

and ~50% lower heat of combustion than dead needles. Moreover, the CO/CO2 ratios were 0.07, 

0.15 and 0.02 for the fresh live, fresh aged and fresh dead fuel respectively. However, this work 

is of limited applicability as it only employed just one incident heat flux (50kW.m-2). 

Several models have also been proposed in the literature relating to others materials by 

employing one or multi reaction mechanistic steps [10, 19, 22-23, 27]. In these studies, the 

primary mechanism is determined according to the steps required to reproduce the evolution of 

the experimentally determined mass loss rate without having any correlation with the gaseous 

emissions during the thermal degradation of the  material under consideration (at a mg scale in a 

TGA apparatus). However, it has been shown that the consideration of the gaseous emissions is 

of great importance [24-25]. 

In this context, the primary aim of the present paper is to characterize the thermal decomposition 

of typical vegetation involved into the forest fires, such as pine needles. The article is organized 

in the following way: firstly, information regarding the materials is given, followed by 
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experimental details. Secondly, the results and discussions concerning the thermal degradation, 

the gaseous emissions at different scales and a kinetic mechanism of thermal decomposition are 

presented. Subsequently, the conclusions from work are provided. 

2. Experimental setup 

Pine needles (Pinus Pinaster) were collected from the Mediterranean basin (city of Marseille-

France) [28]. In order to investigate of thermal decomposition of the pine needles, a multi-scale 

approach is utilized, mainly based on experimental runs using a TGA apparatus (0-D at a small 

scale) followed by a cone calorimeter (1-D at a medium scale): 

The elementary analysis results of the combustible material are presented in table 1. The density 

of pine needles was 630 kg.m-3 and the emissivity is of 0.95 [28-29].  

The degradation studies were performed on a TA-Instrument TGA Q50, with sample masses of 

about 5±1 mg and at four heating rates (5, 10, 15, 20 °C.min-1) from the ambient temperature 

(20°C) to 1000°C, in air and nitrogen. The lowest heating rates (<20°C.min-1) are chosen based 

on a review conducted by Torero [30], where it was shown that the output from TGA runs were 

independent of the heating rates at the lower values. The gaseous species released during the 

experiments were analysed using a FTIR spectrometer (Thermo-Nicolet 6700 equipped with a 

MCT-A detector) coupled to the outlet of TGA apparatus. IR spectra were recorded in the 

spectral range of 4000-650 cm-1 with a resolution of 4 cm-1 and were averaged over 16 scans [31-

32].  

At the medium scale, the experiments were conducted under ambient air and in a well-ventilated 

condition using a cone calorimeter (ISO 5660) [17, 33]. For each external heat flux, a minimum 

of five runs were done in order to ascertain the reproducibility of the results. The measurements 

were performed by putting the sample holder in a horizontal position under heat fluxes between 

15 to 50 kW.m-2. The test runs were stopped after 30 min if no ignition occurred [17], and at 

sustained flaming conditions, the time to ignition and the mass evolution were recorded for each 

sample.  
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A specific sample holder has been used in the present study which is shown in Figures 1 and 2. It 

consisted of a stainless steel basket that was open at the top, 12.0 cm in diameter and 7.0 cm in 

height. The basket was designed to insure the homogeneity of the external irradiance over the 

sample surface, and the current design was similar to the one reported elsewhere [23, 34]. The 

bottom of the basket was insulated with 2 cm of insulating material, and this condition resembled 

the practical situation where needles are deposited on the soil. The sample holder was filled 

consistently by the same experimenter with 14.2 g of pine needles in order to attain a fuel 

volume fraction of 0.04; this value being representative of Mediterranean forest litters [28-29].  

The evolution of the temperature was measured in parallel by using five thermocouples (type K 

with a diameter of 1 mm) placed in a vertical position, as shown in Figure 2. The thermocouples 

(V1 to V5) were positioned along the centreline every 1 cm from the exposed surface up to the 

back surface of the sample.  

3. Results and discussion 

 

3.1.Thermo-gravimetric analysis 

 

a) Results under nitrogen  

Figure 3 presents the evolution of the mass of the solid material as a function of temperature 

under nitrogen for different heating rates. Therefore, the corresponding thermograms denote the 

degradation reactions under purely pyrolytic conditions. As can be seen from the figure 3, the 

mass loss curves evolutions are similar regardless of the value of the heating rate. It can be also 

noted that about 10% of the initial mass was degraded between the ambient temperature (20°C) 

and 200°C. Furthermore, about 40 % of the initial mass was found to be degraded between 200 

and 400°C, while 20% of the initial mass was lost between 400°C and the end of the test 

(1000°C). The mass of residue left at the end of the test was about 25% of the initial mass of the 

sample regardless of the heating rate. 

Figure 4 depicts the mass loss rate as a function of temperature at the different heating rates. In 

the initial stages, the moisture is released and the thermal degradation starts soon after (around 

200°C) under all heating rates. All the peaks of MLR curves occur around the same temperature 

ranges regardless of the heating rates. An increase of the heating rate led to a rise in the intensity 
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of MLR and the curves were shifted to higher temperatures. This behaviour is a characteristic 

feature denoting the role of the heating rate alone on the thermal degradation behaviour of the 

material under consideration. We could also make the assumption that the change of the heating 

rate does not significantly affects the reactions and associated kinetic parameters. The overall 

thermal degradation profile can be classified along three temperature ranges as follows:  

- Between 200 and 330-350°C (depending on the heating rate), the MLR increases with 

the rise of temperature. 

- Between 330-350°C and 380-420°C (depending on the heating rate), the MLR increases 

sharply to attain the maximal value and then it decreases. 

- Between 380-420°C (depending on the heating rate) to the end of the test, the MLR 

decreases very slowly and becomes insignificant. 

Following on from the profiles of the MLR curves, we suppose four main reaction steps: 

• Evaporation of the moisture:  corresponding to the first peak of MLR 

• Three pyrolytic processes:  the first corresponding to the peak of MLR curve at around 

300°C, the second corresponding to the highest peak of MLR at around 380°C and the 

last reaction corresponding to the last peak of MLR at around 420°C. 

In order to complete the investigation of the thermal degradation, the gaseous emissions 

correlation studies were conducted. The combined TGA/FTIR analyses are very useful in this 

context as in the combined mode the technique will help to identify the gases evolved at different 

stages of pyrolysis. These gases have a direct bearing on the flammability attributes and toxicity 

characteristics of solid materials undergoing combustion reactions in a real fire scenario. 

Moreover, the following of the gaseous emissions gives important information about the thermal 

degradation process. 

An example of the evolutions of the gaseous components detected under inert atmosphere as a 

function of the temperature (therefore, during purely thermal degradation) are plotted in Figure 5 

for a heating rate of 10°C.min-1. It should be noted here that the emissions obtained at this 

specific heating rate are representative of the corresponding ones at the other heating rates (i.e. 
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the compositional profiles of the gaseous components did not change with the change in heating 

rates).  

The main gases observed are: water vapour, methane, carbon monoxide, carbon dioxide, acetic 

acid, ammonia, formic acid, methanol and an alkane.  As can be also seen, the water is released 

in two steps. The moisture is released first, with a maximum value occurring at 105°C, but bound 

water molecules get released later on and are detected between 210 and 800°C, with a maximum 

value at around 390°C. The first peak is directly related to the evaporation step, but the second 

one is probably due to the main pyrolysis step (dehydration reactions) as it is correlated to the 

peak of MLR. 

The carbon dioxide is released between 200°C and the end of test, with a maximum value at 

390°C. The carbon monoxide is detected when the temperature is above 310°C, with a maximum 

value at 380°C. The release of CO occurs around the temperature at which the second step of 

pyrolysis reaction. As the CO2 is produced at the lower temperatures, the second pyrolysis step 

could be a partial oxidation of char, when CO is produced (i.e. char + CO2�CO + residue). 

Formic acid is detected at 240°C and up to 400°C whereas acetic acid is observed in the range of 

260–440 °C. In addition, the methane is observed at higher temperatures, between 350°C and 

800°C, while the methanol is observed between 200 and 500°C. During the experiment, an 

alkane molecule is observed between the 300 and 600°C. 

The evolution of the gaseous emissions seems to confirm that the thermal degradation of the pine 

needles under inert atmosphere takes place in three main steps. 

b) Results under air 

The thermal degradation of the pine has been studied under different heating rates, in air, in order 

to identify the influence of the oxygen on the thermal degradation mechanism. Figure 6 shows 

the evolution of the mass as a function of the temperature under air. As can be seen, the 

evolutions of the curves are quite similar whatever the value of heating rate. The main thermal 

degradation takes place between 200 and 650°C, and the following observations can also be 

noted: 
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- Between the ambient temperature and 200°C:  about 10% of the initial mass is lost and 

this can be attributed to evaporation of the moisture from the sample. 

- Between 200 and 350°C:  40% of the initial mass is lost. 

- Between 350 and 500°C: 45% of initial mass is lost. 

- Between 500 and 650°C:  the mass lost is relatively small.  

- After 650°C; the mass lost appears to be negligible. 

At the end of the test, the residue represents about 5 % of the initial mass, whatever the chosen 

heating rate. 

The influence of the oxygen on the thermal decomposition is depicted in Figure 7, which shows 

the evolution of the mass loss rates as a function of the temperature. The MLR profiles are quite 

similar regardless of the heating rate. However, an increase in heating rate generally leads to a 

rise of the intensity of MLR curve. Moreover, the temperature corresponding to the maximum 

intensity of the MLR increases with the rise of the heating rate as already noticed in Figure 4. As 

before, in the case of degradation under nitrogen atmosphere, the heating rate does not seem to 

change the reactions and associated kinetic parameters. Indeed, any changes in MLR curves 

seem to arise from the manner in which the sample is heated and not to any changes in the nature 

of the underlying reaction steps. 

From the analysis of the evolutions of the MLR curves, the thermal degradation steps under air 

can be classified according to the following temperature ranges, as given below:  

- Between the ambient to 200°C, this can be attributed to the evaporation of the moisture.  

- Between 200 and 330-350°C (depending on the heating rate), the MLR increases with 

the rise of temperature. 

- Between 330-350°C and 380-400°C (depending on the heating rate), the MLR 

decreases sharply. 

- Between 380-400°C to 450-470°C (depending on the heating rate), the MLR rises 

gradually until to reach the maximal value. 
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- Between 450-470°C and 550°C (depending on the heating rate), firstly MLR decreases 

slightly and then levels of. 

- Between 640-660°C (depending on the heating rate), a small peak of mass loss rate can 

be observed.   

We have also attempted to correlate the evolution of the gaseous emissions to the MLR. Figure 8 

shows the gases detected during the experiments, as well the evolution of MLR as a function of 

the temperature, at the specific heating rate of 10°C.min-1. It can be noted here that the moisture 

is released first with a maximum value at 110°C, and in addition water vapour evolution is also 

observed between 250 and 550°C.  Methane is observed between 350 and 550°C, whereas 

methanol is detected between 250 and 420°C. Furthermore, carbon monoxide is detected 

between 300 and 550°C and the carbon dioxide between 280 and 550°C. Other species included: 

formic acid detected in trace concentration; acetic acid in the range of 260–400°C; and the 

ammonia between 250 and 500°C. It can be also noted here that, at lower temperatures between 

200°C and 400°C, methanol, acetic acid and formic acid were found to be oxidized in contrary to 

the case with the inert atmosphere.  However, at higher temperatures, alkane molecules, once 

formed, appear to undergo oxidation through a different mechanism(s), as compared to those 

occurring in the case of the inert atmosphere. This is revealed by the lower intensities the 

corresponding peaks. The production of CO2 at higher temperature (500°C) could be due to a 

third reaction corresponding to the oxidation of char. 

From the analysis of both the evolution of the MLR and the gaseous emissions as a function of 

the heating rate, we formulate that the thermal degradation of the pine needles under air takes 

place in 3 steps. In comparison, the corresponding processes appear take place in four steps 

under nitrogen, thus indicating the influence of the nature of the prevailing atmosphere on the 

degradation of the material.   

c) Influence of the nature of the atmosphere 

 Figures 9 and 10, which present a comparison of the evolution of the mass and mass loss rate 

respectively under nitrogen and air for a heating rate of 10°C.min-1, help to illustrate the 

influence of oxygen in the degradation of pine needles. 
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It should be noted here that the general profiles of evolution of the gaseous species are not 

affected by the heating rate.  The evolutions of the mass loss as well as the mass loss rate as a 

function of the temperature are quite similar when the temperature is less than 300°C in both 

atmospheres. However above 300°C, the presence of oxygen seems to significantly alter the 

curves, notably for temperatures higher than 400°C. In addition, the residue obtained at the end 

of the test under air is less than the one under nitrogen (about 22% of the initial mass was found 

to be consumed by oxidative reactions). 

From the comparison of the evolution of the mass loss and the mass loss rate, and taking into 

account the gaseous emissions for different heating rate and atmosphere conditions, the 

following observations could be made: 

• Initially, the moisture is released in both atmospheres. 

• Between 200 and 280°C, the profiles of the mass loss and mass loss rate curves are quite 

similar for both atmospheres. During this temperature range, acetic acid, water vapour, 

ammonia, methanol, formic acid and CO2 are detected, which also agrees with previous 

studies [35-38]. Given the striking similarity between the profiles of the curves, in both 

atmospheres, it can be concluded that the underpinning physio-chemical processes are 

also similar along this range. Therefore, the nature of the prevailing atmosphere does not 

seem to influence the degradative reactions.  

• Between 280 and 350°C, the mass loss rate slightly increases in nitrogen, while in air, the 

mass loss rate increases more strongly. During this step, water, CO, ammonia, and CO2 

are detected. It can be also seen that even though the intensity of MLR curve under air is 

higher than that under nitrogen, the shapes are similar. Thus, under air, the reactions can 

be considered as occurring in parallel to those happening under N2. 

• Between 350 and 380°C, the MLR decreases strongly regardless of the atmosphere, and 

during this step, acetic acid, water, CO, and CO2 are detected. Indeed, the alkane is 

detected under nitrogen while ammonia is detected under air. Thus, the some of the 

reactions under air can be considered to be occurring in parallel to those ones under N2. 

• Between 380 and 550°C, the MLR decreases slightly under nitrogen, while under air, it 

increases further before it sharply decreases. During this step CO and CO2 are detected. 

Thus extra reactions seem to occur under air. 
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With respect to the thermal degradation of pine needles, under the two atmospheres, we 

could link the thermal degradation of each constituents of the material to the various steps in 

the overall degradation as follows: 

The first step is clearly due to the removal of the moisture of the pine needle because only 

H2O can be assumed to be released around 100°C, whereas the first step of pyrolysis (200 – 

330/350°C) can be attributed to the degradation of the hemicelluloses and lignin components. 

Indeed, White and Dietenberger [35] showed that the hemicelluloses and lignin components 

are pyrolyzed in the temperature ranges 200-300°C and 225-450 °C, respectively. They also 

indicated that most of the acetic acid liberated from wood pyrolysis is attributed to 

deacetylation of hemicellulose. In this study, acetic acid is detected from 350°C to around 

600°C which can be considered to be released through the degradation of the hemicellulose 

and lignin. 

The second step of pyrolysis (between 330/350 – 380/420°C) seems to correspond to the 

degradation of cellulose. According to a previous study [35], the depolymerization of 

cellulose occurs in the temperature range 300-350°C. 

The last step of pyrolysis could correspond to the end of reactions of lignin (380/420°C – to 

the end of the run). According to the literature precedent [35], the degradation reaction of 

lignin is exothermic in nature, with peaks occurring between 225°C and 450°C. 

The dehydration reactions occurring around 200°C are primarily responsible for pyrolysis of 

hemicellulose and lignin, and results in a high char yield for wood. Although cellulose 

remains mostly unpyrolyzed, its thermal degradation can be accelerated in the presence of 

water, acids, and oxygen. The tar generally undergoes cracking to form lighter gases and 

depolymerization to char residues. The overall pyrolysis reactions are endothermic in nature 

due to decreasing dehydration and increasing CO formation resulting from the char reacting 

with H2O and CO2 with increasing temperatures. During this “low-temperature pathway” of 

pyrolysis, exothermic reactions of exposed char and volatiles with atmospheric oxygen are 

manifested as glowing combustion [35]. The first peak of MLR under air could be the result 

of the two processes mentioned above occurring during the range of temperatures under 
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consideration. According to previous paper [35], for temperatures higher than 450°C, the 

remaining wood can be considered as a char residue, which undergoes further degradation 

through oxidation reactions to form CO2, CO, and H2O vapour. This is often referred to as 

the afterglow. The last reactions of oxidation detected in this study is also char oxidation. 

In conclusion, we can state that the first step occurs only under nitrogen while the second and 

the third steps occur under both atmospheres. The last step is facilitated by oxygen and thus 

occurs only under air.  

Table 2 presents the decomposition mechanisms by taking into account of the fate and 

evolution of both solid and gas phases. 

From the above analysis, the following reaction pathways can be formulated for pine needles: 

The first reaction represents the dehydration of the material. 

1

2
w

Wet Pine Dry Pine H O− → − +   

 
The reactions under nitrogen are: 
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While the reactions under air are: 
 

( ) ( )
( )

( )

5

6

7

4 4

5 5

6 6

1

1

1

w

w

w

Pine Pine gas

Pine Char gas

Char residue gas

α ν β ν

β ν ν

ν ν

− → − + −

− → + −

→ + −

&

&

&

 

 
Notice that generic names are used to describe the intermediate phases. The thermal degradation 

reactions can be written as follows (Figure 11): 

From the proposed mechanism, a model is developed with a view to represent the thermal 

decomposition of the pine needles in 0-Dimension, based on the TGA experiments. This kind of 

model represents the thermal degradation with negligible gradients of temperature and species as 
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occurring in an ideal thermo-gravimetric experiment. It means that the model 0-Dimension 

accounts for only the kinetics of thermal degradation of the pine needles. 

d) Estimation of the kinetic parameters   

This section presents the modelling of the results obtained from TGA experiments (mg scale) by 

using the mechanism of the thermal degradation proposed previously in Figure 11. The 

modelling is based on each step of the mechanism that corresponds to a reaction described by a 

modified Arrhenius law by following previous reports [11, 19]: 

Where: A is the pre-exponential factor, Ea the activation energy, n the reaction order, v the 

stoichiometric factor and yO2 the mass fraction of oxygen. Notice that δ is 1 under air and 0 

under nitrogen. 

The total mass loss rate of the solid is then described as the sum of the mass loss rate of each of 

the product in the condensed phase: 

 

dt

dm

dt

dm

dt

dm

dt

dm

dt

dm
MLR

dt

dm sidueCharpine Re++++=Σ= βα

 
Or: 

( ) ( ) ( ) ( ) ( ) ( )( )665544332211 111111 ωνωνωνωνωνων ⋅−+⋅−+⋅−+⋅−+⋅−+⋅−−=
dt

dm

 

The kinetic constants of the Arrhenius law for each reaction, as well as the stoichiometric 

parameters, need to be estimated as these parameters cannot be measured or determined 

experimentally. In practice, a Genetic Algorithm (GA) method has been used to estimate the 

kinetic parameters as reported in the past [9-10]. This method aims to extract the material 

properties needed for the numerical model from laboratory experiments like cone calorimeter 

and TGA [9-10]. In fact, the (GA) method used to find a set of material properties that offer 

optimal agreement between the numerical model and the experimental data, in accordance to the 

constraints imposed by the model and the experiments [9-10]. This method has been reported  in 

ω�� = Ae
�/�m�
�y��

�  
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detail elsewhere [9-10, 19-20]. The kinetic parameters are calculated in two steps. First, the 

parameters corresponding to the thermal degradation under nitrogen are determined.  

In a second step, those parameters are considered constant and then the calculation of the 

parameters of the reactions under air is done. The values calculated for these parameters are 

presented in the Table 3. 

In order to complete the model input, the process of dehydration of the pine has also been 

included. This step is widely reported [19-20], but has not been utilized specifically, as in the 

context of the present work. The parameters founded in [19] were inserted directly in the present 

model. Table 4 presents the kinetic parameters of the dehydration reaction. 

Figures 12 and 13 present the comparison between the experimental and numerical results 

regarding the evolution of the mass loss rate under nitrogen and air, respectively, for the different 

heating rates. As can be seen, the numerical MLR evolutions show a good agreement with the 

experimental results, for all heating rates and under both atmosphere conditions. Therefore, the 

proposed model clearly validates the experimental data in the case of TGA runs (0-Dimension). 

3.2.Cone calorimetric analysis 

 Experiments in TGA have shown the thermal degradation behaviours of pine needle samples. A 

mechanism has also been suggested by analysing mass loss, mass loss rate and gaseous 

emissions under different heating rates. However, in this type of experiments, the sample sizes 

are relatively very small and are therefore considered to be thermally thin. As a consequence, no 

gradients of temperature are assumed with in the sample. With a view to obtaining a better 

picture of the combustion profiles of the sample and to understand the heat and mass transfers 

pertaining to a porous bed of sample, cone calorimetric runs were done. The results are presented 

below. 

Ignition of solid fuels has been extensively explored providing “the classical theory of ignition” 

as detailed in a previous report [39]. Here, two cases were identified. The first one examines thin 

objects having no spatial and internal temperature gradients. This is named as a thermally thin 

case. The second one, named as a thermally thick case, incorporates temperature gradients into 
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the solid fuel bed. In general, fuels are classified as thermally thin if the Biot number is much 

smaller than 0.1, here the Biot number [40] defined as follows (equation 5):  

( )
''
e

ig

q
Bi

k T Tσ ∞

=
−

&
      (5) 

The calculation has been reported in a previous work [41]. For the range of heat fluxes tested, the 

Biot number varied from 7.4e-05 to 2.46e-04, corresponding to a thermally thin material. 

However, Figure 14 presents the inverse of the square root of the ignition delay, tig and the 

inverse of the ignition delay tig as functions of the external heat flux. The evolution of the inverse 

of the square root of tig, shows a better linearity than that for the inverse of tig. Even though 

single pine needles are expected to behave as a thermally thin material during cone calorimeter 

experiments, the porous bed of pine needles behaves like a thermally thick sample. 

Moreover, Figures 15 and 16 show the evolution of temperatures with time at the centreline of 

the sample for two external heat fluxes, 15 kW.m-2 and 50 kW.m-2, respectively. For the lowest 

external heat flux, the bed of pine needles behaves like in accordance to a pure conduction model 

before the ignition. However, in this case, we need to consider the radiation effects that appear in 

depth due to the high porosity of the bed in addition to the conduction mode of heat transfer. But 

in actual practice, the two heat transfer processes could be treated as one and the effective 

parameters of the solid could be derived, such as, effective conductivity, effective heat capacity, 

etc. [21, 28, 40].  

The temperatures near the back surface of the sample (V3, V4, and V5) were found to be higher 

than those near the surface exposed to the heat flux. This can be attributed to the oxidative 

reactions  in the condensed phase and other reactions in gas phase owing to porosity of the 

sample. Both these reactions are exothermic in nature and thus result in an overall rise of 

temperature of the sample. It should be noted here that the back surface of the sample thus 

preventing any substantial thermal losses. 

The temperatures near the surface of the sample are also affected by the convective heat transfer. 

It is one of the reasons that these temperatures are lower than those found deeper in the bed. For 
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a heat flux of 50 kW.m-2, we can observe that the temperature gradients along the centreline of 

the sample are lower than the corresponding ones under the lower irradiance level (i.e. at 15 

kW/m²).  

In the following sections the mass loss rate evolution and the gaseous emissions during the 

degradation process in the cone calorimeter apparatus, under well ventilated atmosphere, and a 

compilation of the cone calorimeter output are presented.  Figure 17 presents the evolution of the 

mass loss rate as a function of the time, at 15, 20, 30, 40 and 50 kW.m-2 (here time t=0 is taken 

as the beginning of the exposure to the irradiance level). These curves show similar evolutions at 

15, 20 and 30 kW.m-2, after which the value of the MLR becomes more prominent with the 

increase of the heat flux; however, the duration of the degradation becomes less important.  

At 15, 20 and 30kW.m-2, the MLR curves show two peaks, first one occurs at 200, 60 and 25 sec 

and the second one occurs at 225, 80 and 40 sec, respectively (the delays to ignition are reported 

in the table 2; no ignition has been observed under 12 kW.m-2, thus CHFexperimental is 12 kW.m-2). 

The first sets of peaks are attributed to the thermal degradation of a thin surface in the bed. The 

second one is due to pyrolytic reactions if the pine needles that are in the bed. After the second 

peak, the intensity of MLR decreases slightly until the end of the test, and this stage is related to 

the char oxidation. 

At higher heat fluxes, 40 and 50 kW.m-2, one main peak was observed and then the intensity of 

MLR decreases slightly. In this case the combustion of the bed occurs in a full blown manner 

and no separation of a pyrolysis zone and a virgin fuel zone was observed. Indeed, related to the 

evolution of temperatures (figures 15 and 16), the temperature gradients were found to be small 

and when ignition occurred, the bed burned through its entire depth. 

Heat release rate (HRR) of a burning fuel is a very important parameter for understanding the 

intensity of its combustion process, the fire characteristics and propagation rates [33]. It also 

serves to define parameters such as flame geometry, temperature fields, rate of fire growth and 

the amount of smoke and toxic gas generated. Oxygen consumption measurement [32] is a 

convenient and widely used technique to determine the heat release rate for the cone calorimeter 

apparatus, as described in the standard ISO 5660 [17]. HRR is calculated from the amount of O2 

Page 20 of 54

http://mc.manuscriptcentral.com/fam

Fire and Materials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

consumed during a  combustion process [32], based on the fact that for a large number of fuels, 

the energy released per unit of mass of oxygen consumed can be considered as the Huggett’s 

constant (E),  which is equal to 13.1 MJ.kg-1. In general, several simplifying assumptions are 

made: all exhaust gases are considered to behave as ideal, and to be composed (for more than 

99%) only of O2, CO2, CO, H2O and nitric oxide species [42-46].  

As H2O vapour concentrations were measured during our experiments, the HRR values were 

computed using the following equation (6) (described in details in reference [32, 46]): 

( ) ( ) 000
222

2

2
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2

11
OCOOHAir
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O

O

CO
CO XXXm
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X

X
EEE
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HRR −−











 −
−−= &
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φ  (6) 

Where, A = 88.4 cm2 (sample area exposed to cone calorimeter heat flux), E = 13.1 MJ kg-1 of 

O2, ECO = 17.6 MJ kg-1 of O2, MO2 = 32 g mol-1, MAir = 29 g mol-1, iX  is the mole fraction of 

species i in the exhaust gas (measured by the analysers), 
0
iX  is the mole fraction of species i in 

the incoming air. The oxygen depletion factor (φ) is defined in detailed in [42] and hence it is not 

presented here. 

Figure 18 shows the transient evolution of the heat release rate (HRR) at the five irradiance 

levels (15, 20, 30, 40 and 50 kW.m-2) studied. As shown previously for MLR, HRR transient 

evolutions depend strongly on the irradiance level, and profiles of both parameters have the same 

shape compared to MLR one for a given external heat flux. It can be also noticed that higher the 

heat flux and higher is the intensity of HRR. The values here obtained are in accordance with 

those already found in the literature [37].  

During the experiments, the cone calorimeter apparatus was coupled with two kinds of gas 

analysers: a Horiba PG 250 and a FTIR apparatus. The oxygen content (O2) of ambient air and 

concentrations of fifteen gaseous combustion products were continuously tracked and measured, 

and they included: CO, CO2, NO, NO2, SO2, NH3, HCN, N2O, CH4, C2H2, C2H4, C2H6, C3H6, 

C3H8 and H2O. HCN and some lightweight hydrocarbons (C2H2 and C2H4) were observed during 

these experiments in  very low concentrations, so their evolutions are  not considered  here. In 

fact the major gases emitted during the experiments were: CH4, CO, CO2, NO and H2O vapour. 
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The evolutions of concentrations of the major emissions correlated with the MLR at 30 kW m-2 

are plotted in figure 19. It should be also noted here that the emissions obtained at this specific 

irradiance level are representative of the corresponding ones for the other heat fluxes. In addition 

to monitoring and measuring the main gas species (CH4, CO, CO2, NO and H2O vapour), the 

residual oxygen concentration in the smoke layer was also followed. 

The FTIR analysis technique used included sampling and filtering devices that were validated 

during the SAFIR project [43], which also constituted the basis for toxicity analysis carried out 

following the guidelines of the standard ISO 19702 [44-45]; this technique has been used in 

previous works [41, 46-49]. Based on visual observations, the main features of the experiments 

can be classified into the following groups (see also Table 6):  

• From the beginning of test and the ignition: this step starts with the rise of solid‘s 

temperature without production of any gas (i.e. originating owing to the thermal mass 

or thermal inertia of the materials). Notice that a glowing glare was observed visually 

for the lower heat fluxes.   

Just before the flaming combustion, gases can be seen released from the sample, the 

quantity of gases was found to increase with the time until ignition. In general, a 

small mass loss was also observed and only water vapour and methane were detected 

during this step.  

• Combustion phase: The flame covers the whole of the pine needles bed, and it 

regresses gradually with the time. At this stage, CO2, CO, H2O, CH4 NO were 

detected and around 10.5 g of the mass was lost during this step.  

• Oxidation phase: after the flameout, some quantity of the solid remained in  the 

sample holder, and the quantity of gases produced  was  negligible. Only methane and 

CO and CO2 were detected during this step. 

In short, the thermal degradation and combustion of the pine needles in the cone calorimeter 

apparatus can be considered to occur via the following steps: 

Page 22 of 54

http://mc.manuscriptcentral.com/fam

Fire and Materials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

• During the very initial stages (especially at lower heat fluxes), the mass loss rate is 

related to the removal of moisture.  

• During the very initial stages, removal of moisture primarily causes the MLR as is 

observed at relatively lower heat fluxes,   

• In the second step, emission of NO is observed, whose concentration increases as the heat 

fluxes rise. 

• Next, the flaming combustion sets in leading to the consumption of oxygen and the 

production of CO2 and H2O. 

• After the peak stage of the above step, CO is produced and the concentration of O2 

increases in an inverse manner. 

• Finally, after the flame out, the MLR continues to decrease slowly with the generation of 

CO and CH4.  

 Conclusions 

In the present work, the thermal degradation of the pine needle was investigated at two different 

scales, using a TGA and cone calorimeter. At smaller scale, the experiments were carried out at 

four heating rates, under two atmospheres (air and N2) in a TGA apparatus. The mass loss, the 

mass loss rate and the gaseous emissions were measured for the material as a function of the 

temperature. From the profiles of the mass loss, mass loss rate and gaseous emissions under air 

and nitrogen, a model is proposed for the thermal degradation which incorporates the following 

steps:   

- A four steps mechanism in nitrogen atmosphere. 

- A three steps additional mechanism under air. 

The kinetic parameters were estimated using a genetic algorithm method. The model developed 

was for heating rates under both atmospheres.  Generally a good agreement was obtained 

between the experimental and numerical mass loss rate evolutions. Furthermore, the influence of 

the atmosphere on the different reactions steps was also identified. 
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At the larger scale, the experiments were conducted by using a cone calorimeter at five different 

values of heat flux. The mass loss, mass loss rate, and the evolution of vertical temperature 

profiles in the fuel bed and the gaseous emissions were monitored.   

The results show that the bed of pine needles behaves as a thermally thick fuel. However, at 

higher the external heat fluxes, fuel bed showed an increasing propensity to behave like a 

thermally thin sample.  

Furthermore, HCN and other lower hydrocarbons (C2H2 and C2H4) were observed during these 

experiments, but only in very low concentrations, so their evolutions were not shown 

graphically. In practice, the major gaseous components included CH4, CO, CO2, NO and H2O. 

As the cone calorimetric runs were performed in ambient conditions (i.e. at an oxygen 

concentration of 21 vol.%), which in fact is much higher compared to that available in actual fire 

scenarios, it is highly desirable to repeat the study under different intermediates concentrations of 

oxygen. Finally, the results obtained in the actual investigation can be used as input data to 

model the thermal decomposition of ligno-cellulosic materials in cone calorimeter experiments 

by using different available methods. 
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Table 1: Comparison between the Mass fractions for different kind of fuels. 

Mass fraction 

Fuel Cellulose 

(%) 

Lignin 

(%) 

Holocellulose 

(%) 

Hemicellulose 

(%) 

Extractible 

(%) 

C 

(%) 

H 

(%) 

O 

(%) 

N, 

Mineral 

(%) 

AU 38.0 41.6 43.2 5.2 13.1 48.3 6.2 40.3 5.3 
EA 40.7 39.7 54.3 13.6 5.8 52.4 7.0 35.9 4.6 
CM 39.4 34.4 52.0 12.6 9.2 46.6 6.2 37.7 9.5 
PP 38.3 28.9 42.4 5.1 12.9 46.9 6.0 39.6 1.0 
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Table 2. Pine Needles decomposition taking into accounts the evolution of solid and gas phases. 

No. Type of 

reaction 

Range of 

temp.[°C] 

Condensed 

reagent 

Condensed 

products generated 

Gaseous products emitted 

1 Drying  Wet-Pine Dry-Pine H2O 

2 Pyrolysis 200-330°C Dry-Pine α-Pine CO2, Acetic acid, Formic acid, 
CH3OH, H2O. 

3 Pyrolysis 330-420°C α-Pine β-Pine CO2, Acetic acid, Formic acid, 
H2O, CO. 

4 Pyrolysis > 420°C β-Pine Char H2O, CH4, Alkyl, CO2, CO. 
5 Oxidation 280-330°C α-Pine β-Pine CO, H2O, NH3, Acetic acid, 

Formic acid. 
6 Oxidation 330-420°C β-Pine Char CO, NH3, H2O, CO2. 
7 Oxidation >420°C Char Residue H2O, CH4, CO, CO2 
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Table 3. Kinetic parameters values estimated by using GA for the kinetic of thermal 
decomposition of pine needles. 

 
Atmosphere Reagent Product Kinetic parameters values 

LogA (S
-1

) Ea (kJ.mol
-1

) n(–) ν(–) 

N2 Pine (dry) α-Pine 6.5 91 1 0.85 
N2 α-Pine β- Pine 7.1 110 0.9 0.66 
N2 β- Pine char 5.2 95 2.3 0.58 
Air α- Pine β- Pine 7.5 115 1.3 0.26 
Air β- Pine char 8.2 89 2.8 0.49 
Air Char Residue 7.5 128 0.9 0.05 
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Table 4: Kinetic parameters of dehydration of the pine needles. 
 

log10A(s
-1

) E (kJ.mol
-1

) n (–) ν(–) 

3.6 43.8 0.99 0.9 
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Table 5.  Synthesis of the average results as a function of the external heat flux. 
 

External heat flux Piloted ignition Flame Out PHRR MLR (Max) 

(kW.m-2) tig (Sec) tig (Sec) (kW.m-2) (g.s-1) 

15 209.5±65.5 304.5±51.5 238 0.29 

20 68±5 158±6 240 0.27 

30 20.5±2.5 117±2.3 275 0.31 

40 12±2 108±6 320 0.43 

50 7.5±0.5 105±2 325 0.57 
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Table 6:  A synthesis of the Gaseous products emitted and Total Mass loss during the 
experiments. 

 Before Ignition ignition After flame out 
Gaseous products emitted H2O, CH4. CO2, CO, H2O, CH4, NO CH4, CO, CO2 

TML (g) 1.2 10.5 2.5 
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Figure 1: The sample holder used in the present study. 

 

 

 

 

 

Page 36 of 54

http://mc.manuscriptcentral.com/fam

Fire and Materials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

Figure 2: Position of the thermocouples positioning along the centerline of the sample holder. 
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Figure 3: Evolution of the mass loss as a function of the temperature in TGA under inert 

atmosphere. 
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Figure 4: Evolution of the mass loss rate as a function of the temperature in TGA under inert 

atmosphere. 
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Figure 5: Evolution of the gaseous emissions and the MLR under N2 in TGA at 10°C min
−1

. 
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Figure 6: Evolution of the mass loss as a function of the temperature under air in TGA. 
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Figure 7: Evolution of the mass loss rate as a function of the temperature under air in TGA. 
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Figure 8: Evolution of the gaseous emissions and the MLR under air in TGA at 10°C min
−1

. 
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Figure 9: Comparison of the evolution of the mass under nitrogen and under air in TGA for a 

heating rate of 10°C min
−1

. 
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Figure 10: Comparison of the evolution of the mass under nitrogen and under air in TGA for 

a heating rate of 10°C min
−1

. 
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Figure 11: Mechanism proposed for the thermal degradation. 
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Figure 12: Comparison of the experimental and modeled MLR under inert atmosphere in 0-

D. 
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Figure 13: Comparison of the experimental and modeled MLR under air in 0-D. 
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Figure 14: Plots of the inverse of the square root of tig and of the inverse of tig. 
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Figure 15: Evolution of the temperatures (vertical position) at 15 kW.m
-2
. 
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Figure 16: Evolution of the temperatures (vertical position) at 50kW.m
-2

.  
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Figure 17: Evolution of the mass loss rate as a function of the time in the cone calorimeter. 
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Figure 18: Evolutions of the HRR as a function of time for the different external heat fluxes. 
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Figure 19: Evolution of the gaseous emissions during the experiment at 30 kW m
-2
 

(CH4*100, CO*10, CO2, NO*100, H2O, MLR*10000, O2). 

 

 

Page 54 of 54

http://mc.manuscriptcentral.com/fam

Fire and Materials

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


