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Abstract 

The benefits of Cloud computing include reduced costs, high reliability, as well as the immediate availability of 

additional computing resources as needed.  Despite such advantages, Cloud Service Provider (CSP) consumers 

need to be aware that the Clouds poses its own set of unique risks that are not typically associated with storing 

and processing one’s own data internally using privately owned infrastructure. New techniques such as 

Searchable Encryption are being deployed to enable data to be encrypted online. Despite being a relatively 

obscure form of Cryptography, Searchable Encryption is now at the point that it can be deployed and used 

within the Cloud.  Searchable Encryption can allow CSP customers to store their data in encrypted form, while 

retaining the ability to search that data without disclosing the associated decryption key(s) to CSPs. Searchable 

Encryption is a diverse subject that exists in many forms.  Searchable Symmetric Encryption (SSE) which has its 

roots in plaintext searching is one such form. Although symmetrically encrypted ciphertext cannot be searched 

in the same manner; nonetheless, many of the principles that apply to plaintext searching also apply to SSE. In 

its most basic form, SSE is nothing more than an Inverted Index – a mechanism that has been used in plaintext 

Information Retrieval (IR) for decades - that has been modified and adapted for use with ciphertext.  We 

implement an SSE scheme and evaluate the efficiency of storing and retrieving data from the cloud. 

 

The results showed that carrying out a task using SSE is directly proportional to the amount of information 

involved.  In the case of constructing an IR Inverted Index, the results show that the time taken to generate an IR 

Inverted Index is directly proportional to the number of Terms contained in the underlying Document 

Collection.  Converting the same IR Inverted Index to an SSE Inverted Index is directly proportional to the 

number of Postings contained within the IR Inverted Index, while the time taken to encrypt the underlying 

Document Collection is directly proportional to the number of Terms contained within the Document 

Collection.  In relation to searching in SSE, the time taken to identify and decrypt the set of Postings associated 

with a given Lexicon Term is directly proportional to the number of Postings. We believe that SSE is efficient 

enough to be deployed in a Cloud environment especially when results only have to be returned to the user in 

small quantities. When applied to large Data Sets, SSE querying can become inefficient as its search time is 

directly proportional to the number of matching. SSE however is designed to achieve efficient search speeds 

whilst maintaining Data Privacy. 

 

 

1. Introduction 
 

The concept of Cloud computing is now an accepted philosophy for computing.  As of 2014, 19% of all 

enterprises within the European Union utilise Cloud computing in some form or another, with industry forecasts 

indicating significant growth in the sector over the coming years ((Eurostat, 2014).  The benefits of Cloud 

computing are significant: reduced costs, high reliability, as well as the immediate availability of additional 

computing resources as and when needed.  Despite such advantages, Cloud Service Provider (CSP) consumers 

need to be aware that the Clouds poses its own set of unique risks that are not typically associated with storing 

and processing one’s own data internally using privately owned infrastructure (Hashizume et al. 2013).   

Perhaps the most severe risk facing CSP consumers at present is the threat of data disclosure or data loss.  

Recent years have seen a number of such incidents occur, whereby organisations customer data – hosted on the 

Cloud - has been leaked online (for hacktivism or vandalism purposes) or stolen for criminal purposes.  Cloud 

computing is made possible through the use of many technologies, including internet access, virtualisation and 

third party data centres.  As a result, Cloud computing has a much broader attack surface than that associated 

with storing and processing data internally using privately owned infrastructure.  The storing of consumer data 

online makes such information – potentially - accessible to anyone with a web browser, while the use of 



virtualisation technology has the potential to allow CSP consumers to gain access to other CSP consumer’s 

private data and/or applications (Hashizume et al., 2013).  In addition, the use of third party data centres poses a 

number of potential risks, including employees of the CSP (both current and former) gaining access to private 

consumer data (either physically or via software) (Hashizume et al. 2013, Nguyen et al. 2014). As a 

countermeasure to such attacks, various access controls are utilised:  In the case of online access to the CSP, 

such access controls typically take the form of usernames and passwords; In the case of virtualisation, such 

access controls typically take the form of logical data separation; and in the case of third party data centres, such 

access controls typically take the form of physical access controls (For Example: Locks, Keypads) (as well as 

software based access control) that prevent unauthorised CSP personnel from gaining access to user data 

(Hashizume et al. 2013).  In principle, all of the aforementioned access controls are sound; however in practice, 

such controls have been circumvented. 

 

In the event that any of the aforementioned access controls are compromised maliciously, the chances of a data 

breach occurring are high.  Should a data breach occur and the associated data is retrieved in encrypted form, the 

data is essentially useless to an attacker (unless the encryption algorithm utilised is weak and/or the attacker has 

some foreknowledge of the associated decryption key) (Hashizume et al. 2013); however, in the event that a 

data breach occurs and the associated data is retrieved in plaintext form, an organisations worst nightmare has 

become a reality.  What follows is typically a slew of press releases, negative publicity, damaged business 

reputations, and fines under various data protection laws (ICO, 2015, Levick, 2015). To reduce the impact of 

potential data breaches (and to provide privacy for CSP consumer data) CSPs typically employ the use of 

cryptography.  In a Cloud environment, cryptography is typically utilised for two purposes: security while data 

is at rest; and security while data is in transit.  Unfortunately the Cloud cannot guarantee the security of data 

during processing as the current limitations of cryptography prevent data from being processed in encrypted 

form. Given the fact that data is processed in unencrypted form, it is quite common for attackers to target data in 

use, rather than targeting data which is encrypted during storage and transit (Hashizume et al., 2013). An entity 

wishing to store its data within the Cloud must choose one of the following options: 

 

1. Store Data in Encrypted Form (Two Options Exist) 

A. Disclose Decryption Key(s) to Cloud Service Provider (CSP) OR 

B. Keep Decryption Key(s) Private 

2. Store Data in Unencrypted Form 

 

Option 1A requires encrypted data owners to disclose their decryption key(s) to CSPs.  This is due to the fact 

that data cannot be searched or operated on while in encrypted form.  In order to provide CSP customers with 

such functionality, CSPs require access to the necessary decryption key(s).  Option 1B (Keeping Decryption 

Key(s) Private) represents the most secure sub-option; however, as previously mentioned, CSP customers lose 

the ability to search or operate on their data while it is in encrypted form.  In order to utilise such functionality 

using Option 1B, CSP customers must download their data, decrypt it, and only then can it be searched and/or 

operated on.  While this approach may be fine for small amounts of data, it becomes increasingly inefficient and 

unwieldy as the amount of data increases.  In addition, should any changes be made to the data after it has been 

downloaded; the customer must then re-encrypt and re-uploaded the entire dataset to the Cloud. Option 2 avoids 

the use of encryption for data security.  Rather than relying on cryptography for data security; that is, the 

traditional approach to data security, this approach utilises the aforementioned approach of logically separating 

data (Mather et al. 2009). Evidently, none of the options available at present provide an adequate balance of data 

security and functionality.  Option 1A and Option 2 offer full functionality at the expense of data security, while 

Option 1B provides data security at the expense of any and all functionality. The ideal solution to achieving an 

optimal balance of data security and functionality within the Cloud involves the CSP having the ability to search 

and operate on data while it is in encrypted form – without having any knowledge of the associated decryption 

key(s), or the associated plaintext(s)  (Mather et al. 2009). 

 

Two forms of encryption do in fact exist at present that make the above a reality.  The first, known as Fully-

Homomorphic Encryption (FHE) allows data to be operated on while in encrypted form (Gentry 2009). The 

second, known as Searchable Encryption, allows for data to be searched while in encrypted (Song et al. 2000). 

While being impressive in terms of its functionality and capabilities, FHE remains extremely slow when 

implemented in software (Gentry et al. 2015).  As such, its mass deployment and usage within the Cloud 

appears to be some way off (Wang et al., 2015). 

 

Searchable Encryption on the other hand has been shown to be sufficiently efficient on the few occasions that it 

has been implemented in software (Uchide & Kunihiro, 2016).  Despite being a relatively obscure form of 

Cryptography, Searchable Encryption is now at the point that it can be deployed and used within the Cloud 

(Kamara et al. 2012, Cash et al. 2013).  Used in the Cloud, Searchable Encryption has the ability to allow CSP 

customers to store their data in encrypted form, while retaining the ability to search that data without disclosing 

the associated decryption key(s) to CSPs (Song et al. 2000), that is, without compromising data security on the 



Server. Searchable Encryption is a diverse subject that exists in many forms.  While there are several methods of 

carrying out Searchable Encryption, two general techniques dominate the literature: Searchable Symmetric 

Encryption (SSE); that is, Searchable Encryption using Symmetric Key Cryptography and Public Key 

Encryption with Keyword Search (PEKS); that is, Searchable Encryption using Public Key Cryptography 

(Curtmola et al. 2006, Bosch et al. 2014).  Neither SSE nor PEKS natively supports Searchable Encryption as it 

was originally envisioned by Song et al. (2000).  Instead, the literature has focussed on adapting various forms 

of Indexes; that is, Data Structures that support efficient searching by pre-computing and mapping Search 

Terms to the Documents they occur in (and vice versa), for use with Information Retrieval (IR) over encrypted 

Documents (Bosch et al. 2014). 

 

Forward Indexes and Inverted Indexes store the exact same information, each Index is optimised for different 

forms of searching.  In the case of the Forward Index, it is optimised for searching specific Documents for the 

presence of Search Strings (Luenberger 2006, p.285), while the Inverted Index is optimised for searching an 

entire Document Collection for the presence of Search Strings (Luenberger 2006; Manning et al. 2008).  Early 

work on the topic of Searchable Encryption focussed on the use of Forward Indexes almost exclusively (Goh 

2003, Chang and Mitzenmacher 2005); however, subsequent work on the topic has focussed on the use of 

Inverted Indexes (due to its ability to efficiently search an entire Document Collection, as opposed to specific 

Documents) (Curtmola et al., 2006; Kamara et al., 2012; Cash et al., 2013). Aside from SSE and PEKS, two 

other forms of encryption exist at present that support Searchable Encryption: Fully-Homomorphic Encryption 

(FHE) (Gentry 2009) and Oblivious RAM (ORAM) (Goldreich and Ostrovsky 1992).   

 

Fully-Homomorphic Encryption supports computations over data in encrypted form, including Searchable 

Encryption as it was originally envisioned by Song et al (2000); nonetheless efficient Fully-Homomorphic 

Encryption remains someway off (Gentry et al. 2015).   Used in isolation, ORAM does not support Searchable 

Encryption.  Essentially, ORAM is a Client-Server communication protocol designed to obfuscate memory 

access patterns on the Server side of a given transaction.  In its simplest form, ORAM consists of two 

operations: The Client storing data on the Server; that is, writing, and the Client retrieving Data from the Server; 

that is, reading.  In an effort to obfuscate memory access patterns on the Server, each Write operation is also 

accompanied by an associated Read operation, and each Read operation is accompanies by an associated Write 

operation.  In addition, each Read/Write operation accesses numerous memory locations on the Server instead of 

just a single memory location (in an effort to further obfuscate memory access patterns; that is, false positives) 

(Goldreich and Ostrovsky 1992).  In the context of Searchable Encryption, ORAM is typically combined with 

SSE and PEKS Searchable Encryption schemes to improve their security.  SSE and PEKS Searchable 

Encryption schemes Leak Information to the Server a number of ways.  By combining such schemes with 

ORAM, such Information Leakage can be eradicated; nonetheless, the search efficiency of schemes utilising 

ORAM is severely hindered due to the amount of work involved in obfuscating memory access patterns using 

ORAM (Stefanov et al. 2013). In relation to search efficiency, both SSE and PEKS achieve optimal search time 

when used in conjunction with an Inverted Index; that is, search time is linear in the number of Documents 

matching the Search String; however in terms of security, SSE is vastly superior to PEKS (Bosch et al. 2014).  

Given that PEKS is a form of Public Key encryption, an adversary can easily mount an attack on such a 

Searchable Encryption scheme given the associated Public Key and a dictionary of chosen Terms.  In the case of 

SSE, all associated keys are kept private (Curtmola et al. 2006). 

 

SSE represents one of the few forms of Searchable Encryption that is achievable using established standardised 

encryption algorithms (Cash et al., 2015).  Alternative forms of Searchable Encryption require the use of non-

standardised, special purpose encryption algorithms (Gentry 2009).  SSE is considered one of the least secure 

forms of Searchable Encryption (see figure 1) primarily due to Information Leakage.  Solutions exist to 

eradicate and obfuscate all forms of Information Leakage in SSE; however existing solutions have a significant 

effect on the search efficiency of SSE (Stefanov et al. 2013).  Evidently, the challenge for researchers is to 

improve the security of SSE while maintaining its superior search efficiency (He et al., 2016). 

 

 

 

 

 

 

 

 

 

 

 



 
 

Figure 1: Efficiency Vs.  Security Trade-off For Various Searchable Encryption Schemes (Kamara 2013) 

 

Figure 1 lists all known solutions to the problem of searching on encrypted data; that is, symmetrically 

encrypted data, as well as public key encrypted data.  The y-axis of figure 1 lists all Searchable Encryption 

solutions with respect to their efficiency, while the x-axis lists all solutions with respect to security.  As regards 

efficiency, the SSE literature defines efficiency as the time-complexity associated with finding a given 

Encrypted Search String (ESS) within a body of encrypted data (expressed in Big O Notation).  In terms of 

security, the SSE literature defines security as the amount of Information Leakage associated with using a given 

Searchable Encryption scheme; that is, what the Server learns (or can deduce) about the ciphertext by searching 

over it (expressed in Terms of the numerous categories of Information Leakage) (Kamara 2013). 

 

 

2. Searchable Encryption 
 

Song et al.  (2000) first proposed the concept of Searchable Encryption using an example whereby the content 

of symmetrically encrypted Documents were sequentially searched; that is, character-by-character, word-by-

word, for the presence of a user specified Search String.  Prior to the Search taking place, the Search String 

specified by the user was first encrypted using the same key used to encrypt the Documents being searched, with 

the resulting value – referred to as the Encrypted Search String (ESS) – being the value Searched for within the 

encrypted Documents.  Those encrypted Documents deemed to contain the ESS were then returned to the user 

as part of the subsequent Search Results (see Figure 2). 

 

 
Figure 2: Original Description of Searchable Encryption 

 

While this explanation successfully communicated the basic premise of Searchable Encryption – in a manner 

relatively similar to plaintext Information Retrieval (IR); that is, plaintext searching - it nonetheless ignored the 

fact that modern symmetric ciphers do not support Searchable Encryption as described by Song et al.  (2000).  

Specifically, modern symmetric ciphers implement Shannon’s Confusion and Diffusion principles (through the 

use of Substitution-Permutation networks) to counter cryptanalysis (Stallings 2014, pp.66-67).  As a 

consequence, Searchable Encryption - as described by Song et al. (2000) is not feasible as the data must be 

encrypted using Electronic Code Book mode (the use of ECB mode is highly discouraged due to its 

susceptibility to cryptanalysis) and that the author of the Document being searched limit the maximum length of 

plaintext Terms in the Document to the Block Size of the associated cipher (8 characters in the case of DES, 16 

characters in the case of AES).  In addition, the scenario also requires that the author of the Documents ensure 

that only a single Term is contained within each ciphertext Block. 

 



Searchable Encryption operates on the assumption that a given Term - whether in plaintext form or encrypted 

form - is located in the same position in both the plaintext version of the Document and the encrypted version of 

the same Document.  For Example:  Given a plaintext Document beginning with the Term ‘The’, the description 

provided by Song et al.  (2000) assumes that the first three characters of both the plaintext version of the 

Document and the encrypted version of the Document correspond to the Term ‘The’.  Essentially this 

description assumes that symmetric ciphers encrypt data one character at a time, when in reality, this is not the 

case. Modern symmetric ciphers encrypt data in blocks of a fixed size, rather than character by character 

(Stallings 2014).  The effect of using such ciphers is that the ciphertext associated with a given plaintext Term is 

spread across the entire ciphertext block, rather than appearing in the same position as the plaintext Term; thus 

preventing traditional Sequential Searching (Stallings 2014).  In addition, modern symmetric ciphers typically 

operate using advanced block cipher modes (another mechanism to counter cryptanalysis) which ‘chain’ the 

ciphertext of previously encrypted blocks to the current plaintext block (by means of a bitwise XOR operation) 

(Stallings 2014); thus further complicating the problem of searching ciphertext for the presence of an encrypted 

version of a plaintext Search String. Recognising the inherent difficulty in achieving Searchable Encryption as 

originally described by Song et al. (2000), subsequent work in the area focussed on developing solutions to the 

problem as originally conceived; albeit without actually using Sequential Searching (Goh 2003).  Specifically, 

researchers focussed on adapting the Inverted Index – a mechanism that has been used in plaintext Information 

Retrieval for decades – for use in Searchable Encryption (Curtmola et al. 2006).   In its most basic form, an 

Inverted Index is a Data Structure that maps Terms to the Document(s) they occur in; therefore eradicating the 

need to Sequentially Search Documents (Luenberger, 2006; Manning et al,. 2008).  When adapted for use with 

an encrypted Document Collection, the resulting Inverted Index is titled Searchable Symmetric Encryption 

(SSE) (Curtmola et al., 2006)- the topic of focus for this research. 

 

2.1 Information Retrieval and the Inverted Index 
 

Unlike searching a Collection of encrypted Documents, searching a Collection of plaintext Documents for the 

presence of a user specified Search String is a trivial process.   The most basic method of doing so, known as 

Sequential Searching, involves examining each Document within a Collection on a Term by Term basis.  As 

each Term within the Document being examined is encountered, the Term in question is simply compared to the 

user specified Search String for equality (assuming the Search String in question consists of a single Term).  In 

the event that a Document Term matches the user specified Search String, the associated Document is then 

returned to the user as part of the ensuing Search Results (Manning et al,. 2008). While Sequential Searching 

functions effectively, its search efficiency is poor:  Sequential Searching suffers from the fact that each 

Document in the Collection must be examined; therefore making its search time linear in the number of 

Documents contained within the Collection.  As such, the time taken to search the Collection increases as the 

number of Documents in the Collection expands. The poor performance of Sequential Searching can be directly 

attributed to the fact that the set of Terms contained within each Document must be determined at run time; that 

is, while the Search is being conducted.  In addition, the set of Documents that a Search String occurs in must 

also be determined at run-time; hence why each Document within the Collection must be examined (Manning et 

al. 2008). In an effort to expedite the process of plaintext Information Retrieval (IR), the Inverted Index was 

developed.  Just like a Database Index is designed to speed up data retrieval without searching each row of a 

Database Table, the Inverted Index is designed to speed up IR without having to search each Document within a 

Collection. In its most basic form, an Inverted Index is a Data Structure that maps each Term within a Collection 

to the Document(s) it occurs in (Luenberger, 2006). The Inverted Index attempts to overcome the shortcomings 

of Sequential Searching by pre-computing the list of all Terms contained within a Document Collection, as well 

as each pre-computing what Document(s) each Term occurs in; that is, in advance of a search occurring.  The 

purpose of pre-computing this list of Terms – commonly referred to as the Lexicon of the Collection – is that the 

list of Terms is searched for the presence of the user specified Search String, instead of the Document 

Collection; thus making the search time linear in the number of Terms contained within the Collection.  For 

improved search efficiency, it is common for the Lexicon to be stored using Data Structures that expedite 

searching, such as Hash Tables (O(1) Search Complexity), Binary Search Trees (O(Log N) Search Complexity), 

B-Trees (O(Log N) Search Complexity) or Word Tries (O(Log N) Search Complexity).  

 

2.1.1 Inverted Index Construction 
 

Construction of an Inverted Index first requires a Document Collection from which the Inverted Index will be 

built; that is, the Document Collection to be searched.  Inverted Index construction begins with each Document 

within the Collection being sequentially scanned by the Server, and a note being made of each Term that occurs 

within each Document. In SSE, the Client is responsible for constructing the Inverted Index; not the Server as is 

the case with plaintext Information Retrieval (IR).  This process is typically referred to as Document 

Tokenisation (Manning et al. 2008).  Each and every Term encountered during Document Tokenisation is added 

to a list known as the Lexicon (see Figure 3).  Essentially, the Lexicon is the list of all Terms that occur in a 

given Document Collection. In the event of the same Term occurring multiple times in a single Document, or 



the same Term occurring in multiple Documents within the Collection– both of which are inevitable - the Term 

in question appears only once in the Lexicon; therefore, each Term contained within the Lexicon is unique 

(Luenberger 2006).   

 
 

  

Figure 3: Sample 

Lexicon 

Figure 4: Sample Lexicon (Including Postings/Posting Lists) 

 

Throughout the process of Document Tokenisation, each and every Document that a given Term occurs in is 

also noted; that is, the Document ID is noted (see Figure 4).  The noting of a given Term occurring in a given 

Document is referred to as a Posting, while the list of all Documents; that is, Document ID’s, where a given 

Term occurs is referred to as a Posting List. 

 

 

 
Figure 5: Tabular Visualisation of an Inverted Index (Luenberger 2006) 

 

Figure 5  depicts a simple tabular visualisation of an Inverted Index.  The Lexicon for the Document Collection 

is listed in the left most column of the table, while the list of Documents within the Collection; that is, 

Documents IDs is listed along the top row of the table.  The intersection of each row and column contains a 

value denoting whether or not the Term associated with the row in question occurs within the Document 

associated with the column in question, with ‘1’ denoting the occurrence of the Term within the Document; that 

is,  a Posting, and ‘0’ denoting the absence of the Term from the Document. Regarding implementation details, 

an Inverted Index can be implemented in a number of ways: 

 

 As mentioned previously, the Lexicon can be implemented and stored using a number of different Data 

Structures.  This research assumes that the Data Structure used is a Hash Table (due to its efficiency; 

that is, O(1)). 

 Due to their list-like nature, Posting Lists are typically implemented using a Linked List Data Structure.  

Alternative Data Structures, such as Arrays, can be used; however the dynamic nature of Posting Lists 

often makes the Linked List Data Structure the preferred choice. 

 In relation to Document storage, Documents can be stored in a number of ways.  Primarily, Documents 

are either stored using the native file system of the Server they are stored on, or alternatively, as Rows 

within a Database Table (with their designated Document ID acting as their Primary Key value). 

 

In term of memory management, the Lexicon of an Inverted Index is typically loaded into Random Access 

Memory (RAM) at all times.  Given that the Lexicon contains the information to be searched whenever an 

Inverted Index is queried; it is therefore common that a significant amount of RAM be allocated to same. 

Regarding memory management for Posting Lists and Documents, both sets of information are typically stored 

in secondary memory.  This is due to the fact that both Posting Lists and Documents are only ever retrieved 

whenever their associated Terms are searched for. For improved performance, it is common for the first Link of 

a Postings List Linked List to be stored alongside its associated Term in the Lexicon Data Structure; that is, in 

RAM.  This is due to the fact that the first Link in a Linked List is required to access all subsequent Links in the 

Linked List; that is,  all subsequent Postings (stored in secondary memory). Performing a Query against the 

Inverted Index structure is relatively simple. Given a Search String, the Lexicon Data Structure is examined to 



determine the presence or absence of the Search String within the Lexicon.   In the event that the Search String 

is present in the Lexicon, the first Posting associated with the matching Term is retrieved from RAM.  In turn, 

this Link is then used to retrieve all subsequent Links in the Linked List (stored in secondary memory); thus 

retrieving all Postings for the Search String in question.  Once the Posting List has been retrieved in full, the 

associated Document IDs are then used to retrieve the actual Documents – from secondary memory – that 

contain the Search String.  Once all Documents are retrieved, they are then forwarded to the Client; that is, 

Search Results. In the event that a Search String is not present in the Lexicon, this denotes that the Search String 

in question is not present in any Documents contained within the Collection. 

 

 

 

2.2 Searchable Symmetric Encryption (SSE) 
 

To ensure clarity, we refer to the Inverted Index structure used in plaintext Information Retrieval (IR) as the IR 

Inverted Index, while its SSE counterpart is referred to as the SSE Inverted Index. As the name suggests, the 

SSE Inverted Index borrows heavily from the IR Inverted Index.  All information presented previously in 

relation to the IR Inverted Index remains true for the SSE Inverted Index; however the reader should be aware 

that SSE and the SSE Inverted Index differ from IR and the IR Inverted Index in the following ways: 

 

The topic of Information Leakage forms an Integral part of SSE.  When the idea of Searchable Encryption was 

first proposed, one of its founding principles was the assumption that the Server storing the encrypted Document 

Collection is an adversary that is actively working on subverting the security of the Document Collection it 

possesses (with the ultimate goal of gaining access to the Document Collection in plaintext form) (Song et al. 

2000).  As such, the SSE Inverted Index is constructed and operates in a manner that takes significant steps to 

reduce the Leakage of potentially useful Information to the Server.  In practice, this involves the use of 

encryption for the Document Collection, the Lexicon, Posting Lists and Search Strings; as well as the use of 

Data Structures that hinder the Servers efforts in achieving its malicious goals (Goh 2003, Chang and 

Mitzenmacher 2005, Curtmola et al. 2006). 

 

Responsibility for creating the SSE Inverted Index is offloaded to the Client.  In order for the Server to construct 

the SSE Inverted Index, decryption keys must be disclosed to the Server (as mentioned previously, this is 

undesirable from a data security perspective).  Rather than reveal sensitive information to the Server, SSE 

delegates responsibility of constructing the SSE Inverted Index to the Client.  Given that the Client is 

responsible for constructing the SSE Inverted Index, it is therefore expected that the Client forwards the SSE 

Inverted Index to the Server along with the encrypted Document Collection whenever the latter is forwarded to 

the Server for storage (Goh 2003).   

 

 

2.2.1 Information Leakage 
 

A significant portion of the Searchable Encryption literature has focussed on determining what Information 

Leakage results from a) The Server being in possession of the encrypted Document Collection, and b) The 

Server carrying out searches on same; that is, a Client ordering the Server to perform a Search, or the Server 

itself carrying out searches covertly.  The purpose of studying such Information Leakage is to determine 

whether or not any and all Information Leaked by various Searchable Encryption schemes is useful to the Server 

in terms of achieving its malicious goal(s).   Ideally, no Information Leakage should occur as a result of utilising 

Searchable Encryption; however, like all ideal scenarios, realising it is not without its challenges.  The two most 

secure forms of Searchable Encryption at present; that is, Oblivious RAM (RAM) and Fully Homomorphic 

Encryption-2 (FHE-2) achieve zero Information Leakage; however both do so at the expense of efficiency.  In 

both solutions, this poor efficiency can be directly attributed to the Information Leakage countermeasures 

utilised (Stefanov et al. 2013). In an effort to improve the overall efficiency of Searchable Encryption, several 

researchers have examined the prospect of relaxing the zero-tolerance approach to Information Leakage in 

Searchable Encryption (Goh, 2003, Chang and Mitzenmacher, 2005).  Specifically, researchers have attempted 

to determine what Information Leakage is acceptable in Searchable Encryption (sometimes referred to as Trivial 

Information Leakage); that is, Information that in no ways aids the Server in achieving its goal of subverting the 

encrypted Document Collection.  Evidently, the goal of this Research was to identify which Information 

Leakage countermeasures are absolutely necessary in Searchable Encryption; therefore allowing researchers to 

focus on creating search efficient schemes that conform to this baseline measure of Information Leakage (at a 

minimum). 

 

In the case of Searchable Symmetric Encryption (SSE), it is the SSE Inverted Index that is searched by the 

Server, instead of the encrypted Document Collection.  As such, the SSE literature instead focuses on 

determining what Information Leakage results from the Server being in possession of the SSE Inverted Index, as 



well as what Information Leakage results from the Client (or the Server itself) querying same. In terms of 

Information Leakage in SSE, such Information Leakage is typically broken into three categories: Storage 

Leakage; that is, what the Server can learn (or deduce) from the SSE Inverted Index by simply storing it (that is, 

without the SSE Inverted Index actually being queried), Query Leakage; that is, what the Server can learn (or 

deduce) from the SSE Inverted Index by querying it itself (covertly) , or observing the SSE Inverted Index being 

queried by Client(s), and Update Leakage; that is, what the Server can learn (or deduce) whenever the SSE 

Inverted Index is updated (such as when Documents within the Collection are edited/deleted, or when new 

Documents are added to the Collection) (Curtmola et al. 2006, Chase and Kamara 2010, Kamara et al. 2012, 

Kamara 2013). 

 

We have attempted to produce an all-encompassing list of Information that can potentially be Leaked by SSE, as 

well as highlighting what Information Leakage is classified as Trivial and Non-Trivial by the Searchable 

Encryption literature (Curtmola et al. 2006, Cash et al. 2013).  Figure 6 presents potential Storage Leakage by 

an SSE scheme (including an indication of whether or not such Information is classified as Trivial Information 

Leakage or Non-Trivial Information Leakage), while Figure 7 presents potential Query Leakage by an SSE 

scheme.   Note that potential Storage Leakage is presented in terms of the three inter-related data sets that make 

up an SSE Inverted Index; that is, the Lexicon, Postings and the associated encrypted Document Collection, 

while potential Query Leakage is presented in terms of the Search Pattern; that is, the Encrypted Search String 

(ESS) received by the Server (and whether or not the ESS was utilised before), and the Access Pattern; that is, 

those encrypted Document(s) deemed to contain the ESS, their associated memory location(s) and their 

Document ID(s). In the description of SSE that follows, all Information classified as Non-Trivial in Figure 6 

(Potential Storage Leakage) and Figure 7 (Potential Query Leakage) is Leaked to the Server. 

 

 
Figure 6: Potential Storage Leakage in SSE (Including Trivial Leakage and Non-Trivial Leakage). 

 

 
Figure 7: Potential Query Leakage in SSE (Including Trivial Leakage and Non-Trivial Leakage). 

 

From examining Figure 6 and Figure 7, it is evident that Leaking Information to the Server in ciphertext form is 

considered Trivial Information Leakage by the SSE Literature – irrespective of whether such ciphertext is 



leaked to the Server as part of Setup Leakage or Query Leakage. As regards plaintext Information Leakage, such 

Leakage is generally considered Non-Trivial Information Leakage by the SSE Literature; however, a notable 

exception to this rule is Document IDs.  From Figure 6 (Postings Section), it is noticeable that the Leakage of 

Document IDs in plaintext form is considered Non-Trivial Information Leakage in the case of Setup Leakage; 

while the exact same Information is classified as Trivial Information Leakage in the case of Query Leakage 

(Figure 7 – Access Pattern). 

 

In addition to considering Information Leakage in the context of plaintext Information and ciphertext 

Information, the literature also considers Information Leakage from a statistical point of view; that is, those 

statistics that be derived from Information, irrespective of whether the underlying Information is in plaintext 

form or ciphertext form.   Generally, the SSE literature classifies statistical Information Leakage as Trivial 

Information Leakage; however one exception does exist.  The statistic in question – known as Term-Document 

Frequency (TDF); that is, the number of Documents containing a given Term - is classified as Non-Trivial 

Information Leakage in the case of Setup Leakage (see Postings in Figure 6); and Trivial Information Leakage 

in the case of Query Leakage (see Access Pattern in Figure 7) (much like Document IDs as discussed 

previously). Admittedly, the decision to label certain Information Leakage as Non-Trivial for Setup Leakage 

and the decision to label the exact same Information Leakage as Trivial for Query Leakage appears bewildering.  

Nonetheless, this can be explained by the conservative approach to Information Leakage taken by researchers in 

the area.  Generally, where certain Information Leakage is considered unavoidable (and the Information in 

question is classified as Trivial Information Leakage), researchers take the approach of allowing such 

information to be Leaked; however, rather than Leak such Information immediately; that is, Storage Leakage, 

researchers will typically guard such Information up to the point where its Leakage is absolutely necessary and 

therefore unavoidable (otherwise known as Controlled Disclosure); that is,  Query Leakage (Curtmola et al. 

2006, Chase and Kamara 2010, Cash et al. 2013). 

 

 

2.2.2 SSE Inverted Index Construction 
 

The steps involved in constructing an SSE Inverted Index are exactly the same as those involved in constructing 

an IR Inverted Index, albeit the Client has responsibility for generating the SSE Inverted Index, and various 

forms of encryption are applied to each dataset after they have been compiled; that is, the Document Collection, 

the Lexicon and the Postings List (Goh 2003).   In addition to the use of encryption, a different Data Structure – 

namely, an Array - is utilised to store Postings instead of a Linked List (as is used in the IR Inverted Index) 

(Curtmola et al. 2006). Rather than storing Lexicon Terms in plaintext form, SSE requires that a keyed-hash of 

each Term be stored instead (Chase and Kamara 2010, Kamara et al. 2012).   The use of a keyed hash function 

for this purpose - instead of traditional reversible encryption - may seem curious at first; however researchers 

have successfully argued that the Lexicon’s sole purpose within the Inverted Index is to provide the Client with 

the ability to carry out searches and nothing more.  Given that the Lexicon is unlikely to be downloaded to the 

Client (and is therefore unlikely to be decrypted - unlike the actual Documents), the use of reversible encryption 

for encrypting Lexicon Terms has largely been abandoned. Aside from the aforementioned reasons, the use of a 

keyed hash function for this purpose has a number of advantages in terms of reduced Information Leakage and 

improved data security, including the following (Stallings, 2014): 

 

 First and foremost, the use of a hash function (keyed or non-keyed) ensures that all encrypted Lexicon 

Terms within the SSE Inverted Index are of equal length (a hash function produces a Hexadecimal 

String of fixed length); therefore masking the length of all underlying plaintext Lexicon Terms.   

 Secondly, the use of a hash function (again, keyed or non-keyed) ensures that an adversary has no 

means of decrypting the encrypted Lexicon Term back to its plaintext form.   

 Thirdly, ensuring that a keyed hash function is used – instead of a traditional non-keyed hash function 

– protects SSE from Rainbow Table Attacks; that is, pre-computed Hash Values of common Dictionary 

Words. 

 

As regards keyed-hash algorithms, the SSE literature states that any standardised secure algorithm can be 

utilised for Lexicon Encryption (For Example: HMAC-MD5, HMAC-SHA256).  

 

2.2.2.1 Postings List 
 

The use of Linked Lists for Posting List storage is abandoned in SSE due to Setup Leakage resulting from their 

modus operandi; that is, sequential memory access, with Arrays being preferred instead (Curtmola et al. 2006). 

Specifically, given the first Link in a Linked List, it is a trivial process to examine all subsequent Links due to 

the fact that each Link in a Linked List contains a pointer to the next Link (see Figure 8).  Given that each Term in 

an IR Inverted Index has its own dedicated Linked List to store Postings; it is therefore a trivial process to derive 



the Term-Document Frequency (TDF) for each Term in the Lexicon in advance of the associated Term being 

searched for. 

 

 
Figure 8: Linked List Data Structure (→ Denotes A Pointer to the Next Link in the Linked List). 

 

Rather than using one Array for each Term in the Lexicon (doing so would also result in TDF Storage Leakage; 

that is, the size of the Array would be equivalent to the TDF), SSE utilises a single one dimensional Array to 

store all Postings for all Terms (see Figure 9).  Utilising this approach, Setup Leakage amounts to the total 

number of Postings for the entire Lexicon; that is, trivial Leakage. 

 

 
Figure 9: Postings Stored In an Array. 

 

Given that all Postings are now stored in a single one dimensional Array, some mechanism to keep track of what 

Postings belong to what Terms is therefore required.  The solution to this problem is relatively similar to a 

Linked List, albeit the solution involved does not utilise pointers (as is the case with Linked Lists). In order to 

keep track of what Postings are associated with a given Term, SSE requires that the Document ID of the first 

Posting associated with a given Term is stored alongside the keyed-hash of the Term in the Lexicon Hash Table 

(in RAM) (For Example: Doc ID 1).  Alongside this Document ID (in the Lexicon Hash Table) is an Array 

Index denoting the location of the second Posting associated with the Term (see Figure 10) (For Example: 94).  

At the Array Index in question is the Document ID of the 2nd Posting, as well as the Array Index denoting the 

location of the third Posting (For Example: 79) (see Figure 11). 

 

 
Figure 10: SSE Lexicon Node. 

 

 
Figure 11: Postings Array Node. 

 

Rather than storing all Postings sequentially within the Array, SSE requires that all Postings be shuffled to 

random locations within the Postings Array.  As such, the second Posting for a Term may be located at Array 

Index 1000, while the third Posting may be located at Array Index 1. Despite utilising Arrays and arranging 

Postings in non-sequential order, the fact remains that the Information stored at each Index of the Postings Array 

is in plaintext form.  As such, it is still a trivial process for the Server to calculate the TDF for each Term in the 

Lexicon in advance of the Term being searched for (as was the case previously with Linked Lists).   As a 

solution to this problem, SSE requires that each Document ID within the Postings Array be encrypted, as well as 

each ‘Next Posting Location’; therefore preventing the Server from deducing this Information by merely being 

in possession of the SSE Inverted Index; that is, Storage Leakage.   Rather than encrypting all Postings using 

the same key, SSE requires that each Posting be encrypted using a different key.  In an effort to reduce the 

number of keys the Client has to remember in order to utilise SSE, the literature recommends the following 

guidelines for encrypting the Posting Array: 

 

1. The encryption/decryption key for the first Posting associated with each Term should be derived by 

passing its associated plaintext Term through a keyed hash function (the key utilised within the keyed 

hash function is a master key known only to the Client). 

2. All subsequent Postings in the Array; that is, 2nd Posting, 3rd Posting, 4th Posting, etc., are to be 

encrypted/decrypted using randomly generated encryption keys. 

3. The key required to decrypt a given Posting (with the exception of the first posting) is to be stored in 

the previous Posting associated with the Term in question (see Figure 12). 

 



 
Figure 12: Postings Array Node (Including Decryption Key Storage). 

 

As regards encryption algorithms, the SSE literature states that any standardised secure symmetric algorithm can 

be utilised for Posting/Posting List Encryption & Document Encryption (For Example: AES, Triple DES). SSE 

requires the use of three encryption keys for SSE Inverted Index Construction and Querying.  They are one key 

for Lexicon Encryption/Searching (used to generate a keyed hash of each Lexicon Term/Search String), one 

master key used to derive encryption/decryption keys for the first Posting associated with each Lexicon Term 

and one key for Document Collection encryption/decryption. 

 

2.2.3 Querying an SSE Inverted Index 
There are two types of SSE Schemes: Interactive; that is, the Client and the Server exchange numerous 

messages before the Server responds with a set of Search Results, and non-Interactive; that is, the Client issues 

a Search String to the Server and the Server responds immediately with a set of Search Results (Bosch et al. 

2014).  The following description of querying an SSE Inverted Index covers the latter. Given that the Lexicon of 

the SSE Inverted Index consists of a keyed-hash of each Term within the Document Collection, the Client is 

therefore required to generate a keyed-hash of their Search String in order to Query the Lexicon.  The resulting 

Search String; that is, an Encrypted Search String (ESS), is then forwarded to the Server. In addition to 

forwarding the ESS to the Server, the Client must also forward the decryption key necessary to decrypt the first 

Posting associated with the ESS. In the event that the ESS is present in the Lexicon, the first Posting associated 

with the ESS is retrieved.  The Server then proceeds to decrypt this information revealing the ID of the first 

Document containing the ESS, the Index Location of the second Posting, as well as the decryption key 

necessary to decrypt the information stored in the second Posting.  This process then repeats until all Postings 

associated with the ESS have been retrieved and decrypted.  Following this, the associated Document IDs are 

then used to retrieve the actual encrypted Documents – from secondary memory – that contain the ESS.  Once 

all Documents are retrieved, they are then forwarded to the Client; that is, Search Results (Song et al. 2000). In 

the event that an ESS is not present in the Lexicon, this denotes that the ESS in question is not present in any 

Documents contained within the Collection. 

 

 

 

2.3 Kamara & Cash SSE Implementations 

Despite its efficiency, the fact remains that working implementations of SSE are few and far between.  Two 

working implementations of SSE are (Kamara et al. 2012, Cash et al. 2013). Neither of which are available in 

the public domain. 

 

2.3.1 Kamara et al. (2012) Implementation 

The implementation of SSE developed by Kamara et al. (2012) is a non-interactive, single Query Term SSE 

protocol.  When compared to the description of SSE previously, the implementation by Kamara et al. (2012) is 

almost identical with the exception the implementation supports the addition and deletion of documents from the 

Document Collection (and therefore the SSE Inverted Index) – The description of SSE previously assumed that 

the underlying Document Collection was static. The implementation also stores the entire Inverted Index; that is, 

Lexicon and Posting Lists, in RAM at all times. In terms of programming languages, the implementation of SSE 

by Kamara et al. (2012) was developed using Microsoft C++.NET.  Any and all cryptographic functionality 

associated with implementation employed the use of the Microsoft CNG library of cryptographic algorithms. In 

relation to Data Structures, the exact Data Structure used for Lexicon Storage is not disclosed by Kamara et al. 

(2012).  In the theoretical description of their scheme, Kamara et al. (2012) endorse the use of a ‘Dictionary’ 

Data Structure for Lexicon Storage; however the exact Data Structure used in the resulting implementation is 

not disclosed.  Given that a number of Data Structures fall under the category of Dictionary Data Structures, we 

can only speculate as to the exact Data Structure used.  In terms of Posting List storage, Kamara et al. (2012) 

employ the use of a single one dimensional ‘Array’ Data Structure (as was the case with the description of SSE 

provided previously).  In terms of algorithms, the SSE implementation by Kamara et al. (2012) utilises 128 bit 



AES-CBC for Posting encryption, while HMAC-SHA256 is used for keyed hashing of Lexicon Terms.  The 

exact algorithm used for Document encryption is not disclosed. 

 

In relation to Test Data, Kamara et al. (2012) tested their SSE implementation against three separate Test Data 

Sets: a subset of the Enron E-Mail Collection (16MB in size with approximately 1.5 million Postings), a 

collection of Microsoft Office Documents used by one of Microsoft’s Business Groups (500MB in size with 

approximately 650,000 Postings), and a collection of Media Files (For Example: MP3, WMA, JPG) (500MB in 

size – number of postings not disclosed). In terms of Research Results, the work of Kamara et al. (2012) 

focussed on two separate aspects of SSE:  constructing the SSE Inverted Index, and querying the SSE Inverted 

Index.   For SSE Inverted Index construction, it should be noted that the Results presented by Kamara et al. 

(2012) only take into account the process of converting a pre-existing IR Inverted Index into an SSE Inverted 

Index and encrypting the associated Document Collection – the Results do not include the amount of time taken 

to generate the initial IR Inverted Index; nor do they take into account the time associated with transferring the 

SSE Inverted Index and the encrypted Document Collection from the Client to the Server. For the Enron E-Mail 

Test Data Set, constructing the associated SSE Inverted Index and encrypting the associated Document 

Collection took 52 seconds.  For the Microsoft Office Document Collection Test Data Set, constructing the 

associated SSE Inverted Index and encrypting the associated Document Collection took approximately 33 

seconds. For SSE Inverted Index searching, it should be noted that the Results presented by Kamara et al. 

(2012) only take into account the process of retrieving and decrypting matching Postings from within an SSE 

Inverted Index that is permanently resident in RAM – the Results do not include the amount of time taken to 

retrieve the SSE Inverted Index from secondary memory and loading it into RAM, nor do they include the 

amount of time taken to retrieve matching Documents from disk and returning them to the Client.  In relation to 

SSE search time, it should be noted that search time is dependent on the number of matching documents 

associated with the search Term; that is, the more frequent the Search Term appears in the Document 

Collection, the longer the associated Search operation will take.  As such, a common performance measure for 

the SSE Inverted Index is the amount of time taken to retrieve and decrypt the set of all Postings associated with 

the most commonly occurring Term within the Lexicon.  In relation to the Enron E-Mail Test Data Set, 

retrieving the set of all Postings associated with the most commonly occurring Lexicon Term took 53 

microseconds (µs), while identifying same took approximately 8 microseconds (µs) for the Microsoft Office 

Document Collection Test Data Set.  As regards hardware, the experiments conducted by Kamara et al. (2012) 

were performed on a Windows Server 2008R2 machine with an Intel Xeon L5520 Processor (2.26GHZ). 

 

2.3.2 Cash et al. (2013) Implementation 

The implementation of SSE developed by Cash et al. (2013) is a non-interactive, multiple Query Term SSE 

protocol.  When compared to the description of SSE provided previously, the implementation by Cash et al. 

(2013) is almost identical with the exception of the following: 

 

 The implementation supports Conjunctive and Boolean Queries – The description of SSE previously 

assumed that all Queries consisted of a single Term (Conjunctive/Boolean Queries were not discussed 

as they were ruled beyond the scope of this research). 

 The implementation stores the entire Inverted Index; that is, Lexicon, Posting List and Document 

Collection, in secondary memory at all times (due to the fact the implementation is designed to scale to 

extremely large Data Sets). 

 The implementation includes a RAM resident Data Structure known as an X-Set that works in 

combination with the Inverted Index Data Structure to aid with the execution of Conjunctive/Boolean 

queries. 

 

In terms of programming languages, the implementation of SSE by Cash et al. (2013) was  developed using the 

C programming language.  Any and all cryptographic functionality associated with implementation employed 

the use of the OpenSSL library of cryptographic algorithms. In relation to Data Structures, a single Data 

Structure known as a T-Set is used to store both the Lexicon and the Postings in the implementation presented 

by Cash et al. (2013).  In essence, a T-Set is a modified Hash Table that can store a fixed number of values, 

instead of a single value (as is the case with a standard Hash Table); that is, Key => Value 1, Value 2, …, Value 

N (T-Set) instead of Key => Value (Hash Table).  When stored on disk, the T-Set is subdivided into a number of 

smaller Hash Tables, with the size of each individual Hash Table based on the characteristics of the underlying 

Operating System and storage medium. In terms of algorithms, the SSE implementation by Cash et al. (2013) 

utilises AES-FFX for Posting encryption, while AES-HMAC or AES-CMAC is used for keyed hashing of 

Lexicon Terms.  The exact algorithm used for Document encryption is not disclosed. In relation to Test Data, 

Cash et al. (2013) tested their SSE implementation against three separate Test Data Sets: the entire Enron E-

Mail Collection (1.5 million Documents consisting of 1.2 million distinct Lexicon Terms), a 100,000 record 

Database generated from census data, and a number of subsets of the ClueWeb09 collection of crawled web 

pages (the largest of which was 410GB in size (13,284,801 HTML Files) with approximately 2.7 billion 



Postings). In terms of Research Results, the work of Cash et al. (2013) focussed on querying the SSE Inverted 

Index using both single Term Queries and Conjunctive/Boolean Queries.  As was the case with Kamara et al. 

(2012), the Results presented by Cash et al. (2013) only take into account the process of retrieving and 

decrypting matching Postings from within the SSE Inverted Index itself– the Results do not include the amount 

of time taken to retrieve matching Documents from disk and returning said Documents to the Client.  

Identifying and decrypting those Postings associated with the most frequently occurring Lexicon Term for the 

Enron E-Mail Test Data Set (690,492 Postings) took approximately 70 seconds (approximately 100 

microseconds (µs) per Postings).  Unlike, Kamara et al. (2012), Cash et al. (2013) does not disclose the amount 

of time taken to generate an ESS. As regards hardware, the experiments conducted by Cash et al. (2013) were 

performed on an IBM Blade HS22 running a Linux operating system, with all secondary memory provided by a 

Storage Attached Network (SAN) device. 

 

 

2.3.2.1 Critical Analysis of Existing Implementations 
 

From the results presented by Kamara et al. (2012) and Cash et al. (2013), it is apparent that the search time 

associated with SSE is impressive – to the point that one could argue SSE is efficient enough to be deployed in a 

Cloud environment. In addition, the work of Cash et al. (2013) proves that SSE does indeed scale to large Data 

Sets whilst maintaining its search efficiency, and also has the ability to support Boolean/Conjunctive Queries in 

an efficient manner whilst maintaining Data/Query Privacy. Despite such impressive results, it seems that both 

papers focussed on the performance of a single component of SSE; that is, searching an SSE Inverted Index, and 

not SSE as a whole.  Specifically, both have glossed over the topic of SSE Inverted Index Construction.  Given 

that constructing an SSE Inverted Index is a necessary pre-requisite to searching an SSE Inverted Index; the 

topic deserves significantly more attention than that which it has been given in the published literature thus far.  

Kamara et al. (2012) cover the topic briefly in their work; however as indicated previously, the results presented 

are somewhat skewed by the fact they only include the Results of converting a pre-existing IR Inverted Index 

into an SSE Inverted Index – the results do not include the time taken to generate the initial IR Inverted Index.  

Cash et al. (2013) make no mention of the time taken to generate the SSE Inverted Index used in their work. 

 

In addition to largely ignoring the process of constructing an SSE Inverted Index, both papers have also ignored 

the process of transferring the SSE Inverted Index and the encrypted Document Collection from the Client to the 

Server.  As Kamara et al. (2012) correctly points out, the time taken to transfer both the SSE Inverted Index and 

the encrypted Document Collection from the Client to the Server will vary depending on the underlying system 

(Kamara et al. (2012) failed to cover this part of SSE for this reason); however the same can also be argued in 

relation to cryptographic operations (which are of course reported on in detail in both implementations). When 

discussing their Results in relation to searching an SSE Inverted Index, both Kamara et al. (2012) and Cash et 

al. (2013) readily acknowledge that their Results only cover searching the SSE Inverted Index and decrypting 

the Postings associated with the Lexicon Term being searched – their Results do not include the time associated 

with retrieving and forwarding matching Documents to the Client – another essential component of SSE. In 

addition to their failure to examine SSE as a whole, there was a sparsity in information relating to the test data 

sets and findings of both papers. In relation to Test Data, Table 1 summarises the Test Data statistics published 

(and not published) in both papers.   

 

Information Disclosed Kamara et al. (2012) Cash et al. (2013) 

Number of Documents In Data Set No Yes 

Number of Terms In Data Set No No 

Number of Unique Terms In Data Set  No Yes (Enron Data Set 

Only) 

Number of Postings In Data Set  Yes (Postings In Media File 

Data Set Not Disclosed) 

Yes (Postings In 

Census Data Set Not 

Disclosed) 

Number of Postings Associated With Highest 

Frequency Lexicon Term  

No Yes (Not Disclosed 

For Media File Data 

Set) 

Size of Test Data Set Yes Yes (Size Of Census 

Data Set Not 

Disclosed) 

Table 1: Test Data Statistics 

 

The total number of Terms in the Data Set is relevant in that it dictates the amount of work needed to be 

performed during Document Tokenisation; that is, IR Inverted Index Construction, the number of unique Terms 

in the Data Set is relevant in that it dictates the number of Terms contained within the Inverted Index (both the 

IR Inverted Index and the SSE Inverted Index),  while the number of Postings in the Data Set is relevant in that 



it dictates the number of Postings contained within the Inverted Index (both the IR Inverted Index and the SSE 

Inverted Index). The number of Postings associated with the highest frequency Lexicon Term is relevant in that 

the Term in question is typically used to measure the worst case scenario of searching an SSE Inverted Index, 

while the size of the Test Data Set is relevant in terms of transmitting the Document Collection to the Server 

from the Client.  As can be seen from Table 1, a number of these statistics are not disclosed (or are only partially 

disclosed); therefore making it difficult to give context to the associated experiment results.  In relation to 

Inverted Index Construction statistics, Table 2 summarises the Test Data statistics published (and not published) 

in both papers.  

 

Information Disclosed Kamara et al. (2012) Cash et al. (2013)  

Time Taken To Generate IR Inverted Index No No 

Size Of IR Inverted Index No No 

Time Taken To Convert IR Inverted Index To 

SSE Inverted Index 

Yes No 

Size of SSE Inverted Index No Yes 

Time Taken To Encrypt Document Collection Yes No 

Table 2: Inverted Index Construction Statistics 

 

The time taken to generate the IR Inverted Index is significant in that the processing time is linear in the number 

of Terms contained within the Document Collection.  The time taken to generate the SSE Inverted Index is 

significant in that the processing time is linear in the number of Postings contained within the IR Inverted Index, 

while the size of the SSE Inverted Index is relevant in terms of transmitting the SSE Inverted Index to the Server 

from the Client. As can be seen in Table 2, neither Kamara et al. (2012) or Cash et al. (2013) disclose any 

information in relation to IR Inverted Index Construction.  When reporting the Results of converting their IR 

Inverted Index to an SSE Inverted Index, Kamara et al. (2012) choose to do so by charting their Results against 

the size of the Test Data Set (in MB).  This information would be much more informative if it were charted 

against the number of Postings in the Test Data Set, given that the size of the underlying Data Set in no way 

reflects the number of unique Terms or Postings in the Data Set.  For Example: a 10MB DOCX file may contain 

the same Term repeated over and over again; that is, one unique Term => one Posting.  In addition, the use of 

the Document Collection size here is a poor choice given the fact that different file formats can contain the same 

number of words, but differ greatly in size (such a TXT Files and DOCX Files). In relation to Inverted Index 

Querying statistics, Table 3 summarises the Test Data statistics in both papers.   

 

 

Information Disclosed Kamara et al. (2012) Cash et al.  (2013) 

Time Taken To Generate ESS Yes No 

Time Taken To Search SSE Inverted Index For 

Highest Frequency Lexicon Term (Including 

Decryption Of Postings) 

Yes Yes 

Table 3: Inverted Index Querying Statistics. 

 

As can be seen from Table 3, both Kamara et al. (2012) and Cash et al. (2013) have disclosed the time taken to 

search the SSE Inverted Index and to identify and decrypt the Postings associated with the highest frequency 

Lexicon Term. Unfortunately Kamara et al. (2012) did not publish the number of Postings associated with the 

highest frequency Lexicon Term; instead the amount of time associated with the search was published.  Without 

the number of Postings associated with the highest frequency Lexicon Term, it is difficult to place into context 

the significance of the results published.  In the case of Cash et al. (2013), both the search time and the number 

of Postings associated with the highest frequency Lexicon Term were published, therefore providing readers 

with the ability to estimate the amount of time required to decrypt a single Posting .. Here 700,000 Postings were 

identified and decrypted in approximately 70 seconds for the highest frequency Lexicon Term (approximately 100 

microseconds per Posting). In relation to the time taken to generate an ESS, only Kamara et al. (2012) have 

published their Results for this area.  While Cash et al. (2013) have not revealed their statistics for this part of 

SSE Search, it is safe to assume that the cost of producing an ESS is miniscule given that the implementation 

developed by Kamara et al. (2012) does so in 35 microseconds  (µs). In relation to Test Environment statistics, 

Table 4 summarises the statistics published (and not published) in both papers.  

 

Information Disclosed Kamara et al. (2012) Cash et al. (2013) 

Operating System Yes Yes 

Processor Yes No 

RAM No No 

Hard Disk Size No No 

Table 4: Test Environment Statistics. 

 



There is simply a lack of information disclosed in both papers regarding the underlying Test Environments (see 

Table 4). In an effort to determine the performance cost of preserving Data/Query privacy using SSE, Cash et al. 

(2013) opted to perform a performance comparison between their implementation of SSE and a MySQL Server 

comprising a plaintext database. A comparison between an equivalent plaintext Information Retrieval (IR) 

system would be a much more appropriate comparison to make when determining the performance cost of SSE 

(given the fact that plaintext searching is the universally accepted method of IR); nonetheless, the decision to 

perform a comparison against MySQL can be explained by the fact that their implementation of SSE is 

optimised for searching large Data Sets stored in secondary memory and not primary memory (as is the case 

with all Database Servers – including MySQL).   

 

 

3. Evaluation 
 

We have therefore identified a number of issues with the information available regarding existing 

implementations of SSE.  In addition, we have identified that research into SSE has almost exclusively focussed 

on the topic of searching in SSE, while largely ignoring the topic of SSE Inverted Index Construction.   Our 

intention is to contribute towards the areas of weakness identified.  With this in mind, we have identified the 

following Research Questions: 

 

 RQ1: How Efficient Is Searchable Symmetric Encryption (SSE) When Implemented And Deployed In A 

Cloud Environment? 

 

 RQ2: What Is The Performance Cost Of Preserving Data/Query Privacy Using Searchable Symmetric 

Encryption (SSE) When Compared To Plaintext Information Retrieval (IR)? 

 

The existing SSE literature has failed to cover the whole spectrum of activities associated with SSE (see Table 

5); hence RQ1.  Additionally, the existing published literature has yet to examine the usage of SSE when 

deployed in a Cloud computing environment. In relation to RQ2, the existing published literature has only 

compared the performance of SSE with a Database Server, and not a traditional plaintext IR system that utilises 

an Inverted Index (Cash et al. 2013).  

 

Activity Covered In Existing Literature 

SSE Inverted Index Construction  

IR Inverted Index Generation By Client No 

SSE Inverted Index Generation By Client Yes 

Document Collection Encryption By Client Yes 

Uploading Of SSE Inverted Index To Server No 

Uploading Of Encrypted Document Collection To Server No 

SSE Inverted Index Searching  

ESS Generation By Client Yes 

Identifying And Decrypting Matching Postings Yes 

Returning Matching Documents To Client No 

Table 5: SSE Activities Covered By Existing Literature. 

 

 

3.1 Experimental Setup 

Both software artefacts have been developed with a view to providing answers to the Research Questions 

identified previously.  Both artefacts are examples of personal file hosting applications.  Like all file hosting 

applications, the objective of both the “PlainTXT Storage and Search Engine” and “CipherTXT Storage and 

Search Engine“ is to allow service users to store their files in the Cloud, and to access/retrieve those files as and 

when needed (via a web browser). In the case of the “PlainTXT Storage and Search Engine” application, users 

will be able to store their personal files in plaintext form, as well as having the ability to search and retrieve 

those files by forwarding queries to the application in plaintext form. In the case of the “CipherTXT Storage and 

Search Engine” application, users will be provided with the exact same functionality as the “PlainTXT Storage 

and Search Engine” application, with the exception that both user’s files and queries are encrypted prior to being 

forwarded to the application for storage/usage. Given the prototype status of both applications, a number of 

standard features and functionality typically associated with personal file hosting services have been classified 

as out of scope for the initial version of both software artefacts.   Both the “PlainTXT Storage and Search 

Engine” and “CipherTXT Storage and Search Engine“ applications were implemented using the Java 

Programming Language.  All Client-Side functionality associated with both applications was implemented in 



the form of Java Applets, while all Server-Side functionality was implemented in the form of Java Servlets. The 

SSE scheme underlying the “CipherTXT Storage and Search Engine” application is (Kamara et al., 2012).   

 

The Operating System was Windows Ultimate 64-Bit SP1. The Java Development Kit (JDK) was v.8 and JRE 

was update 51, build 16. The Web Server (Localhost) was Apache Tomcat 7.0.56. Tests were run on an Intel 

Core i7 4900MQ @2.8GHz Quad Core laptop with 24GB RAM (3 X 8GB KINGSTON DDR3 @ 800MHz). 

The Hard Disk was a 925GB SSHD with RAID 1. All tests were conducted using the default Java Virtual 

Machine (JVM) - no additional runtime parameters were configured. 

 

All experiments were performed on the ’20 Newsgroups’ Data Set (Rennie, 2008). In its original form, the ’20 

Newsgroups’ Data Set consists of 18,828 files, subdivided into 20 folders.  Initially, each file in the Data Set has 

a numeric file name between 4 and 6 digits in length with no file extension. Prior to being used in the 

experiments, we first attempted to move all files in the Data Set into a single folder; however at this point we 

noted that the names of all files in the Data Set are not unique (the contents of each file are unique however 

(Rennie 2008)).  In an effort to avoid duplicate file names, we randomly assigned an 8 digit numeric name to 

each file in the Data Set.  We also appended the TXT file extension to each file in the Data Set. As part of 

Testing, we tested each aspect of SSE with Data Sets that increased in size by an order of magnitude.  As such, 

it was necessary to derive smaller subsets from the full ’20 Newsgroups’ Test Data Set.  In total, 5 subsets were 

derived (DS1 – DS5).  The details associated with each subset – and the full Data Set (DS6) – can be seen in 

table 6. We present the results associated with SSE Inverted Index Construction, SSE Inverted Index Searching 

and the comparison of SSE and plaintext Information Retrieval (IR). All results represent average values 

obtained over ten executions of each experiment. 

 

 

Data Set Name DS1 DS2 DS3 DS4 DS5 DS6 

# of Docs 1 10 100 1,000 10,000 18,828 

# of Terms 320 2,612 33,611 281,363 2,738,580 5,130,520 

# of Unique Terms  206 1,297 10,996 52,134 258,463 377,880 

# of Postings In 

Data Set  

206 1,650 19,838 168,768 1,672,576 3,138,449 

# of Postings 

Associated With 

Highest Frequency 

Lexicon Term  

1 

 

All Terms 

10 

 

And 

100 

 

Subject: 

1,000 

 

From: 

10,000 

 

Subject: 

18,828 

 

Subject: 

Size 1.9KB 16.1 KB 215KB 1.7MB 17.3MB 32.3MB 
 

Table 6: Test Data Set Statistics. 

 

3.2 SSE Inverted Index Construction 

Figure 13 denotes the Experimental Results associated with generating a plaintext Information Retrieval (IR) 

Inverted Index for each Test Data Set outlined previously.  Figure 13 compares the time taken to generate the IR 

Inverted Index against the number of Terms in the Document Collection; that is, the Test Data Set, from which 

the IR Inverted Index is being generated. 

 

  
Figure 13: Information Retrieval (IR) Inverted Index Construction 

Time vs. Number of Terms in Collection. 
Figure 14: SSE Inverted Index Construction Time vs. No of 

Postings in IR Inverted Index. 

 



 

As can be seen in Figure 13, the time associated with constructing an IR Inverted Index appears to increase 

linearly as the number of Terms in the underlying Document Collection increases.  In relation to Test Data, an 

IR Inverted Index was generated for Test Data Set 6 (approximately 5 million Terms) in approximately 7.6 

seconds. The Results shown in Figure 13 were obtained by executing IR_Inverted_Index_ 

Construction_Time.java on each Data Set outlined previously. 

 

Figure 14 denotes the Experimental Results associated with converting a plaintext Information Retrieval (IR) 

Inverted Index into an SSE Inverted Index for each Data Set outlined previously.  Figure 14 compares the time 

taken to generate the SSE Inverted Index against the number of Postings in the IR Inverted Index from which 

the SSE Inverted Index is generated.  For the first four Test Data Sets (DS1 – DS4), the time associated with 

constructing an SSE Inverted Index appears to increase linearly as the number of Postings in the underlying IR 

Inverted Index increases; however the time taken to generate an SSE Inverted Index for DS5 and DS6 increases 

dramatically (when compared to the number of Postings in the underlying IR Inverted Index).  In relation to Test 

Data Sets, an SSE Inverted Index was generated for Test Data Set 4 (281,363 Postings – approximately 3.2 

Postings per Lexicon Term) in 1.5 seconds.  For Test Data Set 5 (1,672,576 Postings – approximately 6.5 

Postings per Lexicon Term), an SSE Inverted Index was generated in 4 minutes 48 seconds.  For Test Data Set 6 

(3,138,449 Postings – approximately 8.3 Postings per Lexicon Term), an SSE Inverted Index was generated in 

24 minutes 34 seconds. 

 

 

  
Figure 15: Document Collection Encryption Time vs. Number of 

Terms in Collection. 

Figure 16: SSE Inverted Index Upload Time vs. Size of SSE 

Inverted Index 

 

 

Figure 15 denotes the Experimental Results associated with encrypting the Document Collections comprising 

each of the Test Data Sets.  Figure 15 compares the time taken to encrypt each Document Collection against the 

total number of Terms contained within each Document Collection.  As can be seen in Figure 15, the time 

associated with encrypting the Document Collection appears to increase linearly as the number of Terms in the 

underlying Document Collection increases.  In relation to Test Data Sets, the Document Collection associated 

with Test Data Set 6 was encrypted in 40 seconds. Figure 16 denotes the Experimental Results associated with 

uploading an SSE Inverted Index (generated from each Test Data Set) to the Server.  Figure 16 compares the 

time taken to upload the SSE Inverted Index to the Server against the size of the SSE Inverted Index.  As can be 

seen in Figure 16, the time associated with uploading the SSE Inverted Index to the Server appears to increase 

linearly as the size of the SSE Inverted Index increases.  In relation to Test Data, the SSE Inverted Index 

associated with Test Data Set 6 (325MB) was uploaded to the Server in 47.5 seconds. The reader should be 

aware that the Experimental Results presented in Figure 16 includes the time taken to upload the SSE Inverted 

Index to the Server, as well as the time taken to serialise the SSE Inverted Index to disk (once the SSE Inverted 

Index has been received by the Server).  

 



 

 

  
Figure 17: Encrypted Document Collection Upload Time vs. 

Encrypted Document Collection Size. 

 

Figure 18: SSE Inverted Index Construction Composite. 

 

 

Figure 17 denotes the Experimental Results associated with uploading an encrypted Document Collection 

(generated from each Test Data Set) to the Server.  Figure 17 compares the time taken to upload the encrypted 

Document Collection to the Server against the size of the encrypted Document Collection.  As can be seen in 

Figure 17, the time associated with uploading the encrypted Document Collection to the Server appears to 

increase linearly as the size of the encrypted Document Collection increases.  In relation to Test Data, the 

encrypted Document Collection associated with Test Data Set 6 (32.5MB) was uploaded to the Server in 46.8 

seconds. The reader should be aware that the Experimental Results presented in Figure 17 include the time taken 

to upload the encrypted Document Collection to the Server, as well as the time taken to store the encrypted 

Document Collection on disk (once the encrypted Document Collection has been received by the Server).  

Figure 18 denotes the total time taken to create an IR Inverted Index, convert it to an SSE Inverted Index, 

encrypt the associated Document Collection and upload both the SSE Inverted Index and the encrypted 

Document Collection to the Server for each Test Data Set outlined previously. In relation to Test Data, the 

whole process of constructing an SSE Inverted Index and uploading all associated data to the Server took 10.5 

seconds for Test Data Set 4.  To carry out the same work on Test Data Set 5 took 5 minutes 50 seconds, while 

carrying out the same work on Test Data Set 6 took 26 minutes 56 seconds. 

 

 

3.3 SSE Inverted Index Querying 

Figure 19 denotes the Experimental Results associated with generating Encrypted Search Strings (ESS) for SSE.   

For each Lexicon Term within the Test Data Sets outlined previously, an ESS; that is, a keyed hash, was 

generated.   

 

  
Figure 19: Encrypted Search String (EES) Generation Time vs. 

Number of Terms in Document Collection 
Figure 20: SSE Search Time vs. Number of Matching Postings in 

SSE Inverted Index 

 

 



 

 

As can be seen in Figure 19, the time taken to generate an ESS is by no means constant.  The Experimental 

Results appear to show that the more ESS that are generated, the faster the execution time of the underlying 

Keyed_Hash() Method. Figure 20 denotes the Experimental Results associated with searching an SSE 

Inverted Index and identifying (and decrypting) the Postings associated with the most frequently occurring 

Lexicon Term within the underlying Document Collection.  Figure 20 compares the time taken to search the 

SSE Inverted Index against the number of Postings associated with the most frequently occurring Lexicon Term 

within the underlying Document Collection. In relation to Test Data, the SSE Inverted Index associated with 

Test Data Set 6 was searched and all Postings associated with the most frequently occurring Lexicon Term 

(18,828 Postings) were identified in 432 milliseconds. 

 

  
Figure 21: Data Set Size vs. Search and Download Time. Figure 22: Plaintext IR Uploading vs. SSE Uploading. 

 

 

Figure 21 denotes the Experimental Results associated with searching an SSE Inverted Index for the most 

frequently occurring Lexicon Term within the underlying Document Collection and returning all matching 

Documents to the Client.  Figure 21 compares the time taken to search the SSE Inverted Index and return all 

matching Documents against the size of the Document Collection returned.  The reader should be aware that the 

Experimental Results presented in Figure 21 also include the time taken to encapsulate the set of all matching 

Documents within a ZIP File, which is then returned to the Client. In relation to Test Data, the set of matching 

Document associated with the most frequently occurring Lexicon Term contained within Test Data Set 6 was 

searched and all Documents returned to the Client (32.5 MB) in 2 minutes 7 seconds. 

 

 

3.4 Performance of SSE vs. Plaintext Information Retrieval (IR) 

Figure 22 denotes the results associated with the comparison of traditional plaintext Information Retrieval (IR) 

uploading and SSE uploading.  Those values associated with IR uploading in Figure 22 represent the time taken 

to upload the Document Collection associated with each Test Data Set from the Client machine to the Server. 

Those values associated with SSE uploading in Figure 22 represent the time taken to generate the SSE Inverted 

Index, encrypt the associated Document Collection, and uploading both the Inverted Index and encrypted 

Document Collection to the Server.  It is obvious that the amount of time necessary for SSE uploading increases 

in a non-linear manner when compared to the amount of time necessary for plaintext IR uploading. 

 

 



  
Figure 23: Plaintext IR Querying vs. SSE Querying Figure 24: Java Heap Memory Usage and Garbage Collection 

Statistics for SSE Inverted Index Construction 

 
 

Figure 23 denotes the comparison of traditional plaintext Information Retrieval (IR) querying and SSE querying.   

The Experimental Results presented in Figure 23  consist of the time taken to identify the set of all Postings 

associated with the most frequently occurring Lexicon Term in the underlying Document Collection, and 

encapsulating the set of all matching Document within a ZIP File which is then returned to the Client.   It is 

obvious from Figure 23 that the amount of time necessary for SSE querying increases in a non-linear manner 

when compared to the amount of time necessary for plaintext IR querying. 

 

3.5 Summary 

In relation to searching an SSE Inverted Index, the results provide additional proof of the efficiency of SSE 

when implemented in software.  The implementation of SSE developed as part of this research was able to 

identify and decrypt a single Posting associated with a given Lexicon Term in approximately 22 microseconds 

(μs).  This performance is comparable with the implementations of SSE developed by Kamara et al. (2012) 

which was 7.3 Microseconds (μs) per Posting and Cash et al. (2013) which was 100 Microseconds (μs) per 

Posting.  Regarding the efficiency of constructing an SSE Inverted Index, the results are somewhat inconclusive.  

Given the five steps involved in constructing an SSE Inverted Index, each step in the implementation of SSE 

produced as part of this research performed as expected with the exception of the second step: Converting an IR 

Inverted Index to an SSE Inverted Index.  For Test Data Set 1 (DS1) through Test Data Set 4 (DS4), an SSE 

Inverted Index was generated from an existing IR Inverted Index in a time linear to the number of Postings 

stored in the IR Inverted Index; however, for DS5 and DS6, this apparent linear performance decreased 

dramatically.  This decrease in performance could be attributed to a combination of one or more of the 

following: 1) The Java Virtual Machines (JVM) Garbage Collection functionality, 2) Insufficient Java Heap 

memory, 3) The use of String Objects in the Encrypted_Array_Node Class, 4) The size of the SSE 

Inverted Index, and 5) The requirement of the HashMap iterator() Method to store an additional copy of 

the IR Inverted Index HashMap on the Java Heap while the SSE Inverted Index is being constructed. Regarding 

the first and second point, we dynamically analysed the ‘CipherTXT Storage and Search Engine’ application 

using both the Java Mission Control and Java Flight Recorder applications.  In both cases, the JVM Garbage 

Collector was extremely active (eradicating up to 2GB of Objects from the Java Heap on a regular basis) (see 

Figure 24).   

 

Regarding points one, two and three, it is evident that a significant number of Objects are being stored on the 

Java Heap as the implementation of SSE converts the IR Inverted Index to an SSE Inverted Index.  One possible 

explanation for this is the use of String Objects in the Encrypted_Array_Node Class.  String Objects 

are used in the Encrypted_Array_Node Class to store encrypted Document IDs, encrypted Indexes of 

subsequent Postings, as well as keys required to encrypt/decrypt subsequent Postings.  Given that String is a 

form of Object - and not a primitive data type – all String Objects are therefore stored in the Heap area of the 

Java Virtual Machines (JVM) memory. Regarding points one, two and four, the SSE Inverted Index associated 

with DS5 was 171MB in size, while the SSE Inverted Index associated with DS6 was 325MB in size.  When 

compared to their plaintext equivalent, the DS5 IR Inverted Index is 25MB in size (146MB smaller than its SSE 

counterpart), while the DS6 IR Inverted Index is 42.8MB (282.2MB smaller than its SSE counterpart).  

Evidently the SSE Inverted Index associated with both DS5 and DS6 occupy a significant amount of memory.  

The presence of such large Objects in the Java Heap obviously reduces the amount of space available for 

subsequent Objects; therefore increasing the frequency of Garbage Collection. 

 



Regarding points one, two and five, the iterator() method of the HashMap Class may also be a factor in 

the performance degradation associated with DS5 and DS6.  As part of the process of converting the IR Inverted 

Index to an SSE Inverted Index, the IR Inverted Index must first be loaded into the Java Heap, with each entry 

in the IR Inverted Index then being examined and subsequently added to the SSE Inverted Index.  In order to 

examine each entry in the IR Inverted Index, the iterator() method must be executed on the HashMap 

Object underlying the IR Inverted Index (the HashMap Class does not support iteration in any other way).  In 

order to operate,   the iterator() method create must first create an exact replica of the IR Inverted Index 

HashMap on the Heap (that supports iteration); therefore doubling the amount of Heap space associated with 

the IR Inverted Index.  The IR Inverted Index associated with DS5 is 25MB in size (increasing to 50MB during 

SSE Inverted Index Construction as a result of using the iterator() method), while the IR Inverted Index 

associated with DS6 is 42.8MB (increasing to 85.6MB during SSE Inverted Index Construction as a result of 

using the iterator() method).   

 

We identified two other potential causes of the performance degradation associated with DS5 and DS6. These 

were Hash collisions occurring as a result of inserting keys into the SSE inverted index HashMap Object, and 

the natural performance degradation associated with an ever expanding HashMap object. Regarding Hash 

Collisions in a HashMap, the location of an Object within a HashMap is determined by the value resulting 

from executing the hashCode() method associated with the Object being inserted into the HashMap.  In the 

event that two Objects produce the same hashCode() value, the HashMap Class must then execute the 

compare() method associated with both Objects to determine whether or not both Objects are in fact 

equivalent to each other.  Hash Collisions should not be an issue as the hashCode() method associated with 

the String Class produces a 32 bit hash value (approximately 4.3 billion different Hash Values); therefore 

making Hash Collisions highly unlikely for data sets the size of DS5 and DS6. Regarding the natural 

performance degradation associated with an ever expanding HashMap, we noted that a Java HashMap Object 

must be created with a specified initial capacity; that is, number of expected entries, and a specified expected 

load; that is, the percentage of the initial capacity that must be used before the capacity of the HashMap is 

increased.  In the event that that the load specified for the HashMap is exceeded, a new HashMap Object 

must then be constructed (this is done automatically by the HashMap Class).  The process of constructing a 

new HashMap Object requires that each entry in the existing HashMap Object be retrieved, re-hashed, and 

inserted into the new – larger – HashMap Object.  This should not be an issue that as we took the initial 

capacity and load factor of the SSE HashMap into consideration and constructed the HashMap in a manner 

that does not require the HashMap to be expanded. Regarding results relating to upload speeds and download 

speeds, a localhost web server was used during testing; as such, the time associated with uploading and 

downloading data may appear significantly faster than those which are achievable using a live system. 

 

 

 

4. Conclusion 
 

Given the similarity between Searchable Symmetric Encryption (SSE) and plaintext Information Retrieval (IR), 

it is inevitable that comparisons will be made between the two.  While having a number of goals and functions 

in common, the fact remains that the primary goal of SSE is to provide Data and Query Privacy.  Given this – as 

well as the fact that SSE operates in a manner that differs greatly from plaintext IR, SSE should be viewed as a 

separate paradigm in the context of Information Retrieval, and not an extension of plaintext IR.   In order to 

provide Data and Query Privacy, SSE requires a significant amount of additional processing time to carry out a 

task when compared to the processing time associated with carrying out the same task using plaintext IR.  In 

terms of the performance overhead of using SSE, the Research Results show that little or no correlation exists 

between the time associated with carrying out a task using plaintext IR, and carrying out the same task using 

SSE. In general, the Research Results have shown that the time taken to carry out a task using SSE is greater 

than the time taken to carry out the same task using plaintext IR; nonetheless, this is to be expected given that 

the process of uploading a Document Collection to the Server using SSE requires the Client to first generate an 

SSE Inverted Index, encrypt the underlying Document Collection and then upload both to the Server, as well as 

the need for the Sever to decrypt Postings as part of SSE querying. 

 

The results show that carrying out a task using SSE is directly proportional to the amount of information 

involved.  In the case of constructing an IR Inverted Index, the results show that the time taken to generate an IR 

Inverted Index is directly proportional to the number of Terms contained in the underlying Document 

Collection.  Converting the same IR Inverted Index to an SSE Inverted Index is directly proportional to the 

number of Postings contained within the IR Inverted Index, while the time taken to encrypt the underlying 

Document Collection is directly proportional to the number of Terms contained within the Document 

Collection.  In relation to searching in SSE, the time taken to identify and decrypt the set of Postings associated 



with a given Lexicon Term is directly proportional to the number of Postings.  Regarding the question of 

whether or not SSE is efficient enough to be deployed in a Cloud environment, the answer is context dependant. 

If deployed in an environment whereby Search Results only have to be returned to the user in small quantities 

(such as an Internet Search Engine (For Example: ten results at a time)), then SSE would be more than efficient, 

irrespective of the size of the underlying Data Set (due to the fact that only a small number of Postings would 

need to be decrypted at a given time). If deployed in an environment whereby all results must be returned at 

once (as was the case with the implementation of SSE developed as part of this research, as well as the 

implementations developed by Kamara et al. (2012) and Cash et al. (2013), SSE would only be suitable for 

small and medium sized Data Sets.  When applied to large Data Sets, SSE querying can become inefficient as its 

search time is directly proportional to the number of matching Postings (which is likely to be significant for 

large Data Sets). Regarding the possible commercialisation of SSE, the success of such a product would 

undoubtedly hinge on the knowledge of those people using the product.  Users of such a product would need to 

be aware that SSE provides Data/Query Privacy in exchange for the efficiency associated with plaintext IR, and 

that an SSE Inverted Index – while slow to construct for large Data Sets – is designed to achieve efficient search 

speeds whilst maintaining Data Privacy. 
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