
Fast Corner Detection Using a Spiral Architecture

J. Fegan,1 S.A., Coleman,1 D. Kerr,1 B.W., Scotney2

1School of Computing and Intelligent Systems,

2School of Computing and Information Engineering,
Ulster University, Northern Ireland

Abstract

Fast image processing is a key element in achieving real-time image and video analysis.

Here, a novel framework based on a spiral architecture is used to facilitate fast image

processing, in particular, fast corner detection. Unlike a conventional image addressing

scheme where the picture elements are indexed using two-dimensional Cartesian

coordinates, a spiral addressing scheme enables the image to be stored and indexed as a

one-dimensional vector. Image processing is hastened through the combined use of the

one-dimensional structure and a lookup table. The performance is evaluated by the

application of a corner detector based on the Harris corner detection algorithm. The

results demonstrate the efficiency of the proposed approach compared with a typical

two-dimensional implementation.

Keywords: Fast Image Processing, Spiral Architecture, Corner Detection, Lookup Table, Eye Tremor

1 Introduction

Since its inception, digital image processing has largely leaned upon the intuitive notion that two-

dimensional (2D) visual data can be sampled as a matrix of picture elements (pixels) using a

rectangular lattice of sensors. This has resulted in a Cartesian coordinate system where each pixel is

referenced by an index in the horizontal and vertical directions. This approach has worked well for

tasks where the time taken to process an image is not a primary concern. However, research has

shown that, compared with a one-dimensional (1D) approach, operating on a matrix requires

additional computation to locate the pixels in two directions [1]–[5]. This has implications for activities

such as video processing where the system in question is expected to operate on a stream of

consecutive image frames under strict time restraints. Subsequently there has been a growing interest

among researchers to explore alternative image representations. Strategies such as Hexagonal Image

Processing (HIP) have demonstrated computational performance improvements resulting in a

subsequent runtime advantage over a conventional 2D approach [1], [2]. Despite this fact, existing

image capture and processing hardware is predominately based on a rectangular architecture and this

has limited the research and practical applications of hexagonal imaging methods [3]–[6]. In response

to these concerns a new framework has been proposed, one that attempts to reconcile the prevalent

rectangular framework with the strengths of the HIP framework. This new approach uses a newly

developed sampling method based on a square spiral (squiral) address scheme that is similar to the

hexagonal address scheme of the HIP framework [6]. In this paper, corner detection is used to evaluate

the performance and effectiveness of this approach.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ulster University's Research Portal

https://core.ac.uk/display/287021254?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2 Squiral Image Processing Framework

Previous research has shown that the Squiral Image

Processing (SIP) framework is capable of delivering fast

results [3]–[5]. This is partly attributed to the SIP

address scheme, which avoids using 2D Cartesian

coordinates in favour of a 1D index sequence. More

precisely, an image in the SIP framework is sized

according to a template called a layer. The first layer

(0) is a single pixel located at the centre of the image.

The next layer (1) encompasses layer 0 and its 8

surrounding pixels. Thereafter, each subsequent layer

encompasses its preceding layer and 8 regions of the

same size that surround it. The 9 element makeup of

each layer promotes a recursive base 9 address

scheme. In this scheme the indexing begins at the

centre element of each layer and continues outwards

in a clockwise spiral (Figure 1). Ultimately each layer is denoted by the position of a digit in a pixel’s

index and an element is denoted by the value of that digit. In accordance with this scheme the image

is unravelled onto a vector. This means that only a single loop is required to traverse the image for

subsequent processing. Despite this benefit, the vectorised nature of a SIP image makes it difficult to

locate the neighbours of pixels that are not the centre of a squiral. There are currently two solutions

that solve this problem: create and reference a table that stores each pixels Cartesian neighbour

locations as SIP indices [1], [2]; find each pixels neighbours by shifting the pixels in various directions,

an approach based on a biological process of involuntary eye movements called tremors [7].

2.1 SIP Neighbour Lookup Table

The first of the two aforementioned solutions relays on a

pre-calculated lookup table (LUT) to find the locations of

each pixel’s Cartesian neighbours in a SIP vector. In this

situation each pixel has its own record of neighbour

indices in the LUT. Accordingly, a pixel’s index is used to

access a record and find its neighbour pixels. For

example, the LUT in Figure 2 demonstrates that the 8

immediate neighbours of pixel 1 can be found at

positions 15, 14, 2, 3, 0, 7, 8, and 16 in the SIP vector. It

should be noted that creating the LUT is a one-time

procedure and it can be saved and reloaded as required.

Incidentally, a single LUT can be used with differently

sized SIP images. A notable benefit of this solution is that

neighbourhood operations require only two loops. This is

opposed to four loops that are common in a typical 2D

approach [3], [4]. In the case of neighbourhood navigation, the two neighbourhood loops that are

normally used are replaced with one loop that is used to fetch a neighbour index from the LUT. In the

case of convolution, the filter in question will need to be vectorised in accordance with the SIP address

scheme. This permits the use of a single loop where the index of each filter element is used to retrieve

a neighbour index from the LUT. In both cases the use of the LUT presents another advantage by

avoiding computation that is otherwise needed to locate a pixel’s neighbours.

Figure 1: SIP Address Scheme

 1 2 3 4 5 6 7 8

1 15 14 2 3 0 7 8 16

2 14 26 38 37 3 0 1 15

3 2 38 37 36 4 5 0 1

4 3 37 36 48 52 51 5 0

5 0 3 4 52 51 58 6 7

6 7 0 5 51 58 62 74 73

7 8 1 0 5 6 74 73 72

8 16 15 1 0 7 73 72 84

Figure 2: Neighbour LUT

2.2 SIP Eye Tremor Image Processing

As previously noted, the biological behaviour of eye tremor can be mimicked to find a pixel’s Cartesian

neighbours in a SIP vector. In this solution the image is sampled once initially before it is offset and

resampled several times [1]–[5]. More specifically, in the SIP framework, the initial 2D image is treated

as a base which is sampled according to the SIP address scheme. After this the image is offset so that

the next element in the SIP address sequence is centred on the rectangular lattice. The offset image

is sampled and the process is repeated several times, (Figure 3.1). The output of this procedure is a

matrix composed of several SIP vectors [3]–[5]. The diagonal symmetry of this matrix (Figure 3.2.)

means that it can be navigated in two different ways: the first way is to loop through each pixel in the

base image and refer to the vertically adjacent neighbours in the offset images; the second way is to

sparsely process a fraction of the pixels in each image with reference to their horizontally adjacent

neighbours. Previous research on edge detection has indicated that this approach is faster than 2D

edge detection and SIP edge detection using a neighbour LUT [1], [2]. For this reason, it was the first

strategy adopted in the development of a SIP corner detector.

 I0 I1

 I2

 I5

 I3 I4

 I6 I7 I8

0 1 2 3 4 5 6 7 8 …

0 1 2 3 4 5 6 7 8 …

0 1 2 3 4 5 6 7 8 …

0 1 2 3 4 5 6 7 8 …

0 1 2 3 4 5 6 7 8 …

0 1 2 3 4 5 6 7 8 …

0 1 2 3 4 5 6 7 8 …

0 1 2 3 4 5 6 7 8 …

0 1 2 3 4 5 6 7 8 …

Figure 3.1: Eye Tremor Sampling Scheme Figure 3.2: Eye Tremor Image

3 SIP Corner Detection

The goal of this research was to investigate the performance of the SIP framework for the application

of corner detection. To this end the Harris corner detector was used as a base in the development of

the corner detector presented here. As part of this corner detection procedure, the image gradient is

computed in two directions. A common way to do this is to apply a gradient filter by convolution [8].

In most cases two filters are used: the first filter computes the gradient in the horizontal direction; the

second filter computes the gradient in the vertical direction. Once the gradients are computed they

are manipulated and smoothed. This smoothing is typically achieved through another convolution

with a Gaussian smoothing filter [8]. However, this presents a problem for the eye tremor approach

because a convolution with the gradient filter generates an output where most of the gradient pixels

are not adjacent to their Cartesian gradient neighbours (Figure 4). Therefore, the gradient neighbour

pixels must be located using base 9 arithmetic, or the eye tremor gradient image must be combined

to form a complete 2D gradient image and sampled using the eye tremor scheme. To avoid the

computational cost of these solutions, in the work presented here a neighbour LUT was used.

0 1 2 3 4 5 6 7 8 10 11 12 13 14 15 16 …

1 15 14 2 3 0 7 8 16 11 155 154 12 13 10 17 …

2 14 26 38 37 3 0 1 15 12 154 146 28 27 13 10 …

3 2 38 37 36 4 5 0 1 13 12 28 27 26 14 15 …

4 3 37 36 48 52 51 5 0 14 13 27 26 38 2 1 …

5 0 3 4 52 51 58 6 7 15 10 13 14 2 1 8 …

6 7 0 5 51 58 62 74 73 16 17 10 15 1 8 72 …

7 8 1 0 5 6 74 73 72 17 18 11 10 15 16 84 …

8 16 15 1 0 7 73 72 84 18 156 155 11 10 17 83 …

0 1 2 3 4 5 6 7 8 10 …

1 15 14 2 3 0 7 8 16 11 …

2 14 26 38 37 3 0 1 15 12 …

3 2 38 37 36 4 5 0 1 13 …

4 3 37 36 48 52 51 5 0 14 …

5 0 3 4 52 51 58 6 7 15 …

6 7 0 5 51 58 62 74 73 16 …

7 8 1 0 5 6 74 73 72 17 …

8 16 15 1 0 7 73 72 84 18 …

Figure 4: Post Neighbourhood Processing Problem

After the convolution with the smoothing filter, the outputs are used in an auto-correlation function
to calculate a corner score for each pixel [8]. After this a threshold is applied to the corner scores to
reveal prominent corner pixels. Optimal corner points can then be selected by suppressing all non-
maximum corner pixels within a specified neighbourhood region. In the previous steps of the Harris
algorithm an 8 neighbour LUT was sufficient to process the image because the operations only
concerned a pixel’s 8 immediate neighbours. However, to perform effective non-maximum
suppression (NMS), it is usually necessary to evaluate a larger neighbourhood. It was thought, at first,
that this neighbourhood could be navigated using the 8 neighbour LUT, a pixel’s own neighbour record
and the neighbour records of other pixels. In practice, problems are caused by the order of the pixels
in the SIP vector. For example, in Figure 5a the 9x9 (layer 2) neighbourhood of pixel 10 is found using
its own neighbour record and the neighbour records of the 8 corresponding pixels that surround it.
However, it is shown in Figure 5b that the 8 corresponding pixels that succeed pixel 10 in the SIP vector
are not the pixels that surround it in the 2D plane. This means that computation is needed to find
these corresponding pixels and their neighbour records. In this paper this problem was overcome by
using a larger, 728 neighbour LUT.

276 268 267 266 388 387 386 378 377 376 368 286 278 277 276 268 267 266 388 387 386 378 377 376 368 367 366 488

134 142 143 144 22 23 24 32 33 34 42 124 132 133 134 142 143 144 22 23 24 32 33 34 42 43 44 522

135 141 140 145 21 20 25 31 30 35 41 125 131 130 135 141 140 145 21 20 25 31 30 35 41 40 45 521

136 148 147 146 28 27 26 38 37 36 48 126 138 137 136 148 147 146 28 27 26 38 37 36 48 47 46 528

104 152 153 154 12 13 14 2 3 4 52 114 102 103 104 152 153 154 12 13 14 2 3 4 52 53 54 512

105 151 150 155 11 10 15 1 0 5 51 115 101 100 105 151 150 155 11 10 15 1 0 5 51 50 55 511

106 158 157 156 18 17 16 8 7 6 58 116 108 107 106 158 157 156 18 17 16 8 7 6 58 57 56 518

174 162 163 164 82 83 84 72 73 74 62 184 172 173 174 162 163 164 82 83 84 72 73 74 62 63 64 582

175 161 160 165 81 80 85 71 70 75 61 185 171 170 175 161 160 165 81 80 85 71 70 75 61 60 65 581

176 168 167 166 88 87 86 78 77 76 68 186 178 177 176 168 167 166 88 87 86 78 77 76 68 67 66 588

834 842 843 844 722 723 724 732 733 734 742 824 832 833 834 842 843 844 722 723 724 732 733 734 742 743 744 622

(a) (b)

Figure 5: NMS Problem

4 Performance Evaluation

In preparation for testing, several steps were taken to ensure the outcomes of this research would be

reliable and fair. The corner detector developed for the SIP framework was adapted from a

corresponding 2D counterpart. This was done to minimise syntactical differences that could affect an

implementation’s runtime performance. A 243x243 pixel (layer 5) image was used as a test case in all

the experiments presented here. The Sobel filter was selected to compute the image gradient, and a

3x3 pixel (layer 1) Gaussian filter with a standard deviation of 1 was used for smoothing. A threshold

of 70,000 was applied to the Harris response matrix, and a 27x27 pixel (layer 3) neighbourhood region

was used for NMS. The convolution was non-separable and three modes were used for all

neighbourhood operations: Ignore pixels with any neighbour indices outside the image bounds;

Discard neighbour indices outside the image bounds; Wrap neighbour indices that are outside an

image border so that they assume an index at the opposite border. For the first two modes a

neighbourhood LUT with out of bound neighbour indices was used. For the last mode, a LUT with

wrapped index values was used. The corner maps in Figure 5 were produced using the configuration

outlined above.

 Ignore Discount Wrap

2
D

SI
P

 Figure 6: Corner Maps

Note that a few corners have been detected around the image borders; this is a typical response for

neighbourhood operations at these regions. Regardless, any issues that these anomalies present can

usually be overcome by ignoring or cropping them. As a note for future research, the question is open

as to how border pixels in a 1D SIP vector will be handled. For now though, it can be seen that the

corner maps of both frameworks are identical. To add further credence to this, the results have been

verified as numeric equals in Matlab. This, like the findings in previous SIP research asserts that the

SIP framework is capable of delivering outputs that are identical to those produced by a 2D framework

[3], [4].

4.1 Runtime Evaluation

The tables below show the times it took to perform SIP conversion, as well as corner detection, in both

frameworks with the three modes of neighbourhood operation. For these experiments the runtime

assessments were conducted on an Intel Core i7 4790 CPU with 16GB of RAM. The times are based on

the average wall-clock times over 1000 runs and were measured using the Matlab functions, tic and

toc. These are the functions recommended by the official Matlab documentation for measuring time

reliably [9]. Table 1 shows the runtimes of the conversions to and from a layer 5 SIP image. Table 2

shows the runtimes for the corner detection procedure as measured from the first convolution with

the Sobel filter and ending with NMS. The runtime costs for loading the image, setting up filters and

displaying the corner maps are not accounted for because they have no bearing on the corner

detection process.

2D -> SIP 0.0000095s

SIP -> 2D 0.0006358s

Table 1: Layer 5 Framework Conversion Times

Runtimes

2D SIP

Ignore 0.3851772s 0.2128920s

Discard 0.5171593s 0.2280309s

Wrap 0.5433419s 0.1678514 s

Table 2: Corner Detection Runtime Results

For the 2D framework with mode Ignore, a 13 pixel border was added to the image to expand it to

269x269 pixels. This was done to account for the 13 neighbour pixels that would extend outside the

image during layer 3 NMS. For the same reason, a layer 6 border was added to the SIP image. In both

cases, convolution and NMS were restricted to the central layer 5 region. This was done to permit an

inbounds convolution on the same data set used by the other modes. Likewise, it keeps the operating

conditions across both frameworks as similar as possible. In the case of Discard, a simple boundary

check was used to remove neighbour indices that were out of bounds: the 2D framework required

four checks to ensure that a neighbour index was within the four image borders; the SIP framework

required only one check to ensure that a neighbour index was less than the upper bounds of the SIP

vector.

The results show that, compared to a 2D framework, corner detection can be performed much faster

on the SIP framework if it is used in conjunction with a neighbourhood LUT. This is observed even if

the framework conversion times (Table 1) are summed with the SIP corner detection runtimes. In

agreement with previous research it is believed that this performance gain is due, in part, to the noted

characteristics of SIP. Namely, that less loops are needed to navigate a vectorised SIP image [3], [4].

The other part of this performance gain is due to the neighbourhood LUT which avoids runtime costs

that are normally needed to calculate a pixel’s neighbour indices. This is especially notable for

neighbourhood operations that use a Wrap mode where the neighbour indices would normally

undergo additional calculations to find their circular value.

5 Conclusion

It has been shown that the SIP framework is capable of detecting corners in a way that is equal to a

2D approach, but with significant improvements in algorithmic run-times for non-separable operators.

Furthermore, it has been demonstrated that a framework based on a spiral scheme and utilising a

neighbourhood LUT is capable of producing fast results. The issues raised in this paper highlight the

need to further investigate the eye tremor approach and overcome the current implementation issues

and potentially speed up this process further. It could also be useful, in terms of memory allocation,

to investigate other methods for addressing SIP neighbourhoods using an 8 neighbour LUT. Future

research will extend on the work presented here by developing SIP based Interest Point detectors for

applications on video data and ultimately high speed robotic vision challenges.

Acknowledgements

The research leading to these results has received funding from the European Community’s Seventh
Framework Programme under grant agreement No. 607691, SLANDAIL (Security System for Language
and Image Analysis). This work was completed under a PhD studentship supported by the Department
of Education and Learning (DEL).

The materials presented and views expressed here are the responsibility of the author(s) only. The EU
Commission takes no responsibility for any use made of the information set out.

References

[1] B. Scotney, S. Coleman, and B. Gardiner, “Biologically Motivated Feature Extraction Using the
Spiral Architecture,” in International Conference on Image Processing, 2011, pp. 221 – 224.

[2] S. Coleman, S. Bryan, and G. Bryan, “A Biologically Inspired Approach for Fast Image
Processing,” in International Conference on Machine Vision Applications, 2013, pp. 129 – 132.

[3] M. Jing, B. Scotney, S. Coleman, and M. McGinnity, “A Novel Spiral Addressing Scheme for
Rectangular Images,” in International Conference on Machine Vision Applications, 2015, pp.
102 – 105.

[4] M. Jing, S. Coleman, B. Scotney, and M. McGinnity, “Multiscale ‘Squiral’ (Square-Spiral) Image
Processing,” in Irish Machine Vision and Image Processing (IMVIP), 2015.

[5] M. Jing, S. Coleman, and B. Scotney, “Biologically Motivated Spiral Architecture for Fast Video
Processing,” in International Conference on Image Processing, 2015, pp. 2040 – 2044.

[6] L. Middleton and J. Sivaswamy, Hexagonal Image Processing: A Practical Approach, vol. 224,
no. 4. 2005.

[7] A. Róka, Á. Csapó, B. Reskó, and P. Baranyi, “Edge Detection Model Based on Involuntary Eye
Movements of the Eye Retina System,” Acta Polytech. Hungarica, vol. 4, no. 1, pp. 31–46,
2007.

[8] C. Harris and M. Stephens, “A Combined Corner and Edge Detector,” in Procedings of the
Alvey Vision Conference, 1988, pp. 147–151.

[9] Mathworks, “Measure Performance of Your Program,” R2016a Documentation, 2016.
[Online]. Available: https://uk.mathworks.com/help/matlab/matlab_prog/measure-
performance-of-your-program.html?requestedDomain=www.mathworks.com. [Accessed: 16-
Mar-2016].

