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Abstract 

Fast image processing is a key element in achieving real-time image and video analysis. 

Here, a novel framework based on a spiral architecture is used to facilitate fast image 

processing, in particular, fast corner detection. Unlike a conventional image addressing 

scheme where the picture elements are indexed using two-dimensional Cartesian 

coordinates, a spiral addressing scheme enables the image to be stored and indexed as a 

one-dimensional vector. Image processing is hastened through the combined use of the 

one-dimensional structure and a lookup table. The performance is evaluated by the 

application of a corner detector based on the Harris corner detection algorithm. The 

results demonstrate the efficiency of the proposed approach compared with a typical 

two-dimensional implementation. 
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1    Introduction 

Since its inception, digital image processing has largely leaned upon the intuitive notion that two-

dimensional (2D) visual data can be sampled as a matrix of picture elements (pixels) using a 

rectangular lattice of sensors. This has resulted in a Cartesian coordinate system where each pixel is 

referenced by an index in the horizontal and vertical directions. This approach has worked well for 

tasks where the time taken to process an image is not a primary concern. However, research has 

shown that, compared with a one-dimensional (1D) approach, operating on a matrix requires 

additional computation to locate the pixels in two directions [1]–[5]. This has implications for activities 

such as video processing where the system in question is expected to operate on a stream of 

consecutive image frames under strict time restraints. Subsequently there has been a growing interest 

among researchers to explore alternative image representations. Strategies such as Hexagonal Image 

Processing (HIP) have demonstrated computational performance improvements resulting in a 

subsequent runtime advantage over a conventional 2D approach [1], [2]. Despite this fact, existing 

image capture and processing hardware is predominately based on a rectangular architecture and this 

has limited the research and practical applications of hexagonal imaging methods [3]–[6]. In response 

to these concerns a new framework has been proposed, one that attempts to reconcile the prevalent 

rectangular framework with the strengths of the HIP framework. This new approach uses a newly 

developed sampling method based on a square spiral (squiral) address scheme that is similar to the 

hexagonal address scheme of the HIP framework [6]. In this paper, corner detection is used to evaluate 

the performance and effectiveness of this approach.  
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2    Squiral Image Processing Framework 

Previous research has shown that the Squiral Image 

Processing (SIP) framework is capable of delivering fast 

results [3]–[5]. This is partly attributed to the SIP 

address scheme, which avoids using 2D Cartesian 

coordinates in favour of a 1D index sequence. More 

precisely, an image in the SIP framework is sized 

according to a template called a layer. The first layer 

(0) is a single pixel located at the centre of the image. 

The next layer (1) encompasses layer 0 and its 8 

surrounding pixels. Thereafter, each subsequent layer 

encompasses its preceding layer and 8 regions of the 

same size that surround it. The 9 element makeup of 

each layer promotes a recursive base 9 address 

scheme. In this scheme the indexing begins at the 

centre element of each layer and continues outwards 

in a clockwise spiral (Figure 1). Ultimately each layer is denoted by the position of a digit in a pixel’s 

index and an element is denoted by the value of that digit. In accordance with this scheme the image 

is unravelled onto a vector. This means that only a single loop is required to traverse the image for 

subsequent processing. Despite this benefit, the vectorised nature of a SIP image makes it difficult to 

locate the neighbours of pixels that are not the centre of a squiral. There are currently two solutions 

that solve this problem: create and reference a table that stores each pixels Cartesian neighbour 

locations as SIP indices [1], [2]; find each pixels neighbours by shifting the pixels in various directions, 

an approach based on a biological process of involuntary eye movements called tremors [7].  

2.1    SIP Neighbour Lookup Table 

The first of the two aforementioned solutions relays on a 

pre-calculated lookup table (LUT) to find the locations of 

each pixel’s Cartesian neighbours in a SIP vector. In this 

situation each pixel has its own record of neighbour 

indices in the LUT. Accordingly, a pixel’s index is used to 

access a record and find its neighbour pixels. For 

example, the LUT in Figure 2 demonstrates that the 8 

immediate neighbours of pixel 1 can be found at 

positions 15, 14, 2, 3, 0, 7, 8, and 16 in the SIP vector. It 

should be noted that creating the LUT is a one-time 

procedure and it can be saved and reloaded as required. 

Incidentally, a single LUT can be used with differently 

sized SIP images. A notable benefit of this solution is that 

neighbourhood operations require only two loops. This is 

opposed to four loops that are common in a typical 2D 

approach [3], [4]. In the case of neighbourhood navigation, the two neighbourhood loops that are 

normally used are replaced with one loop that is used to fetch a neighbour index from the LUT. In the 

case of convolution, the filter in question will need to be vectorised in accordance with the SIP address 

scheme. This permits the use of a single loop where the index of each filter element is used to retrieve 

a neighbour index from the LUT. In both cases the use of the LUT presents another advantage by 

avoiding computation that is otherwise needed to locate a pixel’s neighbours.   

 

Figure 1: SIP Address Scheme 

 1 2 3 4 5 6 7 8  

1 15 14 2 3 0 7 8 16  

2 14 26 38 37 3 0 1 15  

3 2 38 37 36 4 5 0 1  

4 3 37 36 48 52 51 5 0  

5 0 3 4 52 51 58 6 7  

6 7 0 5 51 58 62 74 73  

7 8 1 0 5 6 74 73 72  

8 16 15 1 0 7 73 72 84  

Figure 2: Neighbour LUT  



2.2    SIP Eye Tremor Image Processing 

As previously noted, the biological behaviour of eye tremor can be mimicked to find a pixel’s Cartesian 

neighbours in a SIP vector. In this solution the image is sampled once initially before it is offset and 

resampled several times [1]–[5]. More specifically, in the SIP framework, the initial 2D image is treated 

as a base which is sampled according to the SIP address scheme. After this the image is offset so that 

the next element in the SIP address sequence is centred on the rectangular lattice. The offset image 

is sampled and the process is repeated several times, (Figure 3.1). The output of this procedure is a 

matrix composed of several SIP vectors [3]–[5]. The diagonal symmetry of this matrix (Figure 3.2.) 

means that it can be navigated in two different ways: the first way is to loop through each pixel in the 

base image and refer to the vertically adjacent neighbours in the offset images; the second way is to 

sparsely process a fraction of the pixels in each image with reference to their horizontally adjacent 

neighbours. Previous research on edge detection has indicated that this approach is faster than 2D 

edge detection and SIP edge detection using a neighbour LUT [1], [2]. For this reason, it was the first 

strategy adopted in the development of a SIP corner detector. 
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Figure 3.1: Eye Tremor Sampling Scheme  Figure 3.2: Eye Tremor Image 

 

3    SIP Corner Detection 

The goal of this research was to investigate the performance of the SIP framework for the application 

of corner detection. To this end the Harris corner detector was used as a base in the development of 

the corner detector presented here. As part of this corner detection procedure, the image gradient is 

computed in two directions. A common way to do this is to apply a gradient filter by convolution [8]. 

In most cases two filters are used: the first filter computes the gradient in the horizontal direction; the 

second filter computes the gradient in the vertical direction. Once the gradients are computed they 

are manipulated and smoothed. This smoothing is typically achieved through another convolution 

with a Gaussian smoothing filter [8]. However, this presents a problem for the eye tremor approach 

because a convolution with the gradient filter generates an output where most of the gradient pixels 

are not adjacent to their Cartesian gradient neighbours (Figure 4). Therefore, the gradient neighbour 

pixels must be located using base 9 arithmetic, or the eye tremor gradient image must be combined 

to form a complete 2D gradient image and sampled using the eye tremor scheme. To avoid the 

computational cost of these solutions, in the work presented here a neighbour LUT was used. 



0 1 2 3 4 5 6 7 8 10 11 12 13 14 15 16 … 

1 15 14 2 3 0 7 8 16 11 155 154 12 13 10 17 … 

2 14 26 38 37 3 0 1 15 12 154 146 28 27 13 10 … 

3 2 38 37 36 4 5 0 1 13 12 28 27 26 14 15 … 

4 3 37 36 48 52 51 5 0 14 13 27 26 38 2 1 … 

5 0 3 4 52 51 58 6 7 15 10 13 14 2 1 8 … 

6 7 0 5 51 58 62 74 73 16 17 10 15 1 8 72 … 

7 8 1 0 5 6 74 73 72 17 18 11 10 15 16 84 … 

8 16 15 1 0 7 73 72 84 18 156 155 11 10 17 83 … 
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1 15 14 2 3 0 7 8 16 11 … 

2 14 26 38 37 3 0 1 15 12 … 

3 2 38 37 36 4 5 0 1 13 … 

4 3 37 36 48 52 51 5 0 14 … 

5 0 3 4 52 51 58 6 7 15 … 

6 7 0 5 51 58 62 74 73 16 … 

7 8 1 0 5 6 74 73 72 17 … 

8 16 15 1 0 7 73 72 84 18 … 
 

Figure 4: Post Neighbourhood Processing Problem 

After the convolution with the smoothing filter, the outputs are used in an auto-correlation function 
to calculate a corner score for each pixel [8]. After this a threshold is applied to the corner scores to 
reveal prominent corner pixels. Optimal corner points can then be selected by suppressing all non-
maximum corner pixels within a specified neighbourhood region. In the previous steps of the Harris 
algorithm an 8 neighbour LUT was sufficient to process the image because the operations only 
concerned a pixel’s 8 immediate neighbours. However, to perform effective non-maximum 
suppression (NMS), it is usually necessary to evaluate a larger neighbourhood. It was thought, at first, 
that this neighbourhood could be navigated using the 8 neighbour LUT, a pixel’s own neighbour record 
and the neighbour records of other pixels. In practice, problems are caused by the order of the pixels 
in the SIP vector. For example, in Figure 5a the 9x9 (layer 2) neighbourhood of pixel 10 is found using 
its own neighbour record and the neighbour records of the 8 corresponding pixels that surround it. 
However, it is shown in Figure 5b that the 8 corresponding pixels that succeed pixel 10 in the SIP vector 
are not the pixels that surround it in the 2D plane. This means that computation is needed to find 
these corresponding pixels and their neighbour records. In this paper this problem was overcome by 
using a larger, 728 neighbour LUT. 
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Figure 5: NMS Problem 

 



4    Performance Evaluation 

In preparation for testing, several steps were taken to ensure the outcomes of this research would be 

reliable and fair. The corner detector developed for the SIP framework was adapted from a 

corresponding 2D counterpart. This was done to minimise syntactical differences that could affect an 

implementation’s runtime performance. A 243x243 pixel (layer 5) image was used as a test case in all 

the experiments presented here. The Sobel filter was selected to compute the image gradient, and a 

3x3 pixel (layer 1) Gaussian filter with a standard deviation of 1 was used for smoothing. A threshold 

of 70,000 was applied to the Harris response matrix, and a 27x27 pixel (layer 3) neighbourhood region 

was used for NMS. The convolution was non-separable and three modes were used for all 

neighbourhood operations: Ignore pixels with any neighbour indices outside the image bounds; 

Discard neighbour indices outside the image bounds; Wrap neighbour indices that are outside an 

image border so that they assume an index at the opposite border. For the first two modes a 

neighbourhood LUT with out of bound neighbour indices was used. For the last mode, a LUT with 

wrapped index values was used. The corner maps in Figure 5 were produced using the configuration 

outlined above. 
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 Figure 6: Corner Maps 

Note that a few corners have been detected around the image borders; this is a typical response for 

neighbourhood operations at these regions. Regardless, any issues that these anomalies present can 

usually be overcome by ignoring or cropping them. As a note for future research, the question is open 

as to how border pixels in a 1D SIP vector will be handled. For now though, it can be seen that the 

corner maps of both frameworks are identical. To add further credence to this, the results have been 

verified as numeric equals in Matlab. This, like the findings in previous SIP research asserts that the 

SIP framework is capable of delivering outputs that are identical to those produced by a 2D framework 

[3], [4].  



4.1    Runtime Evaluation 

The tables below show the times it took to perform SIP conversion, as well as corner detection, in both 

frameworks with the three modes of neighbourhood operation. For these experiments the runtime 

assessments were conducted on an Intel Core i7 4790 CPU with 16GB of RAM. The times are based on 

the average wall-clock times over 1000 runs and were measured using the Matlab functions, tic and 

toc. These are the functions recommended by the official Matlab documentation for measuring time 

reliably [9]. Table 1 shows the runtimes of the conversions to and from a layer 5 SIP image. Table 2 

shows the runtimes for the corner detection procedure as measured from the first convolution with 

the Sobel filter and ending with NMS. The runtime costs for loading the image, setting up filters and 

displaying the corner maps are not accounted for because they have no bearing on the corner 

detection process. 

2D -> SIP 0.0000095s 

SIP -> 2D 0.0006358s 

Table 1: Layer 5 Framework Conversion Times 

 

 
Runtimes 

2D  SIP 

Ignore 0.3851772s 0.2128920s 

Discard 0.5171593s 0.2280309s 

Wrap 0.5433419s 0.1678514 s 

Table 2: Corner Detection Runtime Results 

For the 2D framework with mode Ignore, a 13 pixel border was added to the image to expand it to 

269x269 pixels. This was done to account for the 13 neighbour pixels that would extend outside the 

image during layer 3 NMS. For the same reason, a layer 6 border was added to the SIP image. In both 

cases, convolution and NMS were restricted to the central layer 5 region.  This was done to permit an 

inbounds convolution on the same data set used by the other modes. Likewise, it keeps the operating 

conditions across both frameworks as similar as possible. In the case of Discard, a simple boundary 

check was used to remove neighbour indices that were out of bounds: the 2D framework required 

four checks to ensure that a neighbour index was within the four image borders; the SIP framework 

required only one check to ensure that a neighbour index was less than the upper bounds of the SIP 

vector. 

The results show that, compared to a 2D framework, corner detection can be performed much faster 

on the SIP framework if it is used in conjunction with a neighbourhood LUT. This is observed even if 

the framework conversion times (Table 1) are summed with the SIP corner detection runtimes. In 

agreement with previous research it is believed that this performance gain is due, in part, to the noted 

characteristics of SIP. Namely, that less loops are needed to navigate a vectorised SIP image [3], [4]. 

The other part of this performance gain is due to the neighbourhood LUT which avoids runtime costs 

that are normally needed to calculate a pixel’s neighbour indices. This is especially notable for 

neighbourhood operations that use a Wrap mode where the neighbour indices would normally 

undergo additional calculations to find their circular value. 



5    Conclusion 

It has been shown that the SIP framework is capable of detecting corners in a way that is equal to a 

2D approach, but with significant improvements in algorithmic run-times for non-separable operators. 

Furthermore, it has been demonstrated that a framework based on a spiral scheme and utilising a 

neighbourhood LUT is capable of producing fast results. The issues raised in this paper highlight the 

need to further investigate the eye tremor approach and overcome the current implementation issues 

and potentially speed up this process further. It could also be useful, in terms of memory allocation, 

to investigate other methods for addressing SIP neighbourhoods using an 8 neighbour LUT. Future 

research will extend on the work presented here by developing SIP based Interest Point detectors for 

applications on video data and ultimately high speed robotic vision challenges. 
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