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A B S T R A C T

Diffuse phosphorus (P) mitigation in agricultural catchments should be targeted at critical source areas
(CSAs) that consider source and transport factors. However, development of CSA identification needs to
consider the mobilisation potential of legacy soil P sources at the field scale, and the control of (micro)
topography on runoff generation and hydrological connectivity at the sub-field scale. To address these
limitations, a ‘next generation’ sub-field scale CSA index is presented, which predicts the risk of dissolved
P losses in runoff from legacy soil P. The GIS-based CSA Index integrates two factors; mobile soil P
concentrations (water extractable P; WEP) and a hydrologically sensitive area (HSA) index. The HSA Index
identifies runoff-generating-areas using high resolution LiDAR Digital Elevation Models (DEMs), a soil
topographic index (STI) and information on flow sinks and effects on hydrological connectivity. The CSA
Index was developed using four intensively monitored agricultural catchments (7.5–11 km2) in Ireland
with contrasting agri-environmental conditions. Field scale soil WEP concentrations were estimated
using catchment and land use specific relationships with Morgan P concentrations. In-stream total
reactive P (TRP) concentrations and discharge were measured sub-hourly at catchment outlet bankside
analysers and gauging stations during winter closed periods for fertiliser spreading in 2009–14, and
hydrograph/loadograph separation methods were used to estimate TRP loads and proportions from
quickflow (surface runoff). A strong relationship between TRP concentrations in quickflow and soil WEP
concentrations (r2 = 0.73) was used to predict dissolved P concentrations in runoff at the field scale, which
were then multiplied by the HSA Index to generate sub-field scale CSA Index maps. Evaluation of the tool
showed a very strong relationship between the total CSA Index value within the HSA and the total TRP
load in quickflow (r2 = 0.86). Using a CSA Index threshold value of �0.5, the CSA approach identified 1.1–
5.6% of catchment areas at highest risk of legacy soil P transfers, compared with 4.0–26.5% of catchment
areas based on an existing approach that uses above agronomic optimum soil P status. The tool could be
used to aid cost-effective targeting of sub-field scale mitigation measures and best management
practices at delivery points of CSA pathways to reduce dissolved P losses from legacy P stores and support
sustainable agricultural production.
ã 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Diffuse phosphorus (P) losses from agricultural land to surface
waters continue to be a major pollution issue worldwide, causing
deterioration of water quality and impacts on ecosystem services (
European Environment Agency, 2015; McDowell et al., 2015;
Sharpley and Wang, 2014). As a result, mitigation measures are
part of wide ranging and international environmental policies and
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legislation (Schoumans et al., 2014; McDowell and Nash, 2012).
Catchment areas at greatest risk of P transfers are termed critical
source areas (CSAs), where high concentrations of mobile P
coincide with hydrologically sensitive areas (HSAs) which have
high runoff potential (Pionke et al., 2000; Walter et al., 2000). CSAs
must be accurately identified if mitigation measures and best
management practices are to be targeted, cost-effective and
successful in reducing P losses (Doody et al., 2012; Sharpley et al.,
2011).

A number of P CSA Indices exist, which range in terms of the
source, mobilisation and transport factors used, weightings,
formulation, and whether they predict relative P loss risk or
quantify P loads (Heckrath et al., 2008; Buczko and Kuchenbuch,
2007). In the USA, where CSA Indices are termed P Indices,
concerns have been raised over inconsistencies, state-by-state
variability, and the lack of calibration and evaluation using
measured P loss data (Osmond et al., 2012; Nelson and Shober,
2012). Slow improvements in water quality following over twenty
years of regulatory implementation also suggest that such CSA
definitions are limited (Sharpley et al., 2011, 2012), leading to calls
for refinements (Sharpley et al., 2013a).

CSA Indices currently use agronomic soil P tests as a source
factor. Soils with high total P concentrations have historically
received excessive manure or fertiliser P applications that
outweighed crop requirements (Kleinman et al., 2011). However,
agronomic soil P tests do not consider the mobilisation potential of
this residual or ‘legacy’ soil total P to be released to runoff
Fig. 1. Locations of the agricultural catchments in Ireland used in the study. Also indicate
meteorological station, and locations of the spatially stratified soil samples taken by W
pathways, despite mobilisation being a fundamental component of
the P transfer continuum (Haygarth et al., 2005). The natural
affinity of soils to bind and immobilise P varies based on soil
properties such as aluminium (Al), iron (Fe), calcium carbonate,
clay, pH and organic matter (OM), and hence in some soils, legacy P
(total P) is more vulnerable to desorption, solubilisation and
transport in surface runoff (Daly et al., 2001, 2015; Maguire and
Sims, 2002). Thus different soils can have the same amount of total
P, but different amounts of available P, and vice-versa.

Environmental soil P tests such as water extractable P (WEP)
(also known as water soluble P) are considered better at replicating
the chemical interaction between soil P and runoff and are less
affected by soil type, and hence are arguably better at predicting
dissolved P concentrations in runoff (Torbert et al., 2002; Pote et al.,
1999; Penn et al., 2006). Some CSA Indices already use the WEP test
as a ‘P source coefficient factor’ to predict the mobilisation
potential of fertiliser P in runoff (Kleinman et al., 2007; Shober and
Sims, 2007). However, the WEP test has not yet been widely
applied as a specific legacy soil P risk assessment; exceptions
include Regan et al. (2010, 2014), Ulén et al. (2011), Djodjic and
Bergström (2005), and Dodd et al. (2012).

Another limitation of conventional CSA definitions is the use of
watercourse proximity as a proxy for runoff risk and P transport
potential (Gburek et al., 2000; Srinivasan and Mcdowell, 2007).
This is recognised as an extreme simplification of reality which
does not account for the effects of (micro)topography on the
generation, channelisation, convergence and hydrological
d are the stream and drainage channel networks, catchment outlet gauging station,
all et al. (2012).
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connectivity of overland flow (Marjerison et al., 2011; Thomas
et al., 2016, 2017; Lane et al., 2009). The approach therefore tends
to overestimate HSA extents at the stream and underestimate
extents upslope (Sharpley et al., 2013a; Srinivasan and Mcdowell,
2009).

More realistic, robust and sub-field scale HSA (and CSA)
delineations could be achieved by using a soil topographic index
(STI) which integrates topographic data from Digital Elevation
Models (DEMs) with maps of soil hydrological properties (e.g.
Marjerison et al., 2011; Buchanan et al., 2013; Hahn et al., 2014). For
example, the STI by Walter et al. (2002) is defined as
STI ¼ ln a=tanbKsD

� � ¼ ln a=tanb
� �� ln KsDð Þ. In this formulation,

a (m) is the specific upslope drainage area per unit contour length,
tanß is the surface slope gradient (radians), D is the local soil depth
in metres to the restrictive layer (e.g. bedrock or fragipan), and Ks is
the mean saturated hydraulic conductivity of the soil profile in
metres per day above the restrictive layer. Areas with larger
upslope drainage areas, shallower slopes, shallower soils and lower
saturated hydraulic conductivities will have higher STI values
(dimensionless), indicating higher runoff propensities.

Furthermore, high resolution DEMs derived from Light Detec-
tion and Ranging (LiDAR) allow HSA and CSA models to account for
the effects of microtopographic features on surface runoff path-
ways and hydrological connectivity (Djodjic and Villa, 2015;
Sharpley et al., 2011, 2015). For example, the HSA Index by Thomas
et al. (2016) modifies the STI by reducing STI values in
hydrologically disconnected drainage areas upslope of flow sinks
such as depressions, pits or barriers that are topographically
impeding overland flow. Thus high values are defined as HSAs (at
high risk of runoff and surface P transport/delivery) rather than
hydrologically active areas which (in terms of surface pathways)
may not be hydrological connected to the stream and hence may
not be at risk of delivering P.

Finally, the structure of CSA Indices may also need consider-
ation. Most attempt to define one P loss risk score or load per field,
by combining dissolved and particulate P losses from fertiliser P
and legacy soil P sources via every transport pathway (Buczko and
Kuchenbuch, 2007; Heckrath et al., 2008). However, it may be
Table 1
Characteristics of the four intensively monitored agricultural catchments used in the s

Arable A Arable B 

Area (ha) 1116 948 

Land use Arable (54%)
Grassland (39%)

Arable (33%)
Grassland (49%)

Median slope (�) 3 3 

Dominant soil drainage class Well drained Mixture of all classes 

Dominant soil types Typical Brown
Earths (88%),
Gleyic Brown
Earths (5%),
Typical
Groundwater
Gleys (5%)

Stagnic Brown Earths (35%),
Typical Surface-water Gleys (
Typical Brown Earths (22%)

Geology Slate and siltstone Calcareous greywacke and mu
Dominant hydrological pathway
following rainfall

Subsurface Surface and subsurface 

Average annual rainfall (mm)a 1021 934 

Average annual runoff (mm)a 548 444 

Runoff coefficienta 0.54 0.48 

Runoff flashiness (Q5/Q95)b 55 140 

Average field size (ha) 3.32 2.70 

Hedgerow density (km2km�2) 0.011 0.011 

Ditch density (km km�2) 1.3 2.3 

Subsurface artificial drainage
pipes (number observed)

34 Unknown 

a 1st Oct 2009–30 Sep 2014.
b Discharge measurements were ranked into percentile categories, from the 95th per
beneficial to develop specialised CSA Indices that focus on specific
forms, sources, transport pathways and timings of P transfers
(Djodjic and Bergström, 2005; Sharpley et al., 2015; Djodjic and
Villa, 2015). Identifying specific types of CSAs, particularly those
that are known to be locally dominant, would prioritise and
minimise data collection, facilitate tailored recommendations of
mitigation measures and best management practices, and aid
model calibration and evaluation using specifically relevant
empirical P loss data.

This study aimed to provide a ‘next-generation’ CSA Index that
addresses these development needs. The study focused on the
transfer risk of dissolved P from legacy soil P sources via surface
runoff pathways during storm events, which is known to be one of
the dominant pathways, forms and sources of P loss (Jordan et al.,
2012; Sharpley et al., 2013b; Dodd et al., 2012; Mellander et al.,
2015). The slow, persistent release of legacy P is recognised as a
long term cause of water quality impairment and eutrophication,
and a possible cause of the ‘failure’ of remediation strategies due to
time lags between implementation and water quality response
(Schulte et al., 2010; Wall et al., 2013; Sharpley et al., 2013b; Jarvie
et al., 2013a,b; Withers et al., 2014). The objectives were to (1) use
the soil WEP test to predict runoff dissolved P concentrations at the
field scale based on relationships with empirical data, (2) use a HSA
Index with high resolution LiDAR DEMs to predict steady-state
runoff propensity and P transport/delivery potential, (3) combine
the two factors to create a sub-field scale CSA Index map for
onward targeting of mitigation measures and best management
practices, and (4) evaluate CSA Index maps using measured P losses
at catchment outlets.

2. Methods

2.1. Study sites and method overview

Four intensively monitored headwater agricultural catchments
in Ireland, which are representative of intensive Irish agri-
environmental conditions (Fealy et al., 2010), were selected for
the study (Fig. 1). Catchments are described in detail elsewhere
tudy.

Grassland A Grassland B

758 1207
Arable (6%)
Grassland (84%)

Arable (20%)
Grassland (77%)

4 3
Well drained Poorly drained, although well

drained in uplands

25%),
Typical Brown Earths and Typical
Brown Podzols (84%), Typical
Surface-water Gleys (5%), Humic/
Typical Alluvial Gleys (4%)

Typical Surface-water Gleys or
Groundwater Gleys (71%)
Typical Brown Earths (29%)

dstone Sandstone, mudstone and siltstone Rhyolitic volcanic and slate
Subsurface Surface and subsurface

1117 1078
618 520
0.55 0.48
77 202
2.00 3.04
0.061 0.011
1.7 5.7
Unknown 40

centile low flows (Q95) to the 5th percentile high flows (Q5) (Jordan et al., 2012).
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(e.g. Wall et al., 2011; Shore et al., 2013; Sherriff et al., 2015), and
are summarised in Table 1. A method workflow for the study is
summarised in Fig. 2.

2.2. Legacy soil P concentrations and mobilisation properties

Soil samples were collected across almost every field in each
catchment (between 414 and 512) in two separate years, referred
to hereafter as ‘baseline’ and ‘resampled’ years, and analysed for
Morgan P, an agronomic soil P test which uses a buffered acetate-
acetic acid reagent (Peech and English, 1944). These baseline and
resampled years were Spring 2009 and Spring 2013 in Arable A and
Grassland B, and Spring 2010 and Spring 2014 in Arable B and
Grassland A. For each field unit (average size of 3 ha), 25 semi-
random 10 cm deep soil samples were collected and homogenised
according to national protocols (S.I. 31, 2014). For a small
proportion of fields where data from one year were not collected,
data from the other year were used.

To identify differences in P mobilisation potential, 27–35
spatially representative soil samples (10 cm depth) were also
collected by Wall et al. (2012) in October 2011 in each catchment
using a stratified grid (see Fig. 1), and analysed for soil P and
mobilisation properties. These data included the agronomic
Use equa�on of the line 
(rela�onship)

Analyse soil  chemistry 
and rela�onships 
between variables

Analyse for  Mor gan P 
concentra�on

Use equa�on 
y = 0.080x  – 0. 
any  resul�ng v

Cal
perio 
daily 

Mul�ply t
together

Calcu

Rec lassify HSA  In dex 
values < 8.5  as NoData, 

and values > 17 as 17,  in 
the Raster calculator  too l

Rescale HSA  In dex  values 
to 0 -10  range, using  the 

follo wing equa�on in the 
Raster Calc ulator  tool: 

(((10  - 0) * ("hsaindex" -
8.5)) /  (17  - 8.5) ) + 0

Selec t ca
highest H 
to the m

Use Zonal Sta�s�cs as 
Table too l

~ 30 spa�al ly 
represe nta�ve soil  

sam ples  per 
cat chment

Catchment and land use 
spec ific rela�onships 

between Mor gan P and 
WEP concentra�ons
(mg  l-1) in soil  (Fig. 3)

Agronomic soil  
sam pli ng of each field 

(414-512 fields per 
cat chment; Fig. 1)

Soil  Morgan P 
concentra� on
(mg l-1) in each
field (Fig. 4a)

Predict ed soil  WEP 
concentra� on (mg l-1) 
in each field (Fig. 4b)

Predicted  diss olved P 
concentra� on (mg l-1) 
in runoff i n each fi eld

Res cal ed HSA Index
(Fig. 5)

Med ian soil  WEP 
concentra� on (mg l-1)
within ma ximum HSA

HSA Index

Maximum HSA map

HSA Index

Fig. 2. CSA Index method workflow; determining soil WEP concentrations from agro
apportioning losses from quickflow (runoff) (black), predicting dissolved P concentratio
using the HSA Index (dashed black), predicting relative differences in dissolved P loads in 

(thick black), and evaluating the CSA Index using measured TRP loads in quickflow at the c
P = phosphorus; WEP = water extractable P; TRP = total reactive P; HSA = hydrologically 
Morgan P test, and the environmental WEP test which uses
distilled deionized water (1:10 soil: solution ratio with 1 h shaking
time) (Sharpley and Moyer, 2000). The Mehlich 3 test (M3;
Mehlich, 1984) was also used to extract P, Al and Fe and determine
the degree of P saturation (DPS) (P/(Al + Fe)) (Sims et al., 2002) to
support the results. Relationships between these variables were
then investigated using regression analysis and tested for
significance using ANOVA. Land use specific relationships were
also investigated, by differentiating soil samples into grassland or
arable land use depending on the dominant land use within the last
5 years (records from Ireland’s Department of Agriculture, Food
and the Marine, pers.comm.).

Soil WEP concentrations (i.e. the mobile, soluble portion of
legacy soil P that is immediately available for transport in runoff
during rainfall events) were then estimated in each field using the
catchment and land use specific relationships (regression line
equations) found between Morgan P and WEP concentrations in
the Wall et al. (2012) data. The field scale Morgan P and WEP
concentrations were mapped in ArcGIS v10.0 and the field
polygons rasterised to 2 m grid resolution. Distributions of
concentrations were then analysed. Distributions of Morgan P
concentrations were based on the Morgan P Index system of 1–4
within Ireland’s EU Nitrates Directive (S.I. 378, 2006) regulations
Sum values in the 
Zonal Sta�s�cs as 

Table too l

Use conceptual pathwa y model, 
hydrograph separa�on tec hni que 
and Loadograph Rece ssio n Analysis 
(Mell ander et al., 2012b,  2015 , 2016)

of the rela�onship:
158.  Then rec lassify 
alues < 0  as 0

culate dail y HSA  size (m2) over each clo sed 
d by di viding dail y qui ckfl ow vol ume (m3) by 
 rainfall depth (m). Ca lculate maximum HSA 

size (Thomas et al., 2016)

he two rasters 
 in the Raster 
lator  too l

tchment areas with 
SA In dex  values (up 

ax imum HSA  size)

High r esolu�on monitori ng of 
rainfall, discharge and in-stream P 
losses at catchment outlet gauging 
sta�on (us ing bankside analyser ) 

fro m 2009 -2014

CSA I ndex
(Fig. 8 and 9)

Med ian dai ly TRP 
concentra� on (mg l-1) 
in qu ickflow i n close d 

period (Fig. 6 ) 

Total TRP load (g) i n 
quickflow i n close d 

period (Fig. 6)

Appor�on qu ickflow  
(runoff) v olumes, TRP 

concentra� ons a nd 
loads

Total cat chment
CSA I ndex val ue

Rela�onship between total 
catchment  CSA  Index  value 
and  normali sed TRP  load (g) 
in qu ickflow in closed per iod 

(evalua�on) (Fig . 10) 

Rela�onship between median soil  
WEP concent ra�on within 

maximum HSA a nd median dail y 
TRP co ncent ra�on in qu ickflow in 
foll owing closed per iod (F ig. 7b )

Total TRP load (g) i n 
quickflow i n close d 

period (norma lise d for 
rainfa ll)

nomic soil samples (light grey), measuring P losses at the catchment outlet and
ns in runoff from soil WEP concentrations (dark grey), predicting runoff propensity
runoff per grid cell (CSA Index) and per catchment (total catchment CSA Index value)
atchment outlet (dotted black). ArcGIS tools used in the workflow are also indicated.
sensitive area; CSA = critical source area.
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which are used to provide agronomic advice (i.e. Morgan P Index 3
and 4 soils are at and above agronomic optimum, respectively,
whereas Morgan P Index 1 and 2 soils are deficient).

2.3. HSA Index

Runoff propensity was determined using the HSA Index by
Thomas et al. (2016). First, 0.25 m grid resolution LiDAR DEMs
(derived from an average of 38–46 bare-earth points m�2) were
acquired in each catchment (Supplementary Fig. 1) and resampled
to 2 m resolution in ArcGIS. This resolution was deemed optimal for
modelling HSAs in agricultural catchments dominated by micro-
topography (Thomas et al., 2017), as it captured flow-diverting
features but also natural hillslope scale flow pathways, and
removed high resolution topographic noise.

The DEMs were hydrologically corrected in SAGA GIS v2.1 to
model fully connected flow pathways to the catchment outlet. This
involved ‘burning’ a field-mapped open drainage channel network
into the DEM, and identifying and filling flow sinks (pits and
depressions) using the method by Wang and Liu (2006), which is
designed for high resolution LiDAR datasets. Upslope drainage
areas were then derived using the Deterministic Infinity (multiple
flow direction) method by Tarboton (1997), and divided by the 2 m
grid cell width to calculate a. Slope was computed from the un-
hydrologically corrected DEM using the Zevenbergen and Thorne
(1987) method, and used with a to derive a Topographic Wetness
Index map based on the Beven and Kirkby (1979) equation-
ln a

tanb= Þð . A ln KsDð Þ raster was derived in ArcGIS using soils data
from the Irish Soil Information System (Creamer et al., 2014) and
additional soil surveys (R. Creamer, pers. comm.). STI maps
(Supplementary Fig. 2) based on the equation by Walter et al.
(2002) were then created by subtracting the ln KsDð Þ raster from
the Topographic Wetness Index using the raster calculator tool.

The HSA Index (2 m raster grid resolution) was then created by
reducing STI values by 75% in upslope drainage areas of flow sinks
that topographically impeded (hydrologically disconnected) over-
land flow as described in Thomas et al. (2016). This required the
original 0.25 m LiDAR DEMs to define flow sinks, the resampled
2 m LiDAR DEMs to determine flow sink upslope drainage areas,
and rainfall-quickflow measurements to determine HSA sizes and
overland flow volumes.

HSAs were delineated by selecting the catchment area with the
highest HSA Index values up to a threshold value. In this study, the
threshold chosen was �8.5, which represented the maximum HSA
size found in any of the four catchments (22.8% of Arable B)
(Thomas et al., 2016). To ignore hydrologically insensitive areas
where runoff and surface P transport does not occur, values <8.5
(which represent no runoff risk) were reclassified as NoData.
Values >17 were typically found within the stream channel
network or on roads, and were therefore reclassified as 17 to
indicate equal, certain runoff propensity. HSA Index values were
then rescaled between 0 and 10 (see Fig. 2).

2.4. Measuring runoff P concentrations and loads

To predict runoff P concentrations using soil WEP concen-
trations, and to evaluate the CSA Index using runoff P loads, in-
stream total reactive P (TRP) concentrations were measured sub-
hourly from 2009 to 2014 by bankside analysers (Hach-Lange
Phosphax Sigma) at the catchment outlet gauging stations (Fig. 1).
This fraction was deemed the most appropriate signal of P
delivered from mobilised (soluble) legacy soil P sources. Mean
hourly TRP loads were determined by integrating synchronous
catchment outlet discharge measurements with TRP concentra-
tions (Shore et al., 2014). A conceptual pathway model, hydrograph
separation technique, and Loadograph Recession Analysis were
then used to apportion TRP concentrations and loads from
quickflow, interflow and slowflow pathways (Mellander et al.,
2012, 2015, 2016). Only TRP concentrations and loads from
quickflow pathways were used in the following analysis. Quickflow
was assumed to be surface runoff only, although some preferential
flow and tile/ditch drainage will also contribute.

As the CSA Index was designed to identify the spatial risk of
legacy soil P transfers, only water quality data from the closed
period for fertiliser applications in Ireland (15th October to 12th
January) were selected, to remove potential noise from incidental P
losses at other times of the year. The winter closed period also
represents the most hydrologically active time of the year which
experiences the highest quickflow (runoff) volumes and P transfers
in the study catchments (Jordan et al., 2012) and in northwestern
Europe (e.g. Ulén et al., 2011).

The relationship between the median soil Morgan P or WEP
concentration within the maximum HSA extent (the catchment
area which transports and delivers P) and the median daily TRP
concentration in quickflow in the following closed period was
investigated using regression analysis. The maximum HSA extent
was delineated by selecting the catchment areas with the highest
HSA Index values up to the known (catchment specific) maximum
HSA size calculated by Thomas et al. (2016) using 2009–14 rainfall-
quickflow data. As the relationship between soil WEP concen-
trations and quickflow TRP concentrations was strongest (see
Section 3.3 and Fig. 7), the equation of the regression line was used
to predict the dissolved P concentration in runoff (quickflow
pathways) within each field in each catchment based on its soil
WEP concentration, similar to approaches by Regan et al. (2010,
2014) and Vadas et al. (2005).

2.5. Developing the CSA Index and evaluating CSA maps

A CSA Index was created by multiplying the predicted runoff
dissolved P concentration raster by the rescaled HSA Index (a
steady-state proxy of runoff volume) in ArcGIS using the raster
calculator tool. Thus higher CSA Index values indicate potentially
higher dissolved P loads in runoff. CSAs were identified by selecting
the catchment areas with the highest CSA Index values up to an
arbitrary threshold value of �0.5, to identify high priority areas for
mitigation and to demonstrate relative differences in CSA sizes
between contrasting catchments.

CSA Index maps were then independently evaluated. First, the
total CSA Index value was calculated for each catchment in baseline
and resampled years using the zonal statistics tool in ArcGIS. Total
catchment CSA Index values were then compared to the total TRP
loads in quickflow in the following closed period using regression
analysis. Due to the differences in rainfall between years and
catchments, total quickflow TRP loads were first normalised by the
mean total rainfall over a closed period (337 mm), assuming a
linear relationship. Total catchment CSA Index values were used for
evaluation rather than the proportion of the catchment identified
as a CSA (using the CSA Index threshold value), as the latter
approach ignores potentially large HSAs with lower CSA Index
values that are also contributing to overall P losses.

3. Results

3.1. Soil P concentrations and mobilisation potential

Mean Morgan P, WEP, DPS and ancillary variables of the soil
samples by Wall et al. (2012) are shown in Table 2. Samples are also
differentiated into grassland or arable soils. Relationships between
key variables (Morgan P, WEP and DPS) are shown in Fig. 3. Results
show strong positive relationships between Morgan P and DPS
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concentrations in all catchments (Fig. 3c), including when samples
were differentiated between land use.

Moderate-to-strong positive relationships were found between
DPS and WEP concentrations in all catchments (Fig. 3a). Grassland
B had significantly higher WEP concentrations for a given DPS
value compared to Arable A (P < 0.05), and Grassland A and Arable
B had similar relationships (Wall et al., 2012). Also, within each
catchment, grassland soils had significantly higher WEP concen-
trations for a given DPS value compared to arable soils, described
by significantly higher intercepts (P < 0.001) rather than differ-
ences in slope (insignificant). Comparisons between land uses in
Grassland A could not be undertaken due to a lack of arable field
samples.

Moderate-to-strong positive relationships were also found
between Morgan P and WEP concentrations in all catchments.
Arable A had significantly lower WEP concentrations for a given
Morgan P concentration compared to Arable B (P < 0.05), Grassland
A (P < 0.05) and Grassland B (P < 0.001) (Fig. 3b). Also, within each
catchment, grassland soils had significantly higher WEP concen-
trations for a given Morgan P concentration compared to arable
soils, described by significantly higher intercepts (P < 0.001) rather
than differences in slope.

Morgan P concentration maps for each catchment are shown for
the baseline year in Fig. 4a, based on the field scale soil sampling.
WEP concentration maps are also shown in Fig. 4b, estimated using
the catchment and land use specific relationships found between
Morgan P and WEP concentrations in the Wall et al. (2012) data (b).
Distributions of Morgan P Index and WEP concentrations are
shown for both baseline and resampled years in Fig. 4c and d
Table 2
Mean Morgan P, WEP, M3-P, M3-Al and M3-Fe concentrations, pH, %OM and DPS of soil s
into grassland and arable soils using the average land use of the previous five years.

Arable A Arable

n All 35 29 

Arable 24 12 

Grassland 11 17 

Morgan Pa (mg l�1) All 7.8 7.1 

Arable 8.4 6.9 

Grassland 6.6 7.2 

WEPb (mg l�1) All 2.8 3.9 

Arable 2.0 2.4 

Grassland 4.5 5.0 

M3c-P (mg kg�1) All 79.2 64.7 

Arable 82.5 75.2 

Grassland 72.1 57.3 

M3-Ald (mg kg�1) All 1115 955 

Arable 1147 1039 

Grassland 1044 896 

M3-Fee (mg kg�1) All 249 354 

Arable 242 325 

Grassland 263 375 

M3-Al + Fe (mg kg�1) All 1363 1310 

Arable 1389 1364 

Grassland 1307 1271 

pH All 6.4 5.7 

Arable 6.5 5.8 

Grassland 6.2 5.7 

OMf (%) All 7.8 6.5 

Arable 6.1 4.8 

Grassland 11.5 7.7 

DPSg (%) All 18.0 16.6 

Arable 18.3 17.5 

Grassland 17.3 16.0 

a Phosphorus.
b Water extractable P.
c Mehlich 3 test (Mehlich, 1984).
d Aluminium.
e Iron.
f Organic matter.
g Degree of P saturation (P/(Al + Fe)).
respectively. All catchments (particularly Grassland A and Arable A
and B) had fields with excessive Morgan P concentrations above
agronomic optimums, indicating legacy soil P source pressures
(Wall et al., 2012). However, WEP concentrations were lowest in
Arable A, with Grassland B indicating higher soil P mobility,
followed by Grassland A and Arable B. All catchments showed
variations in Morgan P and WEP concentrations between baseline
and resampled years, with all catchments except Arable B showing
decreases in the highest concentrations.

3.2. HSA Index maps

The HSA Index maps for each catchment are shown in Fig. 5a
(rescaled from HSA Index maps in Thomas et al., 2016). Higher
values in red indicate higher hydrological sensitivity to rainfall and
higher runoff propensity, whereas lower values in green indicate
lower runoff propensity. Catchment areas without HSA Index
values are deemed hydrologically insensitive to rainfall even
during the largest storm events (in terms of runoff generation), and
are therefore not considered within CSA Index calculations. As
described by HSA Index value distributions in Fig. 5b and in
Thomas et al. (2016), Grassland B has the highest runoff propensity,
followed by Arable B, Arable A and Grassland A.

3.3. TRP concentrations and loads in quickflow, and relationships with
soil Morgan P and WEP concentrations

Median daily TRP concentrations and total TRP loads in
quickflow pathways during 2009–10 to 2014–15 closed periods
amples collected and analysed by Wall et al. (2012). Samples are also differentiated

 B Grassland A Grassland B All catchments

27 30 121
3 7 46
24 23 75
6.6 5.0 6.7
5.9 4.3 7.2
6.7 5.2 6.3
4.0 4.0 3.6
3.0 2.1 2.2
4.1 4.6 4.5
76.4 47.0 67.1
80.4 55.3 76.3
75.9 44.4 61.5
874 908 971
948 1070 1094
864 858 896
484 373 357
460 316 289
487 391 399
1357 1281 1329
1408 1386 1383
1351 1249 1295
5.9 5.9 6.0
5.7 5.9 6.2
5.9 5.9 5.9
7.5 7.6 7.4
5.7 5.6 5.6
7.7 8.2 8.4
19.1 13.7 16.8
18.9 14.0 17.5
19.2 13.6 16.5



y = 0.11x + 0.11
R² = 0. 78

y = 0.1 6x  - 0. 42
R² = 0.82y = 0. 23x  - 1. 22

R² = 0.62

y = 0.26x  - 1.43
R² = 0. 97

0

4

8

12

16

20

0 5 10 15 20 25 30 35 40 45 50

y = 0.19x  + 1.25
R² = 0. 54

y = 0.4 7x  - 2. 44
R² = 0.83

y = 0.27x  - 1.00
R² = 0. 70

y = 0.43x - 1. 21
R² = 0.59

0

4

8

12

16

20

0 5 10 15 20 25 30 35 40 45 50

Degree of P  satura �on  (%)

y = 0.26x  + 2.74
R² = 0. 32

y =  0.4 5x  + 1.78
R² = 0.61

y = 0.57x  + 0.29
R² = 0. 69

y = 0 .60 x + 1 .46
R² = 0. 69

0

4

8

12

16

20

0 5 10 15 20 25 30 35

y = 1.6 3x  + 6.46
R² = 0.79 y = 0.97x  + 8.96

R² = 0. 75

y = 2.10 x + 5.08
R² = 0. 95

y =  1.2 3x  + 7.15
R² = 0.90

0

10

20

30

40

50

0 5 10 15 20 25 30 35

(b)

(c)

y = 0.11x + 0.86
R² = 0. 28

y = 0.30x - 0.98
R² = 0. 47

y = 0. 27x - 1. 11
R² = 0. 69

y = 0.35x - 0.80
R² = 0. 51

0

4

8

12

16

20

0 5 10 15 20 25 30 35 40 45 50

Arab le A (arable) Arable A (grassl and )
Arab le B (arab le) Arable B (grassland )
Grasslan d A (arable) Grassl and A (grassl and)
Grasslan d B (arab le) Grassl and B (grassl and)

All soil sampl es Ar able  so il sa mples Grassland  soil sa mples

y = 1.15x  + 8.59
R² = 0. 90

y = 1.01x + 10.57
R² = 0.90y =  1. 52x  + 9. 86

R² = 1. 00

y = 1.7 4x +  6.41
R² = 0.99

0

10

20

30

40

50

0 5 10 15 20 25 30 35

Morgan P concentra�on  (m g l-1)

y = 1 .17 x + 8 .75
R² = 0. 87

y = 0.9 9x +  9.63
R² = 0. 80

y =  2.0 8x  + 5.37
R² = 0.95

y =  1.3 6x  + 6.86
R² = 0. 90

0

10

20

30

40

50

0 5 10 15 20 25 30 35

y = 0 .11 x + 1 .12
R² = 0. 57

y = 0.17x + 1.23
R² = 0. 79y =  0. 36x  + 0. 89

R² = 0.69

y = 0 .45x + 0 .19
R² = 0. 98

0

4

8

12

16

20

0 5 10 15 20 25 30 35

y = 0.0 9x  + 2.07
R² = 0.13

y = 0.31x  + 1.73
R² = 0. 43y = 0.57x + 0.22

R² = 0. 69

y =  0.5 8x  + 1.13
R² = 0.67

0

4

8

12

16

20

0 5 10 15 20 25 30 35

Morgan P concent ra�on (m g l-1)

P
elbatcar txer eta

W
l

g
m (

noi tartnecnoc
- 1

)(a)
P

elb at cartxe ret a
W

l
g

m(
noitartnecnoc

-1
)

Pfo
eerge D

)
%(

n oitar utas

Fig. 3. Relationships between (a) %DPS (P/(Al + Fe)) and WEP concentration, (b) Morgan P and WEP concentration, and (c) Morgan P concentration and %DPS, for soil samples
collected by Wall et al. (2012). Samples are differentiated by catchments (left), and also by arable (middle) and grassland (right) land uses. P = phosphorus; WEP = water
extractable P; DPS = degree of P saturation.
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are shown in Fig. 6. General trends showed that Grassland A
experienced the highest TRP concentrations in quickflow (runoff),
followed by Arable B, Grassland B and Arable A. Although
concentrations fluctuated between years within each catchment,
trends were relatively small, except for a large reduction in
Grassland A during the 2013–14 closed period. Contrastingly,
Grassland B consistently experienced the highest total TRP loads in
quickflow pathways between 2009–10 to 2013–14, compared to
Grassland A which had the second lowest loads. Variations in total
TRP loads between years were similar across each catchment,
although Grassland B showed much larger reductions between
2009–10 and 2010–11.

The relationship between the median Morgan P or WEP
concentration (mg l�1) in the soil within the maximum HSA and
the median daily TRP concentration (mg l�1) in quickflow in the
following closed period from when the soil was sampled is shown
in Fig. 7. Arable B and Grassland A resampled years were not
included due to the unavailability of quickflow data in the
following closed period (2014–15). Although a strong positive
relationship was indicated between Morgan P concentration and
TRP concentration in quickflow in three of the four catchments,
Arable A had relatively high Morgan P concentrations but very low
quickflow TRP concentrations, and hence the overall relationship
was weak. Conversely, median WEP concentrations had a strong
positive correlation with TRP concentrations in quickflow across all
catchments (r2 = 0.73). Hence, WEP was shown to be a stronger
indicator of dissolved P concentrations in runoff within each field
unit. Predicted dissolved P concentrations in runoff <0 mg l�1 (an
artefact of the equation intercept) were reclassified as 0 mg l�1.
3.4. CSA Index maps and evaluation

CSA Index maps and value distributions are shown in Fig. 8 for
baseline and resampled years. CSA Index values typically ranged
between 0.1 and 2. A close-up view is shown in Fig. 9, which also
indicates breakthrough and delivery points where P is potentially
transported between fields and delivered to the drainage network,
respectively. CSAs (catchment areas with the highest CSA Index
values) are clearly identifiable at the sub-field scale, as well as
individual CSA (runoff) pathways. Using an arbitrary CSA Index
threshold value of �0.5 to delineate CSAs, Grassland B had the
largest CSAs (5.6% and 4.1% of the catchment area in baseline and
resampled years, respectively), followed by Arable B (2.9% and
3.0%), Grassland A (2.9% and 2.4%) and Arable A (1.4% and 1.1%).

The relationship between the total catchment CSA Index value
and the total TRP load within quickflow in the following closed
period is shown in Fig. 10. The strong relationship (r2 = 0.86)
indicates that the CSA Index can accurately predict relative
differences in dissolved P loads in runoff between contrasting
catchments and land management. Grassland B had proportion-
ately the largest CSAs because it had the greatest P transport
potential (HSA Index) which coincided with large mobile P source
pressures (WEP). Arable A had the smallest CSAs as it had the
lowest runoff risk and the lowest WEP concentrations. Although
Grassland A had large WEP concentrations, it had the second
lowest P transport potential and hence a low coincidence of mobile
P sources and HSAs. Arable B was at second highest risk of
dissolved P transfers because it had large mobile P sources
coinciding with relatively large HSAs.



Fig. 4. Maps of (a) Morgan P concentrations (mg l�1) and (b) WEP concentrations (mg l�1) for the baseline year for each field unit. Also shown are the proportion of the
catchment area in each Morgan’s P Index 1–4 (c) and WEP concentration (d) for baseline and resampled years. WEP concentrations were predicted using the catchment and
land use specific relationships with Morgan P concentrations found in Fig. 3b. P = phosphorus; WEP = water extractable P.
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4. Discussion

4.1. The importance of mobilisation potential of legacy P

The moderate-to-strong positive relationships found between
DPS and WEP concentrations within all catchments (Fig. 3a) agrees
with other studies which show that different soil types have
different capacities to chemically retain and attenuate P (i.e. P
sorption sites from Al and Fe) and hence have different potentials
for P mobilisation and losses (e.g. Maguire and Sims, 2002; Sims
et al., 2002; Daly et al., 2001). The relationships between DPS and
WEP concentrations were similar to the relationships between
Morgan P and WEP (Fig. 3b). This corresponds with findings from
Fig. 3c and other studies which show that agronomic soil P tests
relate well to DPS (Kleinman et al., 1999; Kleinman and Sharpley,
2002; Pautler and Sims, 2000).



Fig. 5. (a) Maps of the rescaled HSA Index, overlaying orthophotos. Higher values in red and lower values in green indicate higher and lower runoff propensity, respectively.
(b) Rescaled HSA Index value distributions. HSA = hydrologically sensitive area.
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However, the relationship between DPS or Morgan P and WEP
concentrations was found to be both catchment and land use
specific (Fig. 3a,b; Wall et al., 2012). For example, although
Grassland B had the lowest mean Morgan P concentration and DPS
in the Wall et al. (2012) data, it had the highest mean WEP
concentration (Table 2). Conversely, Arable A showed relatively
high Morgan P and DPS, but the lowest WEP concentrations. This is
explained both by natural differences in soil chemistry, and man-
made differences due to fertiliser/lime applications or the vertical
stratification of P and organic matter in grassland soils (see Table 2)
which create fewer and weaker bonds compared to mineral-
dominated sublayers where P is incorporated in tillage soils (Daly
et al., 2001; Ulén et al., 2011; Daly and Casey, 2005; Page et al.,
2005; Torbert et al., 2002; Hooda et al., 2001). Furthermore, change
points and plateaus have sometimes been observed in the
relationships between DPS, Morgan P and WEP (Daly et al.,
2015; Sharpley et al., 2004; McDowell and Sharpley, 2001). It is
therefore likely that, when applying the CSA Index elsewhere, the
nature of the relationships between variables found in this study
may differ.
4.2. The dominance of P transport (HSAs) in CSAs

Results indicate that P transport (via HSAs) is a more dominant
factor of dissolved P CSAs than mobile soil P sources (WEP
concentrations). Grassland A had the highest average TRP
concentrations in quickflow (runoff) in the closed period, followed
by Arable B, Grassland B and Arable A (Fig. 6). However, it was
Grassland B that had the highest quickflow TRP loads, followed by
Arable B, Grassland A and Arable A (Fig. 6), indicating that runoff
volumes from HSAs were more important in driving the delivery of
soil WEP to the watercourse than the WEP concentration. These
results are supported by similar international findings in a range of
catchments where P transfers are predominantly via surface
pathways (e.g. Buda et al., 2009; Campbell et al., 2015; Kyllmar
et al., 2006; Bergström et al., 2007). This confirms the P transfer
continuum concept whereby mobilised P cannot be delivered
unless it is transported via hydrologically connected pathways
(Haygarth et al., 2005; Thomas et al., 2016). However, it is clear that
the CSA Index requires both factors to accurately predict spatial
dissolved P loss risk, as differences in soil WEP concentrations
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Fig. 6. Median daily TRP concentrations and total TRP loads in quickflow in 2009–
10 to 2014–15 closed periods for fertiliser applications (15th October–12th January).
TRP = total reactive phosphorus.
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between baseline and resampled years caused considerable
changes in CSA sizes and total catchment CSA Index values.

4.3. Implications and recommendations for agricultural policy,
farming practices and mitigation

The findings from this study (Figs. 3 and 7), in combination with
others mentioned previously, suggest that the soil WEP test is
better at predicting runoff P concentrations over a diverse range of
catchments compared to an agronomic soil P test (such as Morgan
P), and should be used to indicate environmental P loss risk. Soil
WEP should ideally be measured directly (which could further
improve predictions), or at least inferred using catchment and land
use specific relationships with Morgan P as demonstrated in this
study.

The dissolved P CSA Index was able to identify CSAs at the sub-
field scale (Figs. 8 and 9) as well as individual CSA pathways of P
losses and drainage channels at higher risk of delivery. This allows
field and sub-field scale mitigation measures and best manage-
ment practices to be implemented at precisely targeted locations,
to improve cost-effectiveness and minimise disturbance to farmers
(Doody et al., 2012; Buda et al., 2012; Sharpley et al., 2011). As the
CSA Index uses the HSA Index, only CSAs that are hydrologically
connected to the watercourse are identified. This further improves
the targeting and effectiveness of measures and avoids unneces-
sary implementation at hydrologically disconnected pathways.

A range of CSA measures are available as part of a ‘treatment-
train’ approach to mitigation (Ferrier et al., 2005; Campbell et al.,
2004) that target different stages of the source-mobilisation-
transport-delivery-impact continuum. For example, targeted
nutrient management can reduce soil P sources at CSAs (Murphy
et al., 2015), and chemical amendments of soils (and fertilisers/
manures) such as lime, gypsum or alum additions can reduce P
mobility (Fenton et al., 2011; Murphy and Stevens, 2010; Murphy
and Sims, 2012; Smith et al., 2001). Measures that focus on
reducing P transport by slowing, impeding or treating runoff from
HSAs, such as runoff attenuating features, riparian buffer strips,
wetlands, permeable reactive interceptors and modifying ditches
(Schoumans et al., 2014; Wilkinson et al., 2014; Ockenden et al.,
2014; Fenton et al., 2014; Shore et al., 2015) can also be targeted at
vulnerable ‘breakthrough points’ at field boundaries and ‘delivery
points’ at the watercourse (Fig. 9) (Thomas et al., 2016, 2017).

Compared to using an agronomic soil P test alone, the dissolved
P CSA Index may lessen the burden on farmers in terms of the need
to decline certain high legacy soil P stores (Schulte et al., 2010; Wall
et al., 2013; Sharpley et al., 2012). For example, current regulations
that constrain soil P amendments for water quality protection
prohibit the application of inorganic fertiliser P on fields with soil P
status above agronomic optimum (Morgan P Index 4 in Ireland)
(Humphreys, 2008). However, although 4.0–26.5% of catchment
areas were Morgan P Index 4 soils (Fig. 4a,c), only 1.1–5.6% of
catchment areas in this study were predicted to be CSAs based on
the threshold value used (Fig. 8), and specific locations differed.
This follows findings by Thomas et al. (2016) that only 2.9–8.5% and
6.2–22.8% of catchment areas were HSAs during upper quartile and
maximum storm events respectively. In many fields, high soil test P
(Morgan P) coincided with relatively low P mobility (soil WEP
concentrations) and/or low runoff potential (HSA Index values),
and hence were not CSAs. Conversely, some fields with lower soil
test P had relatively high P mobility and/or high runoff potential,
and hence were considered to be CSAs. Therefore P application
restrictions could be reconsidered in non-CSAs, for example to
relieve manure storage pressures over winter, although care would



Fig. 8. CSA Index maps for (a) baseline and (b) resampled years, and (c) the proportion of the catchment area with each CSA Index value. Higher (red) and lower (green) CSA
Index values indicate higher and lower predicted dissolved P loads in runoff, respectively. CSAs are identified as the catchment areas with the highest CSA Index values (e.g.
�0.5). Catchment areas without CSA Index values are not hydrologically sensitive to rainfall according to the HSA Index, and hence are not considered in CSA Index
calculations. CSA = critical source area; HSA = hydrologically sensitive area.
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be needed to avoid potential increases in subsurface and
groundwater P transfers in the long term (following time lags).

Next-generation screening tools are now also available that
characterise and/or monitor catchments and sub-catchments to
identify those at higher risk of P transfers (e.g. Packham et al., 2014;
Brazier et al., 2005). These should be used to target and prioritise
implementation of the finer scale HSA and CSA Indices presented
here.



Fig. 9. Close-up view of a CSA Index map. Also indicated are breakthrough points (in
green) and delivery points (in blue) where CSA pathways cross field boundaries and
are delivered to the drainage network, respectively. These are where sub-field scale
mitigation measures could be targeted and prioritised. CSA = critical source area.
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4.4. Other considerations

Further work is required to evaluate the CSA Index by
demonstrating (through short and long-term monitoring) that
targeted mitigation measures and best management practices at
the identified CSAs causes in-stream declines in P loads and
associated improvements in water quality (Doody et al., 2012;
Sharpley et al., 2009). This is complicated by the fact that water
quality and ecological responses to reduced P loadings differ
between rivers and catchments, as recovery trajectories can be
decoupled, non-linear and characterised by thresholds, alternative
stable-states and time lags (Jarvie et al., 2013b). The CSA Index
threshold value used to delineate CSAs may need refining if
mitigation of those areas is found to be insufficient at counter-
acting eutrophication, for example by using the relationship in
Fig. 10 in combination with environmental thresholds. The tool
also needs to be evaluated in terms of cost-benefits and farm
economic viability and compared to that of no intervention or
intervention at excessively high (surplus) P soils or HSAs alone
(Kronvang et al., 2009; Ghebremichael et al., 2013).

Limitations should be acknowledged in the approach which
may account, for example, for the (albeit small) unexplained
variability in Fig. 7b and Fig. 10. As the accuracy of the HSA Index
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depends in part on the accuracy of soil series maps, additional soil
sampling and/or expert judgement may be required if national
scale (1:250,000) datasets are used. Also, the HSA Index method
requires the estimation of the HSA size to determine flow sink ‘fill
and spill’ potential. In ungauged catchments, the HSA size found in
Thomas et al. (2016) in the catchment with the most similar STI
value distribution could be used. Alternatively, local rainfall-runoff
curve numbers could be applied, or approaches outlined by
Hrachowitz et al. (2013). Local knowledge of soil compaction from
poaching and trafficking, which can cause infiltration-excess
overland flow, should be accounted for in the KsD component of
the HSA Index. Furthermore, in fields with subsurface artificial
drainage, Ks will increase, but this was not considered in the HSA
Index as their locations, design, age, depth and effectiveness are
unknown. Additionally, the steady-state CSA Index does not
account for differences in rainfall and hence hydrological activity
of HSAs between catchments, regions and years. Finally, erroneous
flow pathways and flow sinks may occur as artefacts of DEM
vertical error.

5. Conclusions

Conventional CSA definitions of P transfers have a number of
limitations which need to be addressed using the latest scientific
and technological advances if mitigation measures and best
management practices are to be cost-effectively targeted. A new
‘next generation’ CSA Index of dissolved P losses from legacy soil P
is presented here that addresses these concerns. Specifically, the
GIS-based approach uses soil WEP concentrations, rather than
agronomic soil P, to predict mobile soil P sources. It also uses a new
soil-topographic HSA Index derived from high resolution (0.25 m
and 2 m) LiDAR DEMs, rather than watercourse proximity, to
realistically define runoff propensity, P transport potential and
hydrological connectivity. The CSA Index was applied to four
intensively monitored agricultural catchments representing dif-
ferent agri-environmental conditions. Sub-field scale CSA maps
were generated and evaluated against total TRP loads in quickflow
in the 2009–2014 winter closed periods (r2 = 0.86).

In conclusion:

� Relationships between soil Morgan P, WEP and DPS were both
catchment and land use specific, with significantly higher WEP
release in grassland soils compared to arable soils. WEP
concentrations should ideally be measured directly, or at least
y = 1.0062x - 2098 7
R² =  0.86

00 150,000 200,000 250,000

ment C SA Index  value

and resampled years and the total TRP load (g) in quickflow in the following closed
ormalised by the mean total rainfall over a closed period (337 mm). Arable B and
e following closed period (2014–15). CSA = critical source area; TRP = total reactive



250 I.A. Thomas et al. / Agriculture, Ecosystems and Environment 233 (2016) 238–252
inferred using catchment and land use specific relationships
with Morgan P or DPS

� Hydrological transport (within HSAs) was a more important
factor for dissolved P transfers than soil P mobilisation. Thus
mitigation strategies and policies should first prioritise impeding
P transport in surface runoff

� The proportion of catchment areas defined as high risk to water
quality according to above agronomic optimum soil P alone (the
current risk assessment used in the study catchments) was
between 4.0–26.5%, compared to a CSA size of 1.1–5.6%
delineated using the fully developed CSA Index. This provides
an important selling point for the farming community by
highlighting locations where current P application restrictions
could be reconsidered

� Targeting mitigation measures at breakthrough points and
delivery points where CSA pathways cross field boundaries
and are delivered to the drainage network, respectively, could
further reduce the potential area of intervention and improve
cost-effectiveness.
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