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Abstract—The field of artificial neural networks has a long
history of several decades, where the theoretical contributions
have progressed with advances in terms of power and memory
in present day computers. Some old methods are now rebranded
or represented, taking advantage of the power of present day
computers. More particularly, we consider the current trend
of Random Vector Functional Link Networks, which suggests
that the architecture of a system and the learning algorithm
should be properly decoupled. In this paper, we evaluate the
performance of multi-layers Random Vector Functional Link
Network (RVFL)/ extreme learning machine (ELM) on four
databases of handwritten characters. Particularly, we evaluate
the impact of the architecture (number of neurons per hidden
layer), and the robustness of the distribution of the results
across different runs. By combining the classifier outputs from
different runs, we show that such a maximum combination
rule provides an accuracy of 95.97% for Arabic digits, 98.03%
for Bangla, 98.64% for Devnagari, and 96.30% for Oriya digits.
The results confirm that increasing the size of the hidden layers
has a significant impact on the accuracy, and allows to reach
state-of-the-art performance; however the performance reaches
a plateau after a certain size of the hidden layers.

I. INTRODUCTION

The evolution of machine learning and pattern recog-
nition techniques over the years has taken advantage of
both theoretical and hardware progresses. More particularly,
classifiers based on artificial neural networks such as multi-
layer perceptrons (MLPs) have exploited graphics processing
unit (GPU) [1], highlighting the benefit of parallel and dis-
tributed systems in applications that require large databases
for training models. The different improvements given by
theoretical and hardware progresses invite to perpetually
reconsider the methods to use for classification. In fact, the
large increase of both power and memory can change how
methods are perceived over time. While some methods in
the 80s could only be used with small databases due to
memory and computational issues, the current generation
of personal computers, with powerful graphic cards and a
large amount of memory, largely driven by the video games
industry, invites us to retry old techniques. In addition, the
exponential increase of classification problems, with the large
amount of available data (Big data), forces researchers to take
into account both the time for training and testing, but also
the tradeoff between the accuracy and time to achieve this
accuracy. It is particularly relevant for applications where it
is not possible to dedicate a large amount of time for the
optimization of the architecture and the choice of the hyper-

parameters. Artificial neural networks have provided state-of-
the-art performance since their introduction [2], [3], and they
have known different cycles of fame, from the introduction of
the perceptron to deep learning techniques, without a priori
predefined architecture [4].

The use of GPUs has significantly increased the interest of
some methods such as convolutional neural network. A new
challenge in machine learning techniques applied on large
databases, such as natural images, is to find the best trade-
off between the efficiency of the method, the possibility to
implement the method on computer clusters and/or GPU,
and the possibility to update the system with new data in
an incremental way. In fact, as the number of classification
problems can change rapidly, it is not possible to dedicate
several years of research to develop and tune a system as
it was the case for handwritten character recognition and
speech recognition, where problems are relevant for the
whole population and can be used in many applications. For
classification problems that are dedicated to only a particular
database, particular classes of images, methods that do not
require many labeled trials and hyper-parameters to tune are
more suitable. A key issue for classification is the choice of
the input features. Some recent and old works, from Random
Vector Functional-Link (RVFL) [5], [6] to convolutional
neural network [7] and extreme learning machine (ELM) [8],
suggest that using non-linear representations of the inputs
with random weights can provide an efficient mapping of
the data. In [7], random filters in a one layer convolutional
neural network could impact the performance of only 1.2%
compared to unsupervised pretraining and discriminative
finetuning of the filters. In [9], it is shown that a part of
the performance of certain state-of-the-art techniques can
be directly attributed to the architecture alone and not the
learning technique. These results show that classifiers based
on random weights for the hidden layers, i.e. no learning
before the last hidden layer, provides good results and that
they must be provided to clearly show the impact of a
learning approach.

Single handwritten character recognition is almost a re-
solved problem thanks to several decades of research in
classification and feature extraction algorithms [10], [11],
[12], [13]. However, the accuracy remains below 100%, and
methods are typically customized for a particular script or
database, from the pre-processing steps to the classification.
Moreover, the high accuracy is only available for certain
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scripts, e.g., Latin script (MNIST results). In addition, there
exist always documents with noisy characters, which cannot
be recognized with commercial optical character recognition
(OCR) technologies [14].

In this paper, we propose to evaluate the performance of
four databases of handwritten characters (one with Arabic
digits, three with Indian scripts) using RVFL/ELM mod-
els with different architectures. While random weights can
provide good performance, the study aims at evaluating
the impact of architecture on the variability that may exist
with different runs. Furthermore, as RVFL architectures are
computationally efficient, the output results can be combined
through a multi-classifier scheme. The remainder of the paper
is organized as follows. First, the Random-vector functional
links/Extreme Learning Machine frameworks are described
in Section II. The four databases are presented in Section III.
Then, the experimental results are given in Section IV and
discussed in Section VI.

II. METHODS

A. Random-vector functional links

Random Vector Functional-Link (RVFL) networks can be
seen as artificial feedforward neural networks with only a
single hidden layer that can be used for both classification
and regression [15], [5], [6]. It corresponds to a linear
combination of a number of non-linear representations (e.g.
using a sigmoid function) of the input data. A key feature of
this type of technique is the way how the parameters are as-
signed. More particularly, the input weights and biases are set
randomly and they do not change, i.e. they are fixed. While
this step is simple and seems to not be efficient, RVFLs have
the capability of universal approximation if the dimension of
the input representation is large enough [16]. The parameters
of RVFLs can be obtained with linear regression methods
using only matrix inversions and multiplications. These types
of operations are particularly well suited for distributed
learning [17]. RVFL networks can be estimated with a lead-
square approach for learning the weights.

Let us consider first a regression problem with one-
dimensional scalar outputs y ∈ R. A Functional Link
Artificial Neural Network (FLANN) with a single output
neuron can be defined as a weighted sum of B non-linear
transformations of the input x [5]:

f(x) =

B∑
m=1

βmhm(x;wm) = βTh(x;w1, . . . ,wB)(1)

where the mth transformation is obtained with the parameters
wm, and x ∈ Rd. Each function hm is a functional link,
mapping the input data, with the set of parameters, to a real
number.

Like many artificial neural networks such as the multilayer
perceptron, the sigmoid function is typically used:

hm(x;wm; b) =
1

1 + expσ
(2)

where σ = −wT x + b. The set of parameters wm, 1 ≤ m ≤
B, is chosen before the learning process and without any
prior assumption about the data. In a RVFL, the parameters
are set randomly, in relation to a predefined probability
distribution [6]. The capability of universal approximation of
the network is guaranteed if there exists a sufficiently large
number of representations of the inputs. After the estimation
of the set of parameters, the weights β must be estimated.

We consider a dataset XTrain = {(xi, yi)} of N couples
that contain an example xi and the expected output yi, 1 ≤
i ≤ N . We denote by H the following matrix that contains
the B representations of the N examples.

H =

 h1(x1) . . . hB(x1)
...

. . .
...

h1(xN ) . . . hB(xN )

 (3)

where each function hm includes also the corresponding set
of parameters wm. The estimation of β = [β1, . . . , βB ]

T can
be obtained through a regularized least-square problem:

β = argmin
β∈RB

1

2
‖Hβ − Y‖22 +

λ

2
‖β‖22 (4)

where the vector Y = [y1, . . . , yN ]T is the ground truth of
XTrain. As the problem is convex, an estimation of β̂ can
be directly obtained by:

β̂ =
(
HTH + λI

)−1
HTY (5)

where I is the identity matrix of size B × B. It is worth
noting that the computational complexity of RVFL is mainly
driven by the B ×B matrix inversion.

For multiclass classification with M classes, M ≥ 2, the
groundtruth Y is a matrix of size N ×M . Y(i, j) = 1 if xi
belongs to the class j, 1 ≤ j ≤M , Y(i, j) = 0 otherwise.

(6)

B. Multi-layer RVFL/ELM

Different variations of RVFL networks have had a recent
success in different popular classification problems under the
name of extreme learning machine (ELM) [18], and inspired
from other techniques [19], [20]. This name, in addition
to the efficiency of the proposed methods, has been a key
factor for the reuse of RVFL networks [8], [21], [22]. More
particularly, it has been shown that ELM can be successful
within deep learning architectures (ML-ELM) [23], [24].
The learning approach performs layer-by-layer unsupervised
learning by using ELM auto-encoder (ELM-AE), which
represents features based on singular values. With ELM-AE,
the output Y is similar to the input X = [x1, . . . , xN ]. In
addition, the decoder, i.e. the function that maps the input
representation h1(x), . . . , hB(x) of the input x to itself,
corresponds to the parameters β̂ that are estimated. The
random weights are constrained to be orthogonal [23]. To
create the coder afterward, β̂

T
is used to map x to the

representation that was obtained. Like other deep network
architectures, ML-ELM stacks on top of ELM-AE to create



a multilayer neural network. ML-ELM is a greedy approach
and does not require finetuning after training the last layer.
In RVFL network with a single hidden layer, we denote by
β̂1 the estimation of the weights for the first hidden layer.
Similarly, for ML-ELM of L hidden-layers (or L+1 layers),
we denote by β̂l the estimation of the weights for the layer
l, 1 ≤ l ≤ L. An ELM-AE is used for each layer l, and the
extracted weights of an ELM-AE l are used to generate the
inputs of the ELM-AE at layer l + 1. The system for two
hidden layers is depicted in Figure 1

Fig. 1. Example of a deep RVFL/ELM with two hidden layers.

C. Multi-classifier system

Because the generation of the RVFL/ELM classifiers is
based on random weights, it may be possible to extract
some complementarities between classifiers. We propose to
evaluate the performance that can be obtained by combining
the decision scores coming from different runs. Three simple
functions are chosen: the mean (the average score from each
run is used before selecting the maximum), the median (the
median score across runs for each class), and the maximum
rules (the maximum score in each class and each run).

D. Performance evaluation

In the subsequent sections, we evaluate two types of
architectures. The first type includes a single hidden layer
(the number of neurons is set to: 100, 500, 1000, 10000,
or 15000). The second type includes two hidden layers, the
number of neurons in the first hidden layer is set to: 200,
400, 600, or 800, and the number of neurons in the second
hidden layer is set to: 4000, 8000, 12000, and 16000. For
each architecture, 10 runs are evaluated.

III. DATABASES

Four databases of handwritten digits have been chosen
for the analysis of the performance. The first database CVL
contain images of ten Arabic numerals (Latin script). The
next three databases contain images of digits in three Indian
scripts: Bangla, Devnagari, and Oriya. Samples of digits
are presented in Fig. 2. To facilitate the comparisons with
other methods, the images were normalized with the same

TABLE I
CHARACTERISTICS OF THE HANDWRITTEN DATABASES (DIGITS, 10

CLASSES).

Database CVL Devnagari Oriya Bangla
Training

# samples 14000 18783 4970 19392
# per class 1400 1878± 15 497± 3 360

size (x) 47± 12 65± 16 73± 25 58± 16
size (y) 104± 30 62± 19 73± 26 54± 16

Test
# samples 21780 3763 1000 4000
# per class 2178 376± 3 100 400

size (x) 50± 12 66± 17 75± 25 59± 17
size (y) 106± 31 62± 20 74± 26 54± 18

normalization technique. The images were preprocessed as
in the original images in the MNIST database. Because
some databases (e.g. Indian digits) have very noisy images
and/or images in color, images were first binarized with the
Otsu method at their original size [25], then their size were
normalized to fit in a 20x20 pixel box while preserving their
aspect ratio. The resulting images contain 8 bit gray levels
due to the bicubic interpolation for resizing the images. All
the images were centered in a 28x28 pixel box field by
computing the center of mass of the pixels, and translating
the gravity center of the image to the center of the 28x28
field. The number of classes, the total number of images in
the database, and the number of images per class, for both
training and the test are given in Table I.

(a) CVL

(b) Bangla

(c) Devnagari

(d) Oriya

Fig. 2. Representative handwritten digits for the different databases (from
zero to nine).

The Computer Vision Lab of the Vienna University of
Technology, Austria (CVL) database was used during the
International Conference on Document Analysis and Recog-
nition (ICDAR) 2013 Competition on Handwritten Digit
Recognition [26]. The images in the CVL database are



in RGB color, not size-normalized, and in original size
with a resolution of 300 dpi. For this competition, the best
methods were based on Finite Impulse Response Multilayer
Perceptron (Fir-MLP) partially and fully connected with four
layers, and by including affine deformations of the input
patterns [27]. In this neural network, the static weights
(synapses) were replaced with finite impulse response filters.
With one Fir-MLP and an ensemble of four Fir-MLPs, the
error rates were 3.28% and 2.26%, respectively.

The databases of Indian digits were created at the Indian
Statistical Institute, Kolkata, India [28], [29], [30]. Bangla
is the fourth most popular script in the world; it is used
by more than 200 million people [31], [32]. In the Bangla
database, class-specific feature polynomial classifier with
input features [33] based on 8 gradient direction histogram
with 5x5 sampling provided an accuracy of 99.40% [34].
The second database corresponds to Devnagari digits, which
is part of the Brahmic family of scripts of India, Nepal, Tibet,
and South-East Asia [35]. The third database contains Oriya
digits [36]. The Oriya script is one of the many descendants
of the Brahmi script of ancient India. In [36], Bhowmik et
al. obtain an accuracy of 90.50% by using Hidden Markov
Models.

IV. RESULTS

The performance for the different architectures is pre-
sented in Tables II, III, IV, and V. The tables indicate the
number of neurons for the first and second hidden layer (if
there is only a single hidden layer, the value for the second
hidden layer is 0), the time (in seconds) for training (Ttrain)
and testing (Ttest), the mean, the standard deviation, the
maximum, and minimum accuracy across 10 repetitions (in
%).

For the CVL database, the best performance, 95.85%,
is obtained with 400 and 16000 neurons for the first
(L1) and second (L2) hidden layers, respectively. For the
Bangla database, it is 97.80% for (600,16000); 94.54% with
(400,12000) for Devnagari, and 96.13% with (200,16000)
for Oriya. The performance that is obtained for the four
databases is relatively similar with two hidden layers. How-
ever, with only a single hidden layer, the number of trans-
formations has a significant impact on the accuracy. With
more than 10000 transformations for the hidden layer, while
there is slight improvement in the accuracy, the performance
reaches a plateau.

The performance for the different architectures, by using
the mean, median, and max rule are presented in Table VI.
Pairwise comparisons between the mean accuracy across
the different runs and the three combination rules with a
Wilcoxon signed rank have been evaluated. A significant
improvement is achieved by using the mean, the median,
or the max rule. It shows that it is possible to exploit
complementarities existing between different runs. Table VII
presents the comparison with other methods, k-nearest neigh-
bor (k-nn), using k = 3 and the Euclidean distance, and
the image distortion model distance (IDMD) using pixels as
inputs [37], [38], [39]. The accuracy with the multi-layer

TABLE II
PERFORMANCE WITH DIFFERENT ARCHITECTURES (CVL).

Time Accuracy
(L1, L2) Ttrain Ttest Mean±SD Max Min
(100,0) 1.85 0.54 75.93± 0.54 76.62 74.98
(500,0) 3.04 0.75 83.19± 0.23 83.53 82.88

(1000,0) 5.13 1.00 87.49± 0.21 87.80 87.04
(10000,0) 9.85 1.81 95.46± 0.07 95.59 95.38
(15000,0) 31.41 3.14 95.69± 0.10 95.85 95.52

(200,4000) 8.98 1.37 95.39± 0.10 95.59 95.28
(400,4000) 9.85 1.81 95.46± 0.07 95.59 95.38
(600,4000) 11.52 2.34 95.49± 0.07 95.60 95.35
(800,4000) 13.57 2.91 95.41± 0.15 95.64 95.19
(200,8000) 30.80 2.38 95.62± 0.08 95.73 95.50
(400,8000) 31.41 3.14 95.69± 0.10 95.85 95.52
(600,8000) 33.85 4.06 95.54± 0.06 95.68 95.48
(800,8000) 37.35 4.89 95.43± 0.08 95.57 95.35

(200,12000) 69.91 3.90 95.62± 0.11 95.75 95.44
(400,12000) 71.35 4.76 95.83± 0.05 95.91 95.76
(600,12000) 73.92 5.77 95.68± 0.05 95.78 95.60
(800,12000) 77.19 7.00 95.55± 0.07 95.69 95.44
(200,16000) 129.62 4.91 95.52± 0.08 95.62 95.37
(400,16000) 127.63 5.73 95.85± 0.07 95.93 95.67
(600,16000) 130.75 7.36 95.76± 0.05 95.85 95.70
(800,16000) 136.10 8.79 95.68± 0.06 95.81 95.62

TABLE III
PERFORMANCE WITH DIFFERENT ARCHITECTURES (BANGLA).

Time Accuracy
(L1, L2) Ttrain Ttest Mean±SD Max Min
(100,0) 2.49 0.10 80.30± 0.41 81.28 79.85
(500,0) 4.01 0.15 86.54± 0.26 87.13 86.23

(1000,0) 6.64 0.19 90.17± 0.31 90.53 89.60
(10000,0) 13.14 0.37 97.23± 0.14 97.43 97.00
(15000,0) 42.47 0.63 97.64± 0.09 97.78 97.50

(200,4000) 11.76 0.26 97.08± 0.13 97.38 96.95
(400,4000) 13.14 0.37 97.23± 0.14 97.43 97.00
(600,4000) 15.10 0.45 97.31± 0.16 97.63 97.10
(800,4000) 17.45 0.56 97.24± 0.16 97.50 97.00
(200,8000) 40.33 0.46 97.33± 0.13 97.53 97.20
(400,8000) 42.47 0.63 97.64± 0.09 97.78 97.50
(600,8000) 43.56 0.76 97.67± 0.11 97.83 97.48
(800,8000) 47.52 0.93 97.59± 0.14 97.80 97.40

(200,12000) 89.95 0.65 97.26± 0.14 97.45 97.00
(400,12000) 90.13 0.86 97.73± 0.10 97.90 97.60
(600,12000) 92.43 1.09 97.80± 0.11 97.93 97.55
(800,12000) 97.84 1.34 97.79± 0.07 97.88 97.68
(200,16000) 159.85 0.83 97.16± 0.08 97.28 97.03
(400,16000) 158.92 1.07 97.71± 0.08 97.83 97.60
(600,16000) 165.28 1.40 97.80± 0.06 97.85 97.70
(800,16000) 170.25 1.69 97.80± 0.08 97.90 97.68

RVFL/ELM is relatively similar, while the processing time
is significantly reduced for both training and the test.

V. COMPUTATIONAL PERFORMANCE

The evaluation was conducted on a desktop with a
Intel R©CoreTMi7-3770 running Matlab 2015b with 16GB of
memory. The median time for training and testing for the
different architecture is presented in Tables II, III, IV, and
V. It shows it is possible to train the classifiers with two
hidden layers and a large number of hidden neurons below
3 minutes, and the testing stage is also fast.



TABLE VI
PERFORMANCE WITH DIFFERENT THE MULTI-CLASSIFIER STRATEGY USING MEAN AND MAX FUNCTIONS TO COMBINE THE DECISION SCORES.

CVL Bangla Devnagari Oriya
(L1, L2) Mean Med Max Mean Med Max Mean Med Max Mean Med Max
(100,0) 95.68 95.65 95.69 97.25 97.28 97.23 98.43 98.41 98.41 96.20 96.20 96.00
(500,0) 95.86 95.81 95.83 97.48 97.43 97.40 98.64 98.62 98.56 96.20 96.30 96.40

(1000,0) 95.83 95.81 95.86 97.38 97.43 97.45 98.54 98.59 98.56 96.40 96.30 96.20
(5000,0) 95.71 95.69 95.68 97.35 97.35 97.43 98.49 98.54 98.46 96.20 96.30 96.30
(10000,0) 95.98 95.92 95.83 97.43 97.40 97.53 98.49 98.46 98.46 95.80 95.70 95.80
(15000,0) 95.97 95.97 95.88 97.85 97.83 97.80 98.62 98.54 98.56 95.90 95.80 95.80

(200, 4000) 95.68 95.65 95.69 97.25 97.28 97.23 98.43 98.41 98.41 96.20 96.20 96.00
(400, 4000) 95.98 95.92 95.83 97.43 97.40 97.53 98.49 98.46 98.46 95.80 95.70 95.80
(600, 4000) 95.94 95.92 95.93 97.45 97.48 97.65 98.51 98.46 98.51 95.60 95.50 95.50
(800, 4000) 95.86 95.79 95.77 97.45 97.53 97.48 98.51 98.59 98.46 95.90 96.20 95.40
(200, 8000) 95.86 95.81 95.83 97.48 97.43 97.40 98.64 98.62 98.56 96.20 96.30 96.40
(400, 8000) 95.97 95.97 95.88 97.85 97.83 97.80 98.62 98.54 98.56 95.90 95.80 95.80
(600, 8000) 95.91 95.95 95.81 97.83 97.78 97.83 98.51 98.54 98.51 95.80 95.70 95.80
(800, 8000) 95.91 95.87 95.95 97.93 97.90 97.98 98.43 98.46 98.56 95.60 95.60 95.60
(200,12000) 95.83 95.81 95.86 97.38 97.43 97.45 98.54 98.59 98.56 96.40 96.30 96.20
(400,12000) 96.01 96.02 95.92 97.83 97.85 97.80 98.56 98.54 98.64 95.80 95.80 95.80
(600,12000) 95.86 95.87 95.83 97.80 97.88 97.78 98.46 98.46 98.49 95.80 95.70 95.70
(800,12000) 95.72 95.73 95.77 97.95 97.93 98.03 98.49 98.51 98.41 95.60 95.70 95.40
(200,16000) 95.71 95.69 95.68 97.35 97.35 97.43 98.49 98.54 98.46 96.20 96.30 96.30
(400,16000) 95.97 95.93 95.97 97.83 97.78 97.78 98.64 98.56 98.64 95.90 95.80 95.90
(600,16000) 95.86 95.85 95.83 97.80 97.85 97.78 98.54 98.54 98.54 95.90 95.90 95.70
(800,16000) 95.81 95.80 95.79 97.78 97.78 97.85 98.54 98.54 98.41 95.60 95.60 95.60

TABLE IV
PERFORMANCE WITH DIFFERENT ARCHITECTURES (DEVNAGARI).

Time Accuracy
(L1, L2) Ttrain Ttest Mean±SD Max Min
(100,0) 2.39 0.10 80.90± 0.39 81.56 80.33
(500,0) 3.87 0.14 86.73± 0.43 87.51 86.05

(1000, 0) 6.48 0.18 90.51± 0.33 91.12 90.06
(10000,0) 13.13 0.34 98.32± 0.06 98.38 98.22
(15000,0) 41.14 0.60 98.45± 0.13 98.67 98.22
(200,4000) 11.61 0.27 98.29± 0.08 98.38 98.17
(400,4000) 13.13 0.34 98.32± 0.06 98.38 98.22
(600,4000) 14.97 0.42 98.33± 0.10 98.46 98.17
(800,4000) 16.94 0.53 98.28± 0.04 98.35 98.25
(200,8000) 39.27 0.44 98.49± 0.06 98.54 98.38
(400,8000) 41.14 0.60 98.45± 0.13 98.67 98.22
(600,8000) 43.05 0.73 98.43± 0.09 98.56 98.33
(800,8000) 46.13 0.88 98.40± 0.14 98.59 98.22

(200,12000) 86.50 0.69 98.46± 0.08 98.56 98.33
(400,12000) 88.51 0.80 98.54± 0.06 98.64 98.46
(600,12000) 90.54 1.06 98.45± 0.06 98.51 98.33
(800,12000) 94.78 1.25 98.39± 0.11 98.56 98.25
(200,16000) 152.22 0.87 98.41± 0.06 98.49 98.35
(400,16000) 156.59 1.03 98.53± 0.07 98.62 98.43
(600,16000) 160.60 1.29 98.50± 0.08 98.64 98.38
(800,16000) 166.74 1.61 98.44± 0.08 98.56 98.35

VI. DISCUSSION AND CONCLUSION

The revival of Random Vector Functional-Link networks
through its different variations and acronyms shows the key
importance of the classifier architecture, and how researchers
from previous decades established robust frameworks that
lacked the power of present day computers to be fully ex-
ploited. The number of layers and the number of projections
in each layer (e.g. the number of neurons) have a major
impact on the accuracy. We have shown that it is possible
to exploit different runs and improve the performance by
combining the classifiers outputs. As the classifiers are fast
to train, it is possible to combine a large number of decisions

TABLE V
PERFORMANCE WITH DIFFERENT ARCHITECTURES (ORIYA).

Time Accuracy
(L1, L2) Ttrain Ttest Mean±SD Max Min
(100,0) 1.00 0.03 83.88± 0.61 84.70 82.80
(500,0) 1.48 0.04 89.20± 0.61 90.00 88.40

(1000,0) 2.49 0.05 91.60± 0.52 92.90 91.10
(10000,0) 4.75 0.10 95.34± 0.41 96.00 94.90
(15000,0) 16.97 0.17 95.83± 0.22 96.30 95.60

(200,4000) 4.08 0.07 95.86± 0.23 96.20 95.60
(400,4000) 4.75 0.10 95.34± 0.41 96.00 94.90
(600,4000) 5.31 0.13 95.14± 0.39 95.80 94.50
(800,4000) 6.29 0.15 94.93± 0.37 95.50 94.40
(200,8000) 15.44 0.12 96.04± 0.28 96.50 95.40
(400,8000) 16.97 0.17 95.83± 0.22 96.30 95.60
(600,8000) 17.42 0.22 95.70± 0.24 96.20 95.30
(800,8000) 18.78 0.25 95.49± 0.28 95.80 94.80

(200,12000) 39.33 0.18 96.11± 0.28 96.30 95.60
(400,12000) 41.27 0.25 95.91± 0.20 96.10 95.50
(600,12000) 40.92 0.30 95.73± 0.22 96.10 95.40
(800,12000) 41.94 0.36 95.65± 0.19 95.80 95.30
(200,16000) 74.41 0.27 96.13± 0.09 96.30 96.00
(400,16000) 75.02 0.31 95.83± 0.19 96.20 95.50
(600,16000) 80.93 0.41 95.84± 0.21 96.30 95.50
(800,16000) 78.57 0.45 95.71± 0.13 95.90 95.50

TABLE VII
COMPARISON OF THE ACCURACY (IN %) WITH OTHER METHODS.

Method CVL Bangla Devnagari Oriya
k-nn 89.33 93.70 96.25 92.00

IDMD 96.13 97.80 99.18 96.50
This paper 96.02 97.98 98.64 96.40

and increase the mean accuracy.
This type of network has several benefits, first it provides

a good accuracy that is close to the state of the art, second it
provides for a predefined architecture the minimum accuracy
that can be obtained without learning the weights of the
hidden layer(s) (e.g. by using backpropagation). RVFL/ELM



models allow to properly evaluate the impact of learning.
Because the architecture has such an effect on the accuracy,
learning the architecture, i.e. setting the number of layers and
neurons, seems to be more useful than learning the weights
themselves if the number of available data is large enough.

In this paper, we have evaluated the performance of
multi-layer RVFL/ELM architectures on four handwritten
databases. The results confirm the interest of this type of
approach for both the accuracy and the processing time.
This type of classifier can be useful in applications with
large labeled instances where a classifier has to be deployed
rapidly. Further work will include convolutional RVFL/ELM
models to evaluate the choice of the pooling and convolution
techniques.
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