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A Multi-modal Approach to Continuous Material Identification through
Tactile Sensing

A. Gómez Eguı́luz1 and I. Rañó1 and S.A. Coleman1 and T.M. McGinnity2

Abstract— Tactile sensing has recently been used in robotics
for object identification, grasping, and material recognition.
Most material recognition approaches use vibration information
from a tactile exploration, typically above one second long,
to identify the material. This work proposes a tactile multi-
modal (vibration and thermal) material identification approach
based on recursive Bayesian estimation. Through the frequency
response of the vibration induced by the material and thermal
features, like an estimate of the thermal power loss of the finger,
we show that it is possible to identify materials in less than half
a second. Moreover, a comparison between the use of vibration
only and multi-modal identification shows that both recognition
time and classification errors are reduced by adding thermal
information.

I. INTRODUCTION

Tactile sensing has recently attracted significant research
interest in robotics, as a powerful way of enhancing manip-
ulation and identification. Touch lies at the core of many
human skills like grasping, material identification, and tem-
perature detection, among others. Similarly, efforts to endow
robots with tactile sensing have led to successful applications
of grasping [1] and palpation [2] based object classification,
object state identification [3], grasping improvement and
adaptation [4] [5], and material identification [6]–[18]. This
work specifically focuses on sequential material identifi-
cation using multi-modal – vibration and heat – sensing.
While most of the state of the art approaches to material
identification through tactile sensing use only vibration sig-
nals, induced when the finger slides over the material, our
experimental results show that the recognition accuracy can
be enhanced using thermal information. Moreover, because
our approach relies on recursive Bayesian estimation using
short windows of readings, a faster material identification –
compared to other methods – is achieved. Thermal informa-
tion also contributes to a faster material identification.

Recent research has tackled the material identification
problem using vibration information obtained from different
types of tactile sensors. Pioneering work in tactile surface
recognition [6] used a custom built sensor with a microphone
to detect vibration signals induced by textured surfaces.
The authors defined a set of features to characterise the
vibration signal (modal frequency and power, and average
vibration amplitude). Then, they compared the classification
performance using the k-Nearest Neighbour(kNN) and the
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K-means algorithms with the features sets and Fast Fourier
Transform (FFT) coefficients, projected through Principal
Component Analysis (PCA), as inputs. Their work estab-
lished a methodology to classify textures, but it was not
evaluated using real materials. Another material classification
approach used an accelerometer based vibrotactile sensor [7].
Change in the acceleration vector (jerk) was used to create
spectrotemporal histograms as features for classification.
Support Vector Machine (SVM) and kNN were used to
classify 20 materials with the features generated from several
vibration readings for each material. The work in [8] presents
a tactile sensor capable of measuring the strain applied on
the finger surface. After preprocessing the input signal, using
segmentation, average removal and band-pass filtering, the
authors extract a set of features consisting of five peaks on
the smoothed FFT. Combining the peak locations with the
average strain readings, the authors compare different ma-
chine learning approaches that can successfully differentiate
between nine materials.

In another comparison of machine learning algorithms for
vibration based material identification [9], two kernel meth-
ods (SVM and Regularized Least Square), and one neural
network were used to classify pairs of materials based on the
raw strain measurements of the sensor. Although the authors
concluded that the SVM showed the best trade-off between
classification accuracy and computational complexity, the
raw sensor signals provided poor discrimination performance
compared with other works. In [10] a tactile micro-sensor,
which can differentiate surfaces with spatial periods within a
40 µm difference, is presented and used to classify textiles.
A robot finger slid across the materials for two seconds,
and features obtained using wavelet transforms were used
in a kNN classifier. Through a set of temporal domain
features computed from a one second signal, the work in [11]
presents a SVM based classification of material texture. The
sensor consists of a 3D accelerometer, and the feature vector
components are whitened individually before feeding the
classifier. Another accelerometer based texture recognition
system is presented in [12], where the authors classify seven
different fabrics based on a mixture of temporal (acceleration
variance) and frequency (power spectra) features. As the
textures cannot be distinguished using these features, the
authors train a neural network using the FFT coefficients
over a given frequency range. Recently, [13] explored real
time classification of eight materials using a soft three axis
tactile sensor. The vibration mean value and the Frobenius
norm of its covariance matrix were fed into a cascade of
binary SVMs, achieving 89% identification accuracy.



All these pioneering works are based on custom made
sensors to detect the vibration induced by a surface texture.
The development of the SynTouch BioTAC fingertip which
provides multiple types of tactile information opened a win-
dow of opportunity to investigate multi-modal surface recog-
nition. A series of works [14] [15] [16], implementing human
based Bayesian exploratory movements, classify materials
using the BioTAC vibration, impedance, and temperature
sensors. The authors identify surfaces using a combination of
features measuring vibration and the friction force between
the materials and the finger. If the identification certainty
was not high enough the authors introduced active sensing
using Bayesian inference to perform a different exploratory
movement. Another multi-modal approach to material identi-
fication is presented in [17] based on readings of temperature
and vibration projected through PCA. The authors show that
an artificial neural network outperforms humans in similar
experimental conditions. The heat transfer from a custom
tactile sensor to an object is used for material identification
in [18]. The authors showed that, although changes in the ex-
periment set-up (i.e. initial conditions, ambient temperature
and contact duration) have an impact on the performance, a
multi-class SVM classifies 11 materials with 98% accuracy
in 1.5 seconds of contact.

All these works achieve good material identification per-
formance, however most of them do not exploit multi-modal
tactile information. Moreover, they require long sequential
readings, typically one second. The contribution of this work
is two-fold. First, we use a recursive estimation approach
with short tactile readings, which allows fast, under 0.5 secs
on average, and very accurate material identification using
vibration signals. Second, we show that including temper-
ature information significantly reduces the time needed to
identify the correct material and the number of classification
errors. Our approach generates sequences of estimates of the
posterior material probabilities instead of a single decision,
and the material with the highest probability is considered
the right one. The rest of the paper is organised as follows.
Section II presents the methodology used for the proposed
online material identification approach, including the feature
generation from the raw data, probabilistic modelling, and
the recursive classification technique. Experimental results
comparing vibration and multi-modal material identification
approaches are presented in Section III. Section IV concludes
the paper and highlights future research steps.

II. MULTI-MODAL RECURSIVE MATERIAL
IDENTIFICATION

We use the SynTouch BioTAC [19] finger tip as our exper-
imental platform. It provides a variety of sensing modalities,
pressure, vibration, temperature, heat flux and finger skin
deformation, with different frequencies. The finger consists
of a rigid core where the sensors are located, covered by
a wrinkled rubber skin. The core has a heating system and
a thermistor to read the temperature of the finger. A gel
separates the core from the skin. An array of impedance
sensors at the core measure the deformation of the skin

in contact with the materials. The rest of this section will
present datails on how the vibration and thermal information
is processed in our recursive Bayesian estimation framework.
In a nutshell, our approach processes the vibration and
thermal flux (together with the impedance) signals to obtain
sets of features modelled as mixtures of Gaussians for each
material. The recursive Bayesian estimation algorithm uses
these models for continuous identification of the probability
of each material.

A. Vibration Signal Processing

When the BioTAC slides over a surface, the interaction
with the rubber wrinkles produces vibration in the skin
which is transferred to the fluid, and measured by the
pressure sensor. This signal is low pass filtered to generate a
pressure measurement, and band pass filtered to generate a
vibration signal. The vibration induced by the interaction of
the wrinkled rubber skin and the texture of the materials
can be seen as a combination of oscillatory signals with
the frequency spectrum dependent on the material. Instead
of defining features in the frequency or temporal domains,
we directly use the Fourier Transform (FT) of the vibration
signal to characterise the vibration response induced by the
material texture. Specifically, the Fast Fourier Transform
(FFT) algorithm was used to convert the vibration signal,
ρ(t) into the frequency domain ρ(ω). According to the exist-
ing literature [6] good discrimination results are obtained by
restricting the FFT to a range of frequencies between 2 Hz
and 500 Hz. It is worth stating that we compute the FFT
for small (0.25 secs) non-overlapping windows of the signal
of duration ∆t , in order to perform online identification.

The vibration FFT ρ(w) is a high dimensional vector (di-
mension d∆t) of complex numbers where d∆t depends on the
sampling period and the selected time interval ∆t. To obtain
a feature vector ρ̄ ∈ <d with a lower dimension, Principal
Component Analysis (PCA) was applied to ρ(ω), where
ρ̄ denotes the projection of ρ(ω) and d � d∆t. Because
ρ(ω) is complex, yet the relevant information to classify
the materials is in its modulus, the principal components
were obtained from the modulus of the FFT. We observed,
however, that better discrimination results were obtained if
the centering process was performed in the complex FFT
space, i.e. we applied PCA to the modulus upon centering
with the complex mean.

B. Thermal features

The BioTAC sensor has a heating device and measures
the temperature at the core and the heat flux leaving the
finger. The thermal energy lost depends on the temperature
difference between the finger and the external material, the
contact area, and the thermal conductivity of the material. In
fact, the thermal energy lost per unit of time (thermal power
∂E
∂T ) is the integral of the heat flux over the contact surface:

∂E

∂T
=

∮

S

~φ · ~dS (1)



where ~φ is the heat flux, and the integral is computed
on the contact area S. As in our experiments the BioTAC is
warmer than the material, the flux ~φ always leaves the finger,
and its modulus, measured by the finger, increases with the
temperature difference and the thermal conductivity of the
material. Assuming that most of the energy is lost because of
the temperature difference with the material (friction forces
are too weak to generate enough thermal energy and the
energy lost through the air is small), the thermal flux will be
directed towards the surface normal. Moreover, the contact
area is typically small, so we can approximate the power
loss as the product of the average flux modulus φ̄ by the
contact area. If we assume all objects to be identified are
at the same (room) temperature, the temperature difference
can be measured as the temperature at the BioTAC core, and
therefore φ̄A

T is a measure of the thermal conductivity of the
material, where A is the contact area, and T is the finger
core temperature.

To compute the contact area we use the 19 electrodes
placed in the core under the BioTAC’s skin. The electrodes
measure impedance which is related to the distance between
the core and the rubber skin at their corresponding locations.
Upon contact, the skin deformation makes the readings in the
closest electrodes decrease, and, therefore, electrodes with a
negative value w.r.t. their resting level indicate contact. We
approximate the contact area of each electrode i as a circle
of radius ri equal to half the distance between the electrode
and its nearest neighbour. Hence, we compute the contact
area of the fingertip as a weighted average of these areas:

A =
∑

i

λiπr
2
i (2)

where λi ∈ [0, 1] is an scale factor that depends on the
value measured by each electrode. The scaling factor λi
is a piece-wise linear function of the average impedance
value ēi of each electrode during the time interval ∆t,
such that at the resting level (or above) λi is zero, and
it increases to 1 for decreasing impedances up to a fixed
minimum threshold em (in our case em = −400), and is 1
for values below that threshold. Besides using the power loss
per unit of temperature, just described, we defined two other
features based on heat flux. We perform a linear regression
of the thermal flux as a function of time in the ∆t interval,
and use the slope and the regression error as additional
features, as we experimentally found they help for material
identification. Therefore, we obtained a three dimensional
heat based feature vector θ for each ∆t time window.

C. Material Recursive Bayesian Estimation

We will denote by M the discrete random variable encod-
ing the N materials to be identified, i.e. {m1,m2, · · · ,mN},
P ∈ <d is the random vector of vibration features (FFT
projected through PCA) and Θ ∈ <3 the vector thermal
features defined in section II-B. We estimate the respective
likelihood functions of the feature vectors for each material,
p(P = ρ̄|M = mj) and p(Θ = θ|M = mj), using

mixtures of Gaussian distributions, i.e. Gaussian Mixture
Models (GMM). The parameters of the GMMs are obtained
using the Expectation-Maximisation (EM) algorithm, and the
number of Gaussians was chosen for each material and each
sensor modality based on the decrease of the likelihood of
the training data, i.e. increasing the number of components
to find the point at which the growth in the likelihood started
to slow down.

At this stage we have models of the likelihood functions
p(ρ̄|mj) and p(θ|mj) for the materials, which would al-
ready allow identification of the materials using a maximum
likelihood (ML) classifier. Given a set of prior material
probabilities p(mj), one could also estimate through the
Bayes rule the posterior material probabilities p(mj |ρ̄, θ),
and classify according to the maximum a posteriori (MAP)
probability. Under the assumption of uninformative priors
p(mj) = 1

N for all j, the classification result of ML and
MAP approaches are identical. However, as already stated,
our aim is to identify materials online without the need to
collect a long sequence of readings. Therefore we will use the
feature vectors ρ̄ and θ to iteratively obtain new probability
posteriors for each material. The material prior p(mj

k+1) at
time step k+1 will simply be the posterior from the previous
iteration p(mj

k|ρ̄k, θk).
When a material is presented to the robot hand for

identification, the initial prior probabilities are distributed
evenly among all materials. We obtain from the BioTAC data
stream the vibration and thermal feature vectors, ρ̄k and θk,
in windows of time ∆t, and update the material probabilities
using:

p(mj
k|ρ̄k, θk) =

p(ρ̄k, θk|mj
k)p(mj

k−1|ρ̄k−1, θk−1)

p(ρ̄k, θk)
(3)

where the normalisation constant p(ρ̄k, θk) can be ob-
tained as:

p(ρ̄k, θk) =
N∑

i

p(ρ̄k, θk|mi
k)p(mi

k−1|ρ̄k−1, θk−1) (4)

and we assume the vibration and thermal features are con-
ditionally independent p(ρ̄k, θk|mj

k) = p(ρ̄k|mj
k)p(θk|mj

k),
with each individual likelihood function given by the corre-
sponding GMM model for material mj .

In each iteration the algorithm updates the posterior prob-
ability p(mj

k|ρ̄k) for all materials, j = 1, · · · , N , and the
material with the highest posterior can be considered to be
the one presented to the robot. Alternatively, a confidence
level could be defined to decide for a material only if the
posterior probability is above some threshold. Instead of
predicting the perceived texture in one episode, the recursive
Bayesian estimation algorithm incrementally updates the
probability estimate of the material. As a baseline to compare
the recognition accuracy of our multi-modal approach, we
first apply the recursive Bayesian estimation procedure to
the vibration information (see section III) using expressions
(3) and (4), without the thermal features θ.



Idx Material Idx Material
1 Synthetic Green fabric 18 Genuine leather
2 Synthetic Pink fabric 1 19 Linen
3 Synthetic Pink fabric 2 20 Mirror
4 Cardboard box 21 Normal paper
5 Cardboard disk 22 Ping pong paddle 1
6 Carpet 23 Ping pong paddle 2
7 Rubber 24 Plastic
8 Baize 25 Plastic dish
9 Can of drink 26 Rough fabric

10 Copper 27 Slate stone
11 Cork 28 Sponge 1
12 100% Cotton 29 Sponge 2
13 Padded envelope 1 30 Leopard fabric 1
14 Padded envelope 2 31 Leopard fabric 2
15 Aluminium 32 Watercolour paper
16 Synthetic leather 33 Wood
17 Floor tiles 34 Peach skin fabric

TABLE I
LIST OF MATERIALS USED IN THE CLASSIFICATION EXPERIMENTS

III. EXPERIMENTAL RESULTS

Our experimental setup consists of a turntable moved by
a step motor through a set of reduction gears. The motor
is controlled by an Arduino board running code to set the
turning speed. The fingertip is attached to a worm drive bar
moved up and down by a second motor also controlled by
the Arduino board. If the bar is driven down, the BioTAC
touches the material on the turn table. To gather the training
and testing data-sets, we first set the speed of the turntable
and moved the fingertip down until it touched the surface.
After a few seconds we collect readings, continuously storing
all the information provided by the BioTAC sensor running
at a sampling rate of 4.4 KHz. This is the bandwidth at
which the sensor provides individual readings, yet readings
for pressure, temperature and impedance, have lower fre-
quencies. For instance the vibration signal has a sampling
frequency of 2.2 KHz, while pressure, absolute temperature,
and thermal flux have frequencies of just 100 Hz.

The materials to be identified were purposely selected
to include different groups (metals, plastic, textiles. . . ) and
to contain similar textures. Table I presents a list of the
materials used in this work, also shown in Figure 1. It
can be seen that the data set contains materials with very
different textures such as cork and a glass mirror, but also
some fabrics and materials which are alike. To increase the
number of materials, some of the fabrics were used from
both sides of the cloth (materials 2 and 3, and materials
30 and 31). We also aimed to differentiate between genuine
and synthetic leather represented by materials 16 and 18,
while materials 13 and 14 were obtained using both sides
of a padded envelope, 13 being the side of the bubbles, i.e.
plastic, and 14 the paper side. Other pairs correspond to both
sides of the same object such as materials 6-7, 22-23 and 28-
29, although their surfaces were clearly different.

A. Vibration based material identification

In our first experiment we classified the 34 different
textures listed in Table I using only vibration information

Fig. 1. Materials used in the experiments

and the approach presented in Section II. The time domain
vibration signal was split into non-overlapping windows
of ∆t = 0.25 seconds, which is therefore the minimum
recognition time, and sets the frame rate for the contin-
uous material classification to 4 Hz. It is worth noting
that, given the sampling rate and the short time interval
selected (0.25 sec), the frequency interval between spectral
components is approximately 4 Hz, that is our real minimum
frequency in the band pass filter. This window corresponds
to a sequence of 550 pressure samples, and upon computing
the FFT and keeping the selected range of frequencies (4−
500 Hz) the resulting number of spectral components was
124. Increasing ∆t would provide a finer FFT approximation
at the cost of reducing the classification frequency. As stated
in Section II-A we reduced the 124 spectral components to
a 16 dimensional space, computing the complex average of
the training data-set for all 34 materials, and projecting their
amplitude vectors through PCA, therefore ρ̄ ∈ <16. The
dimension of the reduced features was chosen to keep 97%
of the total variance of the training data-set.

To evaluate our proposed approach we performed 10-fold
cross validation on 5 minutes of data sequences recorded
for each material. We split the data set into 10 groups of
30 seconds of sequential readings using alternatively 9 of
the groups for training and one for testing. As our approach
classifies the materials sequentially we used two performance
measurements in the test data sequences, namely recognition
errors and recognition time. For each one of the 10-fold
cross-validation procedures, once the projection matrix and
GMMs were obtained, the evaluation was conducted with
the remaining 30 seconds time series for each material.
Assuming uninformative priors and starting from the first
sample the full sequence was processed, and the number
of misclassifications and iterations required to successfully
identify the material was stored. The first ∆t readings at the
beginning of the sequence were then discarded (creating a
shorter test sequence) and the process was repeated until the
sequence was only of length ∆t (i.e. 0.25 seconds). This
process was repeated for all the materials in the 10 testing
sequences, and the average number of iterations required to



identify each material was computed. It was considered that
a material was successfully identified when the maximum
posterior probability p(mj

k|ρ̄k) for that material was the
highest.

As for the missclasification rate, we found that the system
always properly identifies the materials when enough evi-
dence was collected, resulting in a perfect recognition rate.
However, this process can take several iterations, and, at the
end of the testing sequences, the algorithm was sometimes
unable to accumulate enough evidence to properly classify
the textures. This leads to an average error rate of 1.21%
with the errors mainly occurring in the first iteration (i.e.
maximum likelihood classification).

For our second performance measurement, the recognition
time, the number of iterations needed to successfully identify
the material was translated into seconds multiplying by 0.25
(∆t). Table II shows the average recognition times and
standard deviations for each material over the 10-fold cross-
validation process. As it can be seen that the vibration based
recursive Bayesian estimation identifies materials within less
than 0.5 seconds, and the total average time across materials
(last column of the table) is approximately 1.5 iterations.

Material 1 2 3 4 5 6 7
mean (secs) 0.39 0.35 0.35 0.43 0.39 0.3 0.33
std.dev. (secs) 0.21 0.19 0.19 0.28 0.25 0.12 0.14
Material 8 9 10 11 12 13 14
mean (secs) 0.44 0.34 0.3 0.3 0.35 0.33 0.34
std.dev. (secs) 0.26 0.16 0.2 0.11 0.18 0.16 0.17
Material 15 16 17 18 19 20 21
mean (secs) 0.3 0.44 0.46 0.32 0.49 0.29 0.39
std.dev. (secs) 0.16 0.25 0.34 0.14 0.35 0.11 0.25
Material 22 23 24 25 26 27 28
mean (secs) 0.38 0.36 0.38 0.38 0.27 0.42 0.29
std.dev (secs) 0.22 0.19 0.22 0.21 0.07 0.25 0.13
Material 29 30 31 32 33 34 Avg.
mean (secs) 0.32 0.27 0.27 0.46 0.52 0.4 0.36
std.dev (secs) 0.14 0.08 0.08 0.3 0.34 0.26 0.2

TABLE II
AVERAGE TIME NEEDED FOR MATERIAL CLASSIFICATION USING

10-FOLD CROSS VALIDATION

Figure 2 shows an example of the vibration based recursive
estimation during 12 iterations (3 seconds) of test data for
material 12 (cotton). The circle corresponds to the posterior
probability of the correct material, the square corresponds to
the combined probability of all other materials (i.e. excluding
cotton), and the diamond corresponds to the second most
likely material. The figure shows that correct identification
occurs after four iterations (1 second). During the first two
iterations there is not clear certainty on the material, in the
third the posterior of material 12 is rather low. However, after
the fourth iteration the classification is correct.

B. Improving recognition through thermal features

The results presented in Section III-A are our baseline to
compare the multi-modal tactile approach to material identi-
fication. Therefore, in this section, we perform an identical
evaluation procedure including the vibration and thermal
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Fig. 2. Iterative estimation of material 12 using vibration

Material 1 2 3 4 5 6 7
mean (secs) 0.28 0.28 0.29 0.28 0.31 0.26 0.27
std.dev. (secs) 0.08 0.1 0.11 0.1 0.14 0.06 0.08
Material 8 9 10 11 12 13 14
mean (secs) 0.33 0.32 0.26 0.25 0.28 0.29 0.26
std.dev. (secs) 0.18 0.17 0.03 0.02 0.09 0.13 0.06
Material 15 16 17 18 19 20 21
mean (secs) 0.25 0.38 0.32 0.30 0.30 0.26 0.26
std.dev. (secs) 0.01 0.25 0.17 0.14 0.14 0.5 0.04
Material 22 23 24 25 26 27 28
mean (secs) 0.27 0.29 0.27 0.31 0.25 0.32 0.25
std.dev (secs) 0.07 0.11 0.07 0.14 0.01 0.17 0.01
Material 29 30 31 32 33 34 Avg.
mean (secs) 0.27 0.26 0.25 0.29 0.30 0.26 0.28
std.dev (secs) 0.07 0.06 0.01 0.13 0.12 0.06 0.09

TABLE III
TEMPERATURE FOR RECOGNITION IMPROVEMENT. AVERAGE TIME

NEEDED USING 10-FOLD CROSS VALIDATION

features (θk) described in section II-B. As already stated,
the sampling frequency of the thermal flux, temperature, and
impedance sensors, is lower than the vibration sampling, and
our ∆t window corresponds to 25 samples of each of these
signals. To estimate the thermal power loss we averaged
the heat flux and impedance readings during the measuring
interval, while the heat flux slope and error are computed
with all the samples. The number of Gaussians in the mixture
model for the thermal features was typically 2, except for
materials 4, 8, 12 and 23 which we estimated as 3 using the
changes in the training data likelihood.

Our experiments showed that including thermal informa-
tion reduces the average errors on the material classification
with respect to vibration only classification. Specifically, the
number of misclassification samples measured as explained
in Section III-A becomes 1.02%, 15.6% reduction in the
classification errors, w.r.t the vibration only classification
described in the previous section. Table III shows the average
and standard deviation of the classification time using the
multi-modal approach. Both, the overall average time and the
standard deviation are reduced (cf. Table II) which means the
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Fig. 3. Multi-modal iterative estimation of material 12.

recognition occurs faster (22% improvement on the average),
but it is also more stable. Since the average recognition
time is now 0.28 seconds and the recognition period is
0.25 seconds there is not much room for improvement,
which actually means almost all of the materials are now
identified in one step. While for some materials including
thermal information slightly improves the recognition time
(e.g. materials 30/31), in most of the cases the improvement
in time is above 10%, with material 33 (wood) experiencing
a time recognition improvement of over 40%.

Figure 3 shows the evolution of the posterior probabilities
for the recognition of material 12 for the same test sequence
shown in Figure 2. As it can be seen (cf. Figure 2) including
thermal information makes the identification correct from the
first iteration on, reducing in this case the identification time
from 1 second to 0.25 seconds.

IV. CONCLUSIONS AND FUTURE WORK

This paper presents a multi-modal tactile based continu-
ous material identification approach. While state of the art
approaches to material identification mostly rely on vibration
information, we show that including thermal features reduces
the material classification errors. Moreover, standard tactile
identification techniques typically require a sequence of
at least one second to classify materials. Using recursive
Bayesian estimation a robot endowed with tactile sensors
can identify materials in an average of 0.28 seconds with
a very small deviation from that time lapse. This detection
speed is again due to the use of multi-modal information.
Hence thermal sensing not only reduces the number of errors
but also enables a faster identification than a vibration only
approach. We also eliminated the need for one or several
long exploratory movements for surface identification found
in the related literature.

Including thermal information brings the average material
identification time very close to the used window size. Faster
identification could be achieved by reducing the size of the
window, yet the selection of ∆t = 0.25 was empirically
found to provide an excellent time-recognition trade-off.

Therefore, shorter time will possibly imply worse accuracy.
Our future work will include other sensing modalities, specif-
ically vision, to enhance material recognition, for instance,
generating visual texture based priors. Tactile information
could also generate priors for the visual recognition of
objects, and, in general, these two sensing modalities could
be used together in a continuous object identification system
with joint visual-tactile object models.
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