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Introduction: Duchenne muscular dystrophy (DMD), one of the most common

and lethal genetic disorders, is caused by mutations of the dystrophin gene.

Removal of an exon or of multiple exons using antisense molecules has

been demonstrated to allow synthesis of truncated ‘Becker muscular

dystrophy-like’ dystrophin.

Areas covered: Approximately 15% of DMD cases are caused by a nonsense

mutation. Although patient databases have previously been surveyed for

applicability to each deletion mutation pattern, this is not so for nonsense

mutations. Here, we examine the world-wide database containing notations

for more than 1200 patients with nonsense mutations. Approximately 47%

of nonsense mutations can be potentially treated with single exon skipping,

rising to 90% with double exon skipping, but to reach this proportion

requires the development of exon skipping molecules targeting some 68 of

dystrophin’s 79 exons, with patient numbers spread thinly across those exons.

In this review, we discuss progress and remaining hurdles in exon skipping

and an alternative strategy, stop-codon readthrough.

Expert opinion: Antisense-mediated exon skipping therapy is targeted highly

at the individual patient and is a clear example of personalized medicine. An

efficient regulatory path for drug approval will be a key to success.

Keywords: antisense oligonucleotides, Duchenne muscular dystrophy (DMD), dystrophin,

exon skipping, morpholinos, personalized medicine, stop-codon readthrough, translational

research
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1. Introduction

Duchenne muscular dystrophy (DMD) is one of the most common and devastating
neuromuscular diseases, affecting 1 in 3500 boys independently of ethnic and geo-
graphic origins [1]. DMD and its milder form, Becker muscular dystrophy (BMD)
are X-linked recessive genetic disorders arising from mutations in the dystrophin
(DMD) gene, one of the longer known human genes, having 79 exons distributed
over 2.3 million base pairs of the X chromosome [2]. Since dystrophin was first identi-
fied in 1987, many potential therapies including transplantation of stem cells, virus
vector-mediated gene therapies and drug therapies such as corticosteroids or myostatin
inhibitors have emerged [3-6]. Most of these studies have reached clinical trials, but
degrees of success vary considerably. Hurdles include the large size of the DMD
cDNA (14 kb), inefficient transduction of mature myofibers and problems associated
with immunogenicity [7-10]. As a result, clinical progress in gene therapy and cell
transplantation has been slow. In contrast, approaches to restore dystrophin
protein production from the patient’s own mutated dystrophin transcript, such as
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antisense-mediated exon skipping therapy and stop-codon
read-through drugs, may offer more rapid success [11]. In this
review, we discuss progress and remaining hurdles in exon
skipping strategy, in particular focusing on nonsense mutations.

2. Exon skipping: a promising therapeutic
tool for DMD

Antisense-mediated exon skipping therapy for DMD was first
described by Pramono and colleagues in patient-derived
lymphoblast cells in vitro [12]. An intravenous injection of an
antisense oligonucleotide created an in-frame dystrophin
mRNA from an out-of-frame DMD mutation in a 10-year-
old DMD patient [13]. The basic purpose of exon skipping
therapy is to transform severe DMD into its milder counter-
part, BMD, by interfering with splicing events using com-
pounds such as antisense oligos (AOs) [14]. The diversity of
clinical outcomes that can be categorized as DMD, BMD
and forms of intermediate severity (intermediate muscular
dystrophy) is explained in large part by the reading frame
rule [15]. This rule results from the alignment or misalignment
of exon boundaries with codon triplets. A mutation, such as
the deletion of a given exon or exons, may change the open
reading frame downstream of the mutation, leading to a pre-
mature stop codon and nonsense-mediated decay of the RNA
transcript -- this mostly results in DMD. Conversely, the
mutation may leave the open reading frame unchanged,
allowing the translation of a truncated protein that, due to
the redundancy of dystrophin protein structure in regions
encoded by the more commonly mutated portions of the
gene, usually retains some functionality such that these muta-
tions are mostly associated with the milder BMD. Exon skip-
ping for deletion mutations seeks to block an exon (or exons)
adjacent to the mutation from being spliced into the mRNA
transcript -- the applicability of a specific target exon (or
exons) depending upon the alignment of exon boundaries
with codon triplets -- such that the correct open reading frame
is restored [16].
Existing antisense chemistries including phosphorodiami-

date morpholino oligomers and antisense 2¢O-methylated
phosphorothioate (2¢O-MePS), that contain phosphorothioate

linkages throughout their length and 2¢-O-methyl modifica-
tions, are capable of efficient induction of exon skipping in
body-wide skeletal muscles of mouse and dog models of
DMD in vivo, without observed toxicity or need for carrier
molecules [17,18]. Our systemic delivery of antisense morpholi-
nos to skip exon 51 in mdx52 mice showed amelioration of
the phenotype [19]. Clinical trials to rescue local and systemic
expression of dystrophin with AO injections targeting exon
51 were reported in DMD patients [20-24].

Chemical modifications aimed at the optimization of
efficacy and/or the minimizing of toxicity have led to the devel-
opment of AOs such as 2¢O-MePS and to phosphorodiamidate
morpholino oligomers, comprised of six-membered azasugar
rings with uncharged phosphorodiamidate linkages, which
seem well suited for in vivo exon skipping in dystrophic
skeletal muscle [25,26]. The non-ionic backbone of the mor-
pholino minimizes its interactions with proteins, thereby
reducing non-specific effects [27]. In addition, morpholinos
have advantages such as high water solubility (263 mg in
1 ml with 22-mer of the sequence), stronger RNA binding
ability and non-activation of the inflammatory response [27].
Recently, cell-penetrating moieties conjugated with morpho-
linos were developed by two companies (Figure 1): peptide-
conjugated phosphorodiamidate morpholino oligomers by
AVI Biopharma and vivo-morpholinos by Gene-Tools,
each of which showed increased potency [28-31]. However,
increased charge might also make oligos more toxic. They
facilitate nonspecific interactions with other proteins such
as the tenase complex or intrinsic clotting cascade, or factor
H in the alternative complement cascade [32-34]. At high
dose injections with peptide-conjugated phosphorodiamidate
morpholino oligomers, lethality, weight loss, elevated serum
blood urea nitrogen and creatinine are reported in mice
and rats [35]. The continued development of new chemistries
of AOs may yield yet further improvements over existing
compounds for the purpose of exon skipping. Small mole-
cules having a general upregulatory effect on exon skipping
are also under development and one is described to be
effective in vitro for exon 31 [36].

3. Exon skipping for nonsense mutations

The initial tests of exon skipping were directed against a non-
sense mutation in exon 23 of the mdx mouse in vitro and
in vivo [25,37,38]. Local (intramuscular) rescue with double
exon skipping of exons 52 and 53 to treat a nonsense muta-
tion in exon 53 of the mdx4cv mouse has also been demon-
strated [39]. These encouraging results suggest that this
approach potentially provides a therapeutic option for the
majority of boys affected by DMD, including those with non-
sense mutations. It is reported that over 70% of DMD
patients with deletion mutations can be treated by exon skip-
ping targeting single exons [40,41]. However, a major hurdle in
this approach is that different AOs will be required to treat
DMD patients harboring different mutations. Many different

Article highlights.

. We examined the applicability of exon skipping therapy
to nonsense mutations in the DMD gene.

. Approximately 47% of nonsense mutations are
potentially treated by single exon skipping, rising to
90% with double exon skipping.

. The development of antisense drugs targeting 68 of
dystrophin’s 79 exons is required to cover 90% of
nonsense mutations.

. An efficient regulatory path for antisense drug approval
will be a key to success.

This box summarizes key points contained in the article.
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AOs targeting most of the 79 exons of the DMD gene will
eventually be required to treat rare mutation patterns.

Almost half of DMD mutations are deletion mutations,
the remainder are associated with other types of mutation
such as duplication, splice site, nonsense, small deletion,
insertion, etc. [42]. Approximately 10 -- 15% of DMD cases
are caused by a nonsense mutation, a point mutation that
causes a change in a triplet codon such that it no longer
codes for an amino acid but instead codes for a stop signal
(i.e., nonsense codons UAA, UAG or UGA) [43]. It is of
interest to examine the applicable population for exon

skipping of nonsense mutations by targeting each exon.
There are several exon skipping clinical trials planned or
ongoing to target multiple exons in the hot spot region of
the DMD gene (around exons 44 -- 55, where the majority
of deletions occur) such as exon 44 (http://clinicaltrials.gov/
ct2/show/NCT01037309) and 51(NCT01254019 and
NCT01462292) [20,21,44]. In addition, multiple exon skip-
ping of entire region of exons 45 -- 55 (consistent with an
exceptionally mild BMD phenotype) is predicted to be
applicable to more than 60% of DMD deletion mutations,
although currently no convincing experimental data or
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clinical trial plans have been published [16,45-47]. In contrast,
no clinical trials are yet planned to target nonsense muta-
tions. The likely proportions of patients applicable to exon
skipping of different deletion patterns, based on surveys of
patient databases, have been reported in detail but those
focusing on nonsense mutations have not [14,48].
Here, we surveyed the Leiden Open Variation Database

(LOVD), collating data corresponding to nonsense mutations
in the DMD gene [49]. The LOVD represents the largest data
repository concerning DMD and BMD patients, but it
should be noted that this resource has existed since early in
the development of genetic diagnostic methods and, as such,
likely contains a subset of entries, especially older entries, hav-
ing erroneous identifications of mutation. In addition, the
LOVD is an open repository, so the possibility of quite dispa-
rate clinical diagnostic criteria between sites of data origin
cannot be ruled out.
We obtained data on 1273 patients with nonsense muta-

tions (Supplemental Table S1). Interestingly, only 47% of
patients with nonsense mutations are theoretically treatable
by single exon skipping to correct their open reading frame
(Figure 2). Because skipping of a single mutated exon causes
disruption of the reading frame in many cases, additional
skipping of neighboring exons is required. In fact, almost
half (49.4%; 38 out of 77 exons) of internal exons in the
DMD gene are frame-shifting exons and 39 exons (50.6%)
are non-frame-shifting exons as illustrated (Figure 3). In addi-
tion, significantly more nonsense mutations are reported in
frame-shifting exons rather than non-frame-shifting exons
(53% vs. 47%) between exons 2 and 78 (c2 = 5.27; d.f. = 1,

p < 0.05, chi-squared test). This contrasts starkly with treat-
ment for deletion mutations, where single exon skipping is
potentially applicable to 70% of patients, and where certain
large patient populations share the same single exon target
(e.g., exons 51 and 45 are reported to be potentially applicable
to 13% and 8% of the DMD patient population, respec-
tively) [48]. The experimental drugs AVI-4658/eteplirsen and
PRO051/GSK2402968 target exon 51 [23,50]. The distribu-
tion for deletion mutations is explained by the existence of
the ‘deletion hot spot’ region around exons 45 -- 55 where
many deletions are concentrated, likely due to the large size
of introns there [51-53]. In contrast, there appears to be no
such hot spot for disease-causing point mutations, including
nonsense mutations and splice site mutations, which occur
within exons, exon--intron boundaries or deep in the
intron [54]. Thus, as a general rule, the probability of har-
boring a nonsense mutation is not very different among
most exons. That being stated, the probability of a nonsense
mutation within a given exon giving rise to DMD is likely
influenced by the reported propensity of mutations in certain
non-frame-shifting exons to themselves induce exon skipping,
leading in many cases to BMD [55,56]. In nonsense mutations,
exon skipping to target exon 23 is applicable to the largest
proportion of patients (3.2%), followed by exon 41 (3.1%)
(Figure 4). Only these two exons are above 3% in applicability.

Specifically, if the patient has a nonsense mutation in one
of exons 3 -- 5, 9, 10, 13 -- 16, 23 -- 42, 47 -- 49, 60, 64,
71 -- 74 or 77, single exon skipping targeting the mutated
exon is potentially applicable (they are indicated as blue exons
in Figure 3). In contrast, double exon skipping (skipping two
exons) is likely required if the patient has a nonsense mutation
in one of exons 11 -- 12, 17 -- 22, 43 -- 46, 50 -- 59, 62 -- 63,
65 -- 66, 68 -- 70 or 78, because these are frame-shifting exons
(indicated as red exons in Figure 3). Single- and double-
exon skipping can theoretically cover 90% of nonsense muta-
tions collectively. In some cases, triple-exon skipping is
required. Such patterns include nonsense mutations in one
of exons 6 -- 8, 61, 67 or 76 -- 78. These are frame-shifting
exons (indicated as red exons in Figure 3), for which skipping
of two neighboring exons is required to get back in-frame.
Most mutation patterns (approximately 98%) can be poten-
tially rescued if triple exon skipping is possible, except
for nonsense mutations in one of exons 1, 2, 75 and 79
(Figure 2). Nonsense mutations in exon 2 and exon 75 require
skipping more than three exons. It is unlikely that the first
exon (exon 1) and the last exon (exon 79) can be skipped
without disruption of 5¢ capping and polyadenylation, respec-
tively. Potential targets of exon skipping therapy for each
nonsense mutation pattern are described in Table 1.

Although multiple exon skipping might be possible for the
rod domain of dystrophin, importance of phasing and bio-
chemical properties of the novel truncated dystrophin remains
to be determined. The central rod domain of dystrophin con-
sists of 24 spectrin-type repeat (STR). Some exon skipping
patterns lead to fractional STR modules [57]. Ruszczak et al.

0

10

20

30

40

50

60

70

80

90

100

Triple-exon
skipping

Single-exon
skipping

Double-exon
skipping

P
ot

en
tia

lly
 a

pp
lic

ab
le

 p
at

ie
nt

s 
fo

r
no

ns
en

se
 m

ut
at

io
ns

 (
%

)

Figure 2. Proportions of the nonsense mutation DMD

patient population potentially treatable by single- and

multi-exon skipping. The percentage of patients in the

Leiden Open Variation Database (as of January, 2012) whose

reading frame can be potentially rescued by skipping of a

single exon (46.7%), 2 exons (90.3%) or 3 exons (98.2%) are

shown. We identified substitutions creating stop codons

(nonsense mutations). All DMD/BMD/IMD (intermediate

muscular dystrophy) are included.
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demonstrated that these truncated proteins vary greatly in sta-
bility [58]. Henderson et al. reported that deletions in the cen-
tral rod domain led to a loss of cooperative unfolding and
increased tendency for aggregation [59]. In addition, recent
computational study indicates that each tandem repeat has
very specific surface properties [60]. These studies might lead
to the design of optimal therapeutic exon skipping strategies.
Although theoretical applicability of multi-exon skipping for
nonsense mutations is quite high, some patients have muta-
tions in indispensable regions of the protein structure,
such as the cysteine-rich domain (exons 63 -- 69) and the
C-terminal domain, containing dystroglycan, dystrobrevin
and syntrophin-binding sites (exons 70 -- 79) [61-63]. They
play important roles in maintaining muscle integrity, muscle
regeneration and localizing key signaling or channel
molecules [64-70]. Exon skipping against these exons has not
been tested yet in animal models in vivo. Further study is nec-
essary to address the efficacy of functional rescue by exon
skipping targeting exons encoding these domains. In contrast,
N-terminal actin-binding domain seems a more promising
target. Transgenic mdx mice with a deletion in most of the
N-terminal actin-binding domain exhibit a ‘mild Becker’ phe-
notype [71]. Patients with very mild BMD are reported with
mutations in this region (e.g., deletion of exons 3 -- 9) [72].
In addition, we and other groups demonstrated that skipping
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of exons 6 -- 8 successfully rescued dystrophic dogs and
human cells [73-76].

It is interesting to note that there is a spectrum of severity
in patients carrying nonsense mutations in the same exon of
the DMD gene. Ginjaar et al. reported varied severity in three
boys in one family, all carrying the same nonsense mutations
in exon 29 (4148C > T) [77]. The study indicates that varied
levels of spontaneous skipping of exon 29 among these boys
have led to the spectrum. Such cases provide further evidence
that at least some nonsense mutations can be more easily
treated with antisense therapy and they should not be over-
looked. Since much preclinical trial work was done with a
mouse model carrying a nonsense mutation (mdx), they may
be ideal for clinical trials.

4. Read-through drugs versus exon skipping

Another potential therapeutic approach for nonsense DMD
mutations is stop codon read-through drugs such as Ataluren
(PTC Therapeutics, South Plainfield, NJ, USA) [78]. They are
orally delivered small molecules. Read-through drugs such as
gentamicin, negamycin and ataluren (formerly known as
PTC124) are reported to induce ribosomal readthrough of pre-
mature stop codons, and restore dystrophin expression [79-82].
Initial trial of gentamicin, an aminoglycoside which promotes
readthrough in the mdx mouse model, presented potential
toxicity and administration issues [83,84].

Following these trials, ataluren has been developed [78,82].
This is a nonaminoglycoside which induced dystrophin
expression in primary muscle cells in human DMD and in

Table 1. Potential targets of exon skipping therapy for

each location of a nonsense mutation in the DMD

gene.

Mutated exon Potential target exons

1 NA
2 ex2 -- 19
3 ex3
4 ex4
5 ex5
6 ex6 -- 8
7 ex6 -- 8
8 ex6 -- 8
9 ex9
10 ex10
11 ex11 -- 12
12 ex11 -- 12
13 ex13
14 ex14
15 ex15
16 ex16
17 ex17 -- 18
18 ex17 -- 18
19 ex19 -- 20
20 ex19 -- 20
21 ex21 -- 22
22 ex21 -- 22
23 ex23
24 ex24
25 ex25
26 ex26
27 ex27
28 ex28
29 ex29
30 ex30
31 ex31
32 ex32
33 ex33
34 ex34
35 ex35
36 ex36
37 ex37
38 ex38
39 ex39
40 ex40
41 ex41
42 ex42
43 ex43 -- 44
44 ex43 -- 44
45 ex45 -- 46
46 ex45 -- 46
47 ex47
48 ex48
49 ex49
50 ex50 -- 51
51 ex50 -- 51
52 ex52 -- 53
53 ex52 -- 53
54 ex54 -- 55
55 ex54 -- 55 or ex55 -- 56
56 ex55 -- 56 or ex56 -- 57
57 ex56 -- 57
58 ex58 -- 59

Table 1. Potential targets of exon skipping therapy for

each location of a nonsense mutation in the DMD gene

(continued).

Mutated exon Potential target exons

59 ex58 -- 59
60 ex60
61 ex59 -- 61
62 ex62 -- 63
63 ex62 -- 63
64 ex64
65 ex65 -- 66
66 ex65 -- 66
67 ex65 -- 67
68 ex68 -- 69
69 ex68 -- 69 or ex69 -- 70
70 ex69 -- 70
71 ex71
72 ex72
73 ex73
74 ex74
75 ex70 -- 75
76 ex76 -- 78
77 ex77
78 ex76 -- 78
79 NA

T. Yokota et al.
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mdx mice [85]. In addition, it rescued skeletal muscle function
in mdx mice within 2 -- 8 weeks of drug exposure [82]. It
is potentially beneficial in other genetic disorders such as
cystic fibrosis (Phase II clinical trial) [86]. However, except
for patients previously exposed to ataluren, there are no
active registered DMD trials (www.clinicaltrials.gov). It was
reported that previous ataluren trials were stopped because
the predetermined primary outcome measure (changes in
the distance walked during a 6-minute walk test) was not
achieved [87].

Theoretically, most nonsense mutations in the DMD gene
can be treated with both the exon skipping strategy and
the read-through strategy. The mechanistic bases of exon
skipping and read-through are entirely distinct, the major
differences being described in Table 2. Both exon skipping
therapy and stop-codon readthrough (PTC124) have
entered clinical trials, though clinical efficacy has yet to be
fully determined. Exon skipping approach is specific to cer-
tain types or patterns of mutation and can be thought of as
personalized medicine. In contrast, read-through therapy is
rather general medicine which is applicable to theoretically
all nonsense mutations as shown in Table 2. It would be
intriguing to test whether exon skipping and readthrough
have additive effects to ameliorate DMD symptoms.

5. Conclusions

Exon skipping is an innovative molecular therapeutics
strategy that has shown efficacy in rodent and dog models of
DMD [17,18]. It successfully restored dystrophin expression and
prolonged life in a severely affected animal model, the dystro-
phin/utrophin double knockout mouse, which died by 12 -- 14
weeks without treatment [88,89]. Recent Phase I/II clinical
trials, based out of the Netherlands and the UK, both targeting
exon 51, report both molecular efficacy and lack of serious
adverse events attributable to the drug [20,21,24]. The AVI Biophar-
ma’s Phase II trial demonstrated exon 51 skipping with new
dystrophin protein expression in a statistically significant, dose-
dependent, but variable manner [20]. Nevertheless, important
challenges remain, including the failure of current approaches to

rescue functional dystrophin expression in the heart in animal
models, and the need for more data on long-term toxicity (partic-
ularly as relates to proteinuria). Especially, it is a serious issue that
morpholinos exhibit inefficient delivery to the heart, because car-
diac failure is one of the leading causes of death inDMD [90].New
chemistries of AOs, or modifications to existing chemistries, may
help circumvent these problems. Interplay between the commer-
cial interests and regulatory bodies can generate barriers to suc-
cessful treatment. One such barrier is the need to develop AOs
targeting specific mutations or groups of mutations, with the
requirement for separate clinical trials of eachmolecule or cocktail
of molecules. This is of special importance to the treatment of
nonsensemutations. In case of deletionmutations, a large propor-
tion of the patient population has mutations within the same
region of the gene. The most common subgroup of DMD dele-
tion mutations will respond to exon 51 and exon 45 skipping,
each of them corresponds to about 10% of DMD cases. In con-
trast, nonsense mutations are spread throughout the gene, requir-
ing many different exons to be targeted for good coverage of the
applicable patient population. In addition, overlap between appli-
cable populations of patients having deletions with those having
nonsense mutations is limited in terms of the exons that may be
targeted, because nonsense mutations often require the skipping
either of non-frame-shifting exons or of two adjacent exons,
whereas deletions usually require the skipping of a single frame-
shifting exon. Thus, few patients with nonsense mutations will
benefit from the development of exon skipping molecules aimed
at those exons (such as exons 51 and 45) corresponding to the
largest target patient populations. The specificity of exon skip-
ping, therefore, raises a difficult challenge for the application of
this approach to nonsense mutations. Stop codon read-through
drugs do not suffer this disadvantage, but may have disadvantages
in terms of side effects resulting from their nonspecificity, and it
remains to be seen which of the two approaches will prove the
more successful in the long term.

6. Expert opinion

Antisense therapy has recently emerged as an exciting and
promising strategy for the treatment of various genetic disorders,

Table 2. Exon skipping versus stop-codon readthrough.

Exon skipping Readthrough

Applicability Deletion, nonsense, splice site, duplication
mutations (possibly) [104]

Nonsense mutations only

Sequence specificity Requires specific oligos designed against
each exon

The same drug applies to all nonsense
mutations

Route for systemic treatment Subcutaneous or i.v. injections Oral
Typical administration intervals Weekly or Bi weekly Daily
Clinical trials (as per
www.clinicaltrials.gov)

Currently in Phase II or III trials (exon 51 skipping
for deletion mutations only)

Currently in Phase III open label trial for
previously treated DMD/BMD (also Phase III
for cystic fibrosis)

Manufacturers Several, including AVI, GSK, and Prosensa PTC Therapeutics
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and generated waves of enthusiasm in the neurology research
field. The clear potential for success of exon skipping and anti-
sense strategy has recently been demonstrated not only in treating
DMD, but also in several other important genetic diseases such as
limb-girdle muscular dystrophy (LGMD), spinal muscular atro-
phy (SMA), Huntington’s disease, Fukuyama congenital muscu-
lar dystrophy (FCMD) and myotonic dystrophy [89,91-102]. All of
these studies utilize AOs (or small nuclear RNA) but their strate-
gies are quite different. These strategies include exon skipping
with AOs (DMD, myotonic dystrophy, LGMD2B andMiyoshi
myopathy), exon inclusion with AOs to knock-up a pseudo gene
(SMA), splicing modulation with a cocktail of AOs (FCMD),
and gene knockdown with AOs against triplet repeat disorders
(Huntington’s disease and myotonic dystrophy). These studies
indicate that we can expect to see treatment of increasing numbers
of genetic disorders with antisense therapy in near future.
Remaining challenges of exon skipping include inefficient

delivery to the heart, lack of long-term toxicity data (including
immune response) in humans, unknown function of resulting
truncated dystrophins, discrepancies of exon skipping efficacy
between in vitro and in vivo studies, the need for repeated
administration of AO molecules due to rapid clearance from
circulation and requirement for developing many AOs target-
ing different exons. The ultimate goal of exon skipping therapy
is to treat most of DMD patients with AOs designed to target
each patient. It is targeted mostly at the individual patient, and
a clear example of mutation-specific personalized medicine. To
achieve this goal, extensive optimization and development of
AOs against most of exons in dystrophin mRNA are required
as Wilton et al. previously did [103]. In some exons, multiple

AOs might be required to excise a single skipping of the
targeted exon (such as exon 53) [39]. Although a couple of AO
drugs such as ones targeting exons 45 and 51 (within mutation
hot spot) in dystrophin mRNA are applicable to relatively high
percentage (approximately 10% each) of DMD patients, AOs
targeting each exon are mostly applicable to very limited num-
ber of patients. In this paper, we examined the exact applicabil-
ity of exon skipping therapy for nonsense mutations by using
the world-wide database of DMD patients for the first time.
We demonstrated that approximately 47% of nonsense muta-
tions can be potentially treated with single exon skipping (total
of each antisense drug) and 90% with double exon skipping
(total of each AO cocktail). However, to reach this proportion,
the development of antisense molecules targeting 68 of dystro-
phin’s 79 exons is required, because the patient population
with nonsense mutations spreads thinly across most of exons.
To expand the applicability of exon skipping therapy, it will
be important to have an efficient regulatory path for drug
approval that takes into account both the common properties
of different sequences of the same antisense chemistry and
the potential differences in the specific effects of each sequence.
It will also benefit the progress of other personalized medicine
in general.
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