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Dogfish glucagon analogues counter hyperglycaemia and enhance both insulin 

secretion and action in diet-induced obese diabetic mice. 
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Abstract  

Aims: We investigated the antidiabetic actions of three dogfish glucagon peptide analogues 

(known GLP-1 and glucagon receptor co-agonists) following chronic administration to diet-

induced high fat fed (HFD) diabetic mice.  Materials and methods: NIH Swiss mice were pre-

conditioned to a HFD (45% fat) for 100 days, or control mice were fed a normal diet (10% fat).  

Normal diet control and HFD control mice received twice daily i.p. saline and HFD groups (n=8) 

received twice daily injections of or exendin-4(1-39), [S2a]dogfish glucagon, [S2a]dogfish 

glucagon exendin-4(31-39) or [S2a]dogfish glucagon-Lys30-γ-glutamyl-PAL (25 nmol/kg body 

weight) for 51 days.  Results: Following dogfish glucagon analogue treatment, there was a rapid 

and sustained decrease in non-fasting blood glucose and associated insulinotropic effect 

(ANOVA, p<0.05–p<0.001) compared to saline-treated HFD controls.  All peptide treatments 

significantly improved i.p. and oral glucose tolerance with concomitant increased insulin 

secretion compared to saline-treated HFD controls (p<0.05-p<0.001). Following chronic 

treatment, no receptor desensitisation was observed but insulin sensitivity was enhanced for all 

peptide treated groups (p<0.01-p<0.001) except [S2a]dogfish glucagon. Both exendin-4 and 
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[S2a]dogfish glucagon exendin-4(31-39) significantly reduced plasma triglycerides 

concentrations compared to lean controls (p=0.0105 and p=0.0048, respectively).  Pancreatic 

insulin content was not affected by peptide treatments but [S2a]dogfish glucagon and 

[S2a]dogfish glucagon exendin-4(31-39) decreased pancreatic glucagon by 28-34% (p=0.0221 

and p=0.0075, respectively). The percentage β-cell area within islets was increased by exendin-4 

and peptide analogue treatment groups compared with HFD controls and the α-cell area 

decreased (p<0.05-p<0.01).  Conclusions: Overall, dogfish glucagon co-agonist analogues 

demonstrated several beneficial metabolic effects showing therapeutic potential for T2DM. 

 

Keywords: Dogfish glucagon, peptide analogues, chronic study, diabetic mice, co-agonist, 

glucagon like peptide-1, therapy 

 

 

 

 

 

Introduction:  

Glucagon is recognized for its role in preventing hypoglycaemia mainly through 

promoting hepatic glucose output in the fasting state [1], as well as having a pathogenic role in 

diabetes [2]. Thus hyperglycaemia makes an important contribution to elevated blood glucose 

concentrations in both Type 1 and Type 2 diabetes [3,4]. However, under different conditions, 

glucagon has several potentially beneficial extrahepatic actions including, stimulation of insulin 

secretion as well as promoting lipolysis, inhibiting feeding and enhancing energy expenditure [5-

8].   

Research on the use of stable incretin peptides (mimetics) for type 2 diabetes (T2DM) has 

expanded considerably over the past decade [9-11]. Exploitation of the multiple antidiabetic 

actions of GLP-1 have realized benefits including, enhancement of glucose-induced insulin 
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secretion, suppression of pancreatic glucagon secretion and appetite, slowing of postprandial 

gastric emptying, promotion of glucose uptake and possibly protection of pancreatic β-cell mass 

10,12-14].  These benefits of GLP-1 have led to widespread clinical use of incretin mimetics such 

as exenatide (Byetta) and the GLP-1 receptor agonist liraglutide (Victoza) [15-20]. Coupled with 

this, there may be further therapeutic benefits from simultaneous activation of two or more 

receptor signaling pathways for the glucagon-secretin family of peptides, including glucagon, 

GIP as well as CCK-8 [21-23]. This has resulted in a growing interest in the use of dual or triple 

co-agonist peptides which could enhance multiple metabolic pathways and provide better and 

more physiological treatment options [14,21-29].   

 In particular, the simultaneous activation of the glucagon receptor (GCGR) and GLP-1 

receptor (GLP-1R) exerts synergistically superior effects on body weight, glycaemic control and 

lipid metabolism [30-32].  A study by Pocai and colleagues [33] testing GLP-1/glucagon dual-

agonists found that normalisation of glycaemic control, as well as significant weight loss were 

more impressive in diet-induced obese mice treated with the dual agonist compared with a GLP-

1R selective agonist alone.  In another study, GLP-1/glucagon co-agonism improved resting 

energy expenditure in obese mice, and it was inferred that the dual receptor activation would have 

beneficial effects also on glycaemic control and lipid metabolism in humans with T2DM [32].  

 We have a strong interest in examining the potential of peptide entities which have 

structural similarities with incretin hormones and glucagon in an attempt to uncover and test 

novel approaches to diabetes and obesity therapy [14,34-36].  In this regard, we were attracted to 

dogfish glucagon which exhibits strong structural similarities with human GLP-1, GIP and 

glucagon [37]. Comparison of the primary structures also indicates that dogfish glucagon shares 

three amino acid residues (Glu3, Tyr13, and Lys20) with human GLP-1 that are not found in human 

glucagon (Table 1).  This led us to hypothesise that dogfish glucagon may represent a template 

for the design of new antidiabetic peptides that may possess multiple agonist activity.   

We have recently published a manuscript which examined the stability, in vitro 

insulinotropic action and in vivo acute biological activity including glucose lowering and insulin 
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secretory actions, as well as receptor specificity of 13 different analogues of dogfish glucagon 

[38]. From this initial work we wanted to evaluate the chronic metabolic effects of the most 

potent analogues. Thus in the present paper we report the ability of daily treatment with dogfish 

glucagon, a novel enzyme resistant (D-amino acid substitution at position 2) [S2a]dogfish 

glucagon and two sister analogues (modified to prolong their in vivo activities) to alleviate the 

symptoms associated with insulin resistance and Type 2 diabetes in mice resulting from chronic 

consumption of a high fat diet. We have compared the effects of 51 days treatment with these 

peptides with those of exendin-4 on glycaemic control, body weight, food intake, lipid 

metabolism, insulin sensitivity and pancreatic islet morphology in high fat fed DIO mice.  

 

Materials & Methods:  

Synthetic Peptides. Table 1 displays the amino acid sequence of human glucagon, dogfish 

glucagon, GLP-1, GIP and three dogfish glucagon analogues used in this study.  All peptides 

were purchased at >95% purity from EZBiolabs (Carmel, IN, USA).  In addition to QC data 

provided by the supplier, all peptides were checked for purity, characterized and structures 

confirmed using RP-HPLC and in-house matrix assisted laser desorption ionization-time of flight 

mass spectrometry (MALDI-ToF MS), as described previously [39].   

 The basic structure of dogfish glucagon was modified by substitution of D-Ala at the 

penultimate N-terminal residue [S2a] to confer enzyme resistance. In addition, we extended the 

C-terminus of [s2a]dogfish glucagon with the last 9 C-terminal amino acid residues of exendin-

4(1-39) (P-S-S-G-A-P-P-P-S-amide), called [s2a]dogfish glucagon exendin-4(31-39) to help 

stabilize the molecule and improve its ability to interact with the GLP-1 receptor.  Finally, a 

gamma-glutamyl spacer with palmitate adjunct was added at the Lys8 side-chain to [s2a]dogfish 

glucagon to promote albumin binding and extend its in vivo bioactivity as previously reported for 

stable incretin hormone analogues [40,41]. 

 

Animals.  
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Animal studies were carried out using male NIH Swiss TO mice supplied at 8-10 weeks of age by 

Harlan Ltd. (Blackthorne, UK). experimental diabetes was induced by feeding a high-fat diet for 

100 days composed of 45% fat, 20% protein and 35% carbohydrate (total energy 26.15 KJ/g; 

Special Diet Services, Essex, UK).  Control mice were fed normal rodent chow (10% fat, 30% 

protein and 60% carbohydrate, total energy 12.99 KJ/g, Trouw Nutrition, Cheshire, UK). The 

high fat fed group exhibited increased body weight and hyperglycaemia compared with normal 

diet controls (Fig. 1A, 1D). Animals were housed at 22 ± 2°C with a 12 h light: 12 h dark cycle 

(08:00–20:00 h), and had free access to drinking water and food. All animal experiments were 

conducted according to UK Animals (Scientific Procedures) Act 1986 and the “Principles of 

Laboratory Animal Care” (NIH Publication Number 86-23, revised 1985). No adverse effects 

were observed following administration of any of the peptides. 

 

Chronic effect of twice daily i.p. administration of peptides on metabolic status in high fat fed 

mice  

Normal mice and high fat diet fed mice (n=8) received twice daily i.p. injections of saline vehicle 

(0.9% NaCl (w/v)) at 08:30 and 17:30 for up to 65 days. Treatment groups of DIO mice (n=8) 

similarly received twice daily i.p. injections of [S2a]dogfish glucagon, [S2a]dogfish glucagon 

exendin-4(31-39), [S2a]dogfish glucagon-Lys30-γ-glutamyl-PAL or exendin-4(1-39) (25 nmol/kg 

body weight).  This dose was based upon responses derived from an earlier acute study [38]. A 

series of metabolic tests were performed (days 51 to 65) and both blood and tissue samples were 

collected at termination of the study (day 65). 

 

Metabolic tests and monitoring  

Food intake, body weight, blood glucose and plasma insulin were monitored at intervals of 2-3 

days. Blood samples for glucose and plasma insulin were collected from the cut tail vein of 

conscious mice. Blood glucose was measured using an Acensia Contour meter (Bayer Healthcare, 

UK). Samples for insulin analysis were collected into chilled fluoride coated microcentrifuge 

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rti
cl

e
tubes (Sarstedt, Numbrecht, Germany). Blood was centrifuged at 4˚C using a Beckman centrifuge 

for 3 min at 12,000×g and resulting plasma aliquoted into Eppendorf tubes and stored at -20˚C 

prior to determination of insulin by modified dextran coated charcoal radioimmunoassay [42].  

 
Glucose tolerance, insulin sensitivity and peptide desensitisation tests  

Animals were fasted 18 h prior to administration of intraperitoneal or oral glucose alone (18 

mmol/kg body weight) or combined with either a dogfish glucagon analogue or exendin-4 (all at 

25 nmol/kg body weight). Blood samples were collected prior to (t=0) and at 15, 30, 60, 90 and 

120 min post injection. For assessment of insulin sensitivity, blood glucose was measured 

immediately prior to (t=0) and at 15, 30 and 60 min following intraperitoneal administration of 

insulin (25 U/kg body weight). Results obtained provide an estimate of insulin action. 

Unfortunately, we were not able to conduct hyperinsulinaemic euglycaemic clamps in these mice. 

However, mice were assessed for desensitisation to peptide analogues following 51 days chronic 

administration. Glucose (18 mmol/kg body weight, i.p.) was administered alone or in 

combination with the peptide analogues (each at 25 nmol/kg body weight) to 18 h fasted mice. 

Blood samples were collected immediately prior to (t=0) and at 15, 30 and 60 min post injection. 

Blood glucose was assessed immediately using a handheld Acensia Contour glucose meter (Bayer 

Healthcare, UK) and samples for insulin were collected and analysed as described above. Food 

and water were withheld throughout the study periods. All tests were conducted between day 51 

and day 65 with twice daily injection regimens maintained throughout.  

 

Measurement of energy expenditure 

After 60 days, mice were placed in Complete Laboratory Animal Monitoring System (CLAMS) 

metabolic chambers (Columbus Instruments, Columbus, OH, USA) following injection of 

respective peptides at 12:00 h. Consumption of O2 and production of CO2 were measured for 30 s 

at 15 min intervals for a total period of 22 h. Respiratory exchange ratio (RER) was calculated by 

dividing VCO2 by VO2. Energy expenditure was calculated using RER with the following 

equation (3.815 + 1.232 x RER) x VO2 [43].  
This article is protected by copyright. All rights reserved.
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Tissue excision 
 
At the end of the study, non-fasted mice were killed by cervical dislocation. Blood was collected 

by cardiac puncture for determination of glucagon, amylase and lipids. The pancreas from each 

mouse were excised and taken for histology or wrapped in aluminium foil, snap frozen in liquid 

nitrogen with storage at -70˚C for subsequent determination of hormone contents. 

 

Assessment of plasma glucagon, amylase and lipid profile 

Glucagon was measured using an ELISA kit according to the manufacturer’s instructions 

(Millipore, Billerica, Massachusetts, USA). Serum amylase was determined using an amylase 

colorimetric assay kit from Abcam (Cambridge, UK) according to the manufacturer’s 

recommended protocol. Plasma lipid profile was determined using an I-Lab 650 clinical 

chemistry system (Instrumentation Laboratory, Warrington, UK), which included assessment of 

total cholesterol, triglycerides, and both HDL and LDL cholesterol. Reagents for triglycerides 

analysis were obtained from Instrumentation Laboratory (Warrington, UK) and reagents for LDL 

cholesterol were obtained from Randox (Crumlin, Co. Antrim, N. Ireland). 

 
Histological analyses and hormone contents of pancreatic tissue 

Pancreas tissues were fixed in 4% paraformaldehyde for 48 h at 4˚C and then processed using 

automated tissue processor (Leica TP1020, Leica Microsystems, Nussloch, Germany). After 

embedding in paraffin wax, tissues were sectioned at 8 μm thickness using a microtome (Shandon 

finesse 325, Thermo scientific, UK) and sections were picked at an interval of 10 sections. The 

tissue sections were deparaffinised using Histoclear II (National Diagnostics, UK) and rehydrated 

through a series of ethanol. After antigen retrieval at 94˚C for 20 min using citrate buffer (pH 

6.0), the sections were blocked using 10% normal goat serum and incubated with primary 

antibodies overnight at 4˚C. The sections were then incubated with secondary antibodies for 45 

min at 37˚C. The slides were mounted using anti-fade mounting medium and viewed under FITC 

filter (488 nm) or TRITC filter (594 nm) using a fluorescent microscope (an Olympus system 
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microscope, model BX51) and photographed using the DP70 camera adapter system [44,45]. All 

staining procedures and image analysis were carried out in a blinded manner. Approximately 150 

islets were analysed per group. Islet parameters were determined using the ‘closed polygon’ tool 

in Olympus Cell^F analysis software. Antibodies used were highly specific and showed no cross-

reactivity with related peptide hormones. For determination of pancreatic insulin and glucagon 

contents, pancreatic tissue was extracted in 5 ml/g acid ethanol (ethanol/0.7 M HCl; 3:1 ratio) as 

described previously [21]. 

 
Statistical analysis  

Data was analysed using measures of one-way ANOVA followed by a Student Newman-Keuls 

post-hoc test or repeated measures of two tailed t-tests using GraphPad PRISM (Version 5.0 San 

Diego, CA, USA). Data are expressed as mean ± SEM where p<0.05 was considered to be 

statistically significant.   

Results: 

Effect of [S2a]dogfish glucagon, [S2a])dogfish glucagon exendin-4(31-39), [S2a]dogfish 

glucagon-Lys30-γ-glutamyl-PAL or exendin-4 on metabolic status 

There was a rapid and sustained decrease in non-fasting blood glucose in all treatment groups 

(p<0.05–p<0.001), associated with elevated plasma insulin concentrations (P<0.05-p<0.01; Fig. 

1A,B).  Twice daily administration of the peptides had no significant effect on cumulative food 

intake or body weight (Fig.1C,D) or in the % body weight change between experimental groups 

over 51 days (Fig. 1E). A small progressive increase in body weight was observed with saline 

treated high fat fed mice (Fig. 1D).  

 

Glucose tolerance 

Administration of [S2a]dogfish glucagon, [S2a]dogfish glucagon exendin-4(31-39), [S2a] dogfish 

glucagon-Lys30-γ-glutamyl-PAL or exendin-4 for 51 days significantly improved intraperitoneal 

and oral glucose tolerance compared to high-fat fed saline treated control mice (p<0.05 - 

p<0.001) (Fig. 2A,B). Furthermore, there was a significant increase in plasma insulin 
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concentrations were noted over 120 min with all of the treated groups. Importantly, [S2a]dogfish 

glucagon exendin-4(31-39) was the most effective therapy at increasing the overall plasma insulin 

release post i.p. glucose load compared to high-fat fed saline treated controls (p<0.05-p<0.001) 

(Fig. 2A). Similarly, an oral glucose challenge showed very similar responses to those observed 

following the ipGGT described above (Fig 2B). 

 

Effect of dogfish glucagon analogues on peptide desensitization and insulin sensitivity 

Chronic treatment of high-fat fed mice with exendin-4 or dogfish glucagon analogues might lead 

to receptor desensitization and so we tested mice for this type of response. Mice which had been 

exposed to twice daily i.p. injections of these peptides for 51 days were tested.  When given in 

combination with glucose, each of these peptides significantly suppressed the rise in blood 

glucose by 34.8% to 55.2% following i.p. glucose administration (p<0.05-p<0.001) (Fig. 3A). In 

addition, each of the peptides elicited a significant insulin response (1.8- to 2.3-fold increase; 

p<0.05-p<0.001) (Fig. 3B), indicating absence of receptor desensitisation or receptor 

tachyphylaxis.  

 

As shown in Fig. 3C, the glucose lowering effects of insulin were enhanced in all groups 

following chronic peptide administration (Fig. 3C).  Overall insulin sensitivity as assessed by 

integrated area above the curve (AAC(0-120 min)) analysis was enhanced for all peptide treated 

groups (by 13.7% to 21.7%) except for [S2a]dogfish glucagon, compared to saline treated high 

fat fed controls (Fig. 3C).  Indeed, insulin sensitivity of peptide treated mice was similar to that of 

the lean mice fed the normal rodent diet (Fig. 3C). 

 

Effect of dogfish glucagon analogues on circulating lipids, amylase and glucagon concentrations  

The elevated levels of plasma total cholesterol in high fat fed mice (p<0.01) were not reversed by 

administration of [S2a]dogfish glucagon, [S2a]dogfish glucagon exendin-4(31-39), [S2a]dogfish 

glucagon-Lys30-γ-glutamyl-PAL or exendin-4 (Fig 4A).    Peptide treatments did not alter the 
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HDL-cholesterol response in high fat fed mice, except for [S2a]dogfish glucagon exendin-4(31-

39) which reduced the HDL-cholesterol concentrations (Fig. 4B; p=0.0315).  Similarly, the 

peptide treatments failed to counteract the rise in LDL-cholesterol found in high fat fed mice, 

except for the acylated [S2a]dogfish glucagon-Lys30-γ-glutamyl-PAL group which exhibited 

similar levels to lean mouse controls (Fig. 4C).  Both exendin-4 and [S2a]dogfish glucagon 

exendin-4(31-39) significantly reduced plasma triglycerides concentrations compared to lean 

controls (Fig. 4D; p=0.0105 and p<0.0048, respectively).   

 

As shown in Fig 5A, circulating amylase concentrations were similar in all groups of mice, 

indicating lack of adverse effect on pancreatic exocrine function and pancreatitis. Plasma 

glucagon was elevated by chronic high fat feeding (Fig. 5B; p<0.01).  This hyperglucagonaemia 

was significantly reduced by treatment with each of the three dogfish glucagon analogues 

(p<0.05-p<0.01) but not by exendin-4 (Fig. 5C).   

 

Effect of dogfish glucagon analogues on pancreatic hormone content and islet morphology  

Saline treated DIO mice had an increased pancreatic insulin and glucagon content (p<0.05) 

compared with mice fed a normal diet (Fig. 5C,D).  Insulin content was not affected by any of the 

peptide treatments (Fig. 5B) but [S2a]dogfish glucagon and [S2a]dogfish glucagon exendin-3(31-

39) decreased pancreatic glucagon by 28-34% ((p=0.0221 and p=0.0075, respectively, Fig. 5D). 

Fig. 6A shows representative images of pancreatic islet morphology in high fat fed mice 

following chronic peptide treatments.  [S2a]dogfish glucagon exendin-4(31-39) caused a small 

reduction in the number of pancreatic islets versus saline treated high fat fed controls (Fig. 6B).  

Smaller islets were also detected in [S2a]dogfish glucagon treated mice (Fig. 6C; p<0.05) which 

might indicate decreased insulin demand due to improved insulin sensitivity.  The percentage 

pancreatic β-cell area within islets was increased by 9.7% to 17.0% in all four peptide treated 

groups compared with high fat fed controls (Fig. 6D; p<0.05-p<0.01) and conversely the peptide 
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treatments led to a reduction in the % α-cell area by 25.9 to 45.5% within islets (Fig. 6E; p<0.05-

p<0.01).   

 

Effect of dogfish glucagon analogues on energy expenditure 

There were no significant changes in oxygen consumption, carbon dioxide production, respiratory 

exchange or energy expenditure following treatment with dogfish glucagon analogues versus 

controls (Supplementary Figs. 1-4).   

 

Discussion: 

Dogfish glucagon has structural similarities to mammalian glucagon (83% sequence homology), 

GLP-1 (55%) and GIP (53%) and as such provides a possible template for development of 

potential multi-acting peptides.  An earlier study in our laboratory has demonstrated that 

[S2a]dogfish glucagon and related analogues can activate both the GLP-1 and glucagon receptors 

without appreciable effects at the GIP receptor [38]. This is an important finding because co-

agonist peptides afford novel therapeutic agents which could be beneficial in combatting the 

growing global health challenge of T2DM, obesity and related metabolic diseases 

[14,22,28,33,46].  

 In the current study, we examined the metabolic effects of twice daily dogfish glucagon 

analogue administration for 51 days in mice that had been pre-conditioned to develop obesity 

related diabetes by feeding a high fat diet [47].  Dogfish glucagon like its mammalian counterpart 

is susceptible to rapid degradation by DPP-4 removing the N-terminal dipeptide His1-Ser2 

producing the truncated fragment glucagon(3-29).  Thus we developed structurally modified 

stable analogues including [S2a]dogfish glucagon, [S2a]dogfish glucagon exendin-4(31-39), 

[S2a]dogfish glucagon-Lys30-γ-glutamyl-PAL [38] to compare with the established therapeutic 

GLP-1 mimetic exendin-4. 

Over the course of the study, we observed a marked and sustained improvement in 

glycaemic control in all peptide treated groups compared to saline treated high fat fed controls.  
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Non fasting blood glucose concentrations were decreased and plasma insulin concentrations 

enhanced. However, no significant changes were noted in food intake despite a small reduction in 

body weight gain in the [S2a]dogfish glucagon, [S2a]dogfish glucagon exendin-4(31-39) and 

[S2a]dogfish glucagon-Lys30-γ-glutamyl-PAL treated groups. This might be related to small 

imbalance between energy intake and expenditure although we failed to demonstrate changes in 

the latter using CLAMS monitoring. Interestingly, other studies in rodents have also failed to 

show benefit of exendin-4 on body weight or food intake [48,49]. 

In contrast, major metabolic benefits were observed in all groups of peptide treated high 

fat fed mice. The improvements in oral and intraperitoneal glucose tolerance, insulin secretion, 

lipid metabolism and insulin sensitivity evident with the [S2a]dogfish glucagon analogues 

correlate well with effects of exendin-4 and other studies which examined metabolic responses to 

oxyntomodulin or dual acting agonists in diet-induced obese mice [21.30,31,33]. In support of 

our findings, these researchers noted improvements in insulin sensitivity and lipid levels which 

were mostly independent of the food intake or a body weight lowering effects [31,33].  Our 

outcomes also correlate well with findings by Finan and colleagues [28] using another dual 

agonist approach activating both GLP-1 and GIP receptors. These results along with good acute 

glucose-lowering and insulin-releasing responses to [S2a]dogfish glucagon peptides in mice 

receiving chronic peptide treatments indicate no loss of bioactivity or receptor tachyphylaxis.  

Furthermore, none of the treatments had adverse effects over 65 days on circulating amylase 

concentrations thereby revealing no indication of possible pancreatitis as reported for GLP-1 

mimetics in some other studies [50-51].  Indeed, exendin-4 and [S2a]dogfish glucagon exendin-

4(31-39) had the additional benefit of decreasing circulating triglycerides. 

Mice fed the high fat diet exhibited characteristic increases in plasma insulin and 

glucagon together with enhanced pancreatic hormone stores. Beta cell area was enhanced 

whereas islet number was unchanged as observed previously [52]. Chronic peptide treatment 

increased plasma insulin without affecting beta cell areas but islet alpha cell areas were decreased 

resulting in significant suppression of islet area with [S2a]dogfish glucagon. Plasma glucagon 
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concentrations were also suppressed suggesting that improvements in blood glucose control were 

due to combined benefits of improved insulin secretion, alpha cell function and insulin 

sensitivity. Overall, the effects of the different dogfish glucagon analogues were broadly similar, 

and longer-term studies might be necessary to reveal benefit of acylation which might be 

expected to impart greater benefit due to more sustained exposure due to albumin binding [53]. 

Further studies are required to explore this aspect including pharmacokinetic studies which are 

currently impossible to undertake due to the need for specific antibodies and assay development. 

From these various metabolic observations, it is clear that dogfish glucagon does not 

operate in mice in a manner analogous to mammalian glucagon which increases plasma glucose 

concentrations.  Indeed, this study and our previous in vitro and acute in vivo studies [38] suggest 

an action profile more similar to oxyntomodulin which is a naturally occurring C-terminally 

extended form of glucagon known to activate both glucagon and GLP-1 receptors [22,43]. 

Interestingly there is a significant difference in the C-terminal structure of these analogues 

compared with oxyntomodulin itself. Earlier work in our laboratory using receptor transfected 

cells and with specific antagonists indeed confirms that dogfish glucagon analogues activated 

both the glucagon and GLP-1 receptors but not the GIP receptor [38]. Furthermore, the peptides 

exhibited antihyperglycaemic and insulinotropic effects in GIP receptor knock-out (GIPR KO) 

mice, whereas these actions were significantly curtailed in mice without functional GLP-1 

receptors [38]. 

Significant evidence has been obtained recently from preclinical studies to support a 

positive role for glucagon acting as a satiety factor, increasing resting energy expenditure and 

promoting lipolysis in adipose tissue [1,4,54].  As highlighted in recent years, GLP-1 has many 

physiological actions which can help ameliorate diabetes, including reduction of food intake, 

slowing of gastric emptying, promotion of glucose uptake in peripheral tissues, inhibition of 

glucagon release and stimulation of glucose-dependent insulin secretion and enhancement of beta 

cell function [13,14].  The results of the present study demonstrated that stable dogfish glucagon 
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analogues can counteract the diabetogenic influence of high fat feeding in mice. The analogues 

are at least as effective as exendin-4 (Byetta) and may provide a possible new unimolecular 

candidate molecule for T2DM treatment by co-agonistic action.   
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Legends to Figures: 

 

Fig. 1  Chronic effect of twice daily administration of exendin-4, [S2a]dogfish glucagon, 

[S2a]dogfish glucagon-exendin-4(31-39) and [S2a]dogfish glucagon-Lys30-γ-glutamyl-PAL (each 

at 25 nmol/kg body weight) on non-fasting (A) blood glucose, (B) plasma insulin, (C) cumulative 

food intake, (D) body weight and (E) % body weight change in high-fat fed mice during 51 day 

treatment. The black horizontal bar represents the treatment period. Values represent mean ± 

SEM for 8 mice. *p<0.05, **p<0.01 and ***p<0.001 compared to saline treated control. 

 
 
Fig. 2 Effect of twice daily administration of exendin-4, [S2a]dogfish glucagon, [S2a]dogfish 

glucagon-exendin-4(31-39) and [S2a]dogfish glucagon-Lys30-γ-glutamyl-PAL on blood glucose 

and plasma insulin in response to an intraperitoneal (A,C) and oral (B,D) glucose challenge in 

high-fat diet fed mice. Tests were performed following 51 days of twice daily intraperitoneal 

administration of saline ((0.9% w/v) NaCl), exendin-4 or dogfish glucagon analogues (each at 25 

nmol/kg body weight). Mice were fasted for 10 h previously. Blood glucose (A and B) and 

plasma insulin concentrations (C and D) were measured prior to and after i.p. (A,C) or oral (B,D) 

administration of glucose (18 mmol/kg body weight). Blood glucose and integrated plasma 

insulin response (Area Under the Curve, AUC) are also included. Values represent mean ± SEM 

for 8 mice. *p<0.05, **p<0.01 and ***p<0.001 compared with saline-treated control. 

 

Fig. 3 Effect of twice daily administration of exendin-4, [S2a]dogfish glucagon, [S2a]dogfish 

glucagon-exendin-4(31-39) and [S2a]dogfish glucagon-Lys30-γ-glutamyl-PAL on blood glucose 

(A) and plasma insulin (B) in response to peptide desensitisation and insulin sensitivity (C) in 

high-fat diet fed mice. Tests were performed following 51 days of twice daily intraperitoneal 

administration of saline ((0.9% w/v) NaCl), exendin-4 or dogfish glucagon analogues (each at 25 

nmol/kg body weight). Blood glucose and plasma insulin concentrations were measured prior to 

and after i.p. administration of each peptide (25 nmol/kg body weight) with glucose (18 mmol/kg 
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body weight) in 10 h fasted mice. For insulin sensitivity, insulin (25 U/kg bw) was administrated 

by i.p. injection to fed mice at t=0 min. Blood glucose and plasma insulin AUC values are also 

included. Values represent mean ± SEM for 8 mice. *p<0.05, **p<0.01 and ***p<0.001 

compared with saline-treated control.        

 

Fig. 4 Effects of twice daily administration of saline, exendin-4, [S2a]dogfish glucagon, 

[S2a]dogfish glucagon-exendin-4(31-39) and [S2a]dogfish glucagon-Lys30-γ-glutamyl-PAL PAL 

(each at 25 nmol/kg body weight) on (A) plasma total cholesterol, (B) HDL cholesterol, (C) 

plasma triglycerides and (D) LDL cholesterol and (D) following 65 day treatment of high-fat fed 

and lean control mice. Values are mean ± SEM for n=8. *p<0.05 and **p<0.01 compared with 

saline treated control. +p<0.05 and ++p<0.01 compared with lean mice.    

 

Fig. 5 Effects of twice-daily i.p. administration of saline, exendin-4, [S2a]dogfish glucagon, 

[S2a]dogfish glucagon-exendin-4(31-39) and [S2a]dogfish glucagon-Lys30-γ-glutamyl-PAL (each 

at 25 nmol/kg body weight) on (A) amylase activity, (B) plasma glucagon, (C) pancreatic insulin 

content and (D) pancreatic glucagon content.  Observations were made following 65 day 

treatment of high fat fed and lean control mice. Values are mean ± SEM for n=8. *p<0.05 and 

**p<0.01 compared with saline treated control. +p<0.05 and ++p<0.01 compared with lean mice.    

  

Fig. 6 Effects of twice-daily i.p. administration of saline, exendin-4, [S2a]dogfish glucagon, 

[S2a]dogfish glucagon-exendin-4(31-39) and [S2a]dogfish glucagon-Lys30-γ-glutamyl-PAL (each 

at 25 nmol/kg body weight) following 65 day administration on (A) islet morphology, (B) 

number of islets, (C) islet area, (D) beta cell area and (E) alpha cell area. Observations were made 

following 65 day treatment of high fat fed and lean control mice. Representative images are 

shown in (A) all at x40 magnification. Values are mean ± SEM for n=8. *p<0.05 and **p<0.01 

compared with saline treated control. +p<0.05 compared with exendin-4 treated group. 
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TABLE 1 Comparison of primary structures dogfish glucagon, dogfish glucagon analogues and related 
peptides together with their theoretical/observed molecular masses. 

Name  Amino acid sequence  Theoretical 
molecular mass 

(Observed molecular 
mass) 

Dogfish glucagon  
(1‐29) 

H S E G T F T S D Y S K Y M D N R R A K D F V Q W L M 
N T 
 

3528.91 
(3528.14) 

[Sa2]dogfish glucagon  ‐  a  ‐  ‐  ‐  ‐ ‐  ‐  ‐  ‐  ‐  ‐  ‐   ‐  ‐  ‐   ‐  ‐  ‐  ‐  ‐  ‐  ‐   ‐   ‐   ‐  ‐  
‐  ‐ 

3512.91 
(3514.00) 

[S2a] dogfish glucagon‐
exendin‐4(31‐39) 

‐  a  ‐  ‐  ‐  ‐ ‐  ‐  ‐  ‐  ‐  ‐  ‐   ‐  ‐  ‐   ‐  ‐  ‐  ‐  ‐  ‐  ‐   ‐   ‐   ‐  ‐  
‐  ‐ P S S G A P P P S amide 

4289.77 
(4290.31) 

[S2a] dogfish glucagon‐Lys30‐γ‐
glutamyl‐PAL 

‐  a  ‐  ‐  ‐  ‐ ‐  ‐  ‐  ‐  ‐  ‐  ‐   ‐  ‐  ‐   ‐  ‐  ‐  ‐  ‐  ‐  ‐   ‐   ‐   ‐  ‐  
‐  ‐ K‐γ‐Glutamyl–PAL 

4008.65 
(4009.08) 

Human glucagon  ‐  ‐  Q ‐  ‐  ‐ ‐  ‐  ‐  ‐  ‐  ‐  ‐   ‐  L  ‐  S  ‐  ‐  ‐  Q ‐  ‐   ‐   ‐   ‐  ‐  
‐  ‐ 

3482.80 
(3481.49) 

Exendin‐4  ‐  G ‐  ‐  ‐  ‐ ‐  ‐  ‐  ‐  L ‐  ‐  Q  ‐  E  E E A V R  L ‐  �   E   ‐  ‐   
‐  ‐ P S S G A P P P S amide 

4186.57 
(4186.32) 

GLP‐1(7‐36) amide  ‐  A ‐  ‐  ‐  ‐  ‐  ‐  ‐ V ‐  S  ‐  L  E G Q A ‐  ‐  E ‐   � A  ‐   ‐ V  
K G R amide 

3297.70 
(3296.03) 

GIP(1‐30)  Y A ‐  ‐   ‐  ‐ �  ‐  ‐  ‐  ‐��  A  ‐  ‐   K �  H Q Q‐  ‐  ‐  N  ‐  ‐  L   
A Q K 

3551.1 
(3550.9) 
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