

Preserving Data Privacy with Searchable Symmetric

Encryption

Shaun Mc Brearty, William Farrelly,
¥
Kevin Curran

Letterkenny Institute Of Technology, Co. Donegal, Ireland
¥
Ulster University, Northern Ireland

Abstract - New techniques such as Searchable Encryption are being deployed to enable data to be encrypted online. Searchable

Encryption is now at the point that it can be deployed and used within the Cloud. In the Cloud, Searchable Encryption has the ability to

allow CSP customers to store their data in encrypted form, while retaining the ability to search that data without disclosing the

associated decryption key(s) to CSPs that is, without compromising data security on the Server. We present an SSE scheme and

evaluate the efficiency of storing and retrieving data from the cloud. The results showed that carrying out a task using SSE is directly

proportional to the amount of information involved.

Keywords - Security, Encryption, Cloud Computing, Search, WWW

I. INTRODUCTION

The benefits of Cloud computing are significant: reduced costs,

high reliability, as well as the immediate availability of additional

computing resources as and when needed. Despite such

advantages, Cloud Service Provider (CSP) consumers need to be

aware that the Clouds poses its own set of unique risks that are not

typically associated with storing and processing one’s own data

internally using privately owned infrastructure [1, 2]. Perhaps the

most severe risk facing CSP consumers at present is the threat of

data disclosure or data loss. Recent years have seen a number of

such incidents occur, whereby organisations customer data –

hosted on the Cloud - has been leaked online (for hacktivism or

vandalism purposes) or stolen for criminal purposes. Cloud

computing is made possible through the use of many technologies,

including internet access, virtualisation and third party data

centres.

In the case of online access to the CSP, such access controls

typically take the form of usernames and passwords; In the case of

virtualisation, such access controls typically take the form of

logical data separation; and in the case of third party data centres,

such access controls typically take the form of physical access

controls (For Example: Locks, Keypads) (as well as software

based access control) that prevent unauthorised CSP personnel

from gaining access to user data. In principle, all of the

aforementioned access controls are sound; however in practice,

such controls have been circumvented. In the event that any of the

aforementioned access controls are compromised maliciously, the

chances of a data breach occurring are high. Should a data breach

occur and the associated data is retrieved in encrypted form, the

data is essentially useless to an attacker (unless the encryption

algorithm utilised is weak and/or the attacker has some

foreknowledge of the associated decryption key) [2, 3]; however,

in the event that a data breach occurs and the associated data is

retrieved in plaintext form, an organisations worst nightmare has

become a reality. What follows is typically a slew of press

releases, negative publicity, damaged business reputations, and

fines under various data protection laws [4, 5] . To reduce the

impact of potential data breaches (and to provide privacy for CSP

consumer data) CSPs typically employ the use of cryptography.

In a Cloud environment, cryptography is typically utilised for two

purposes: security while data is at rest; and security while data is

in transit. Unfortunately the Cloud cannot guarantee the security

of data during processing as the current limitations of

cryptography prevent data from being processed in encrypted

form. Given the fact that data is processed in unencrypted form, it

is quite common for attackers to target data in use, rather than

targeting data which is encrypted during storage and transit. An

entity wishing to store its data within the Cloud must choose to (1)

Store Data in Encrypted Form or Store Data in Unencrypted

Form. If storing data in encrypted form then 2 Options exist which

are to 1. Disclose Decryption Key(s) to Cloud Service Provider

(CSP) or 2. Keep Decryption Key(s) Private.

Option 1A requires encrypted data owners to disclose their

decryption key(s) to CSPs. This is due to the fact that data cannot

be searched or operated on while in encrypted form. In order to

provide CSP customers with such functionality, CSPs require

access to the necessary decryption key(s). Option 1B (Keeping

Decryption Key(s) Private) represents the most secure sub-option;

however, as previously mentioned, CSP customers lose the ability

to search or operate on their data while it is in encrypted form. In

order to utilise such functionality using Option 1B, CSP

customers must download their data, decrypt it, and only then can

it be searched and/or operated on. While this approach may be

fine for small amounts of data, it becomes increasingly inefficient

and unwieldy as the amount of data increases. In addition, should

any changes be made to the data after it has been downloaded; the

customer must then re-encrypt and re-uploaded the entire dataset

to the Cloud. Option 2 avoids the use of encryption for data

security. Rather than relying on cryptography for data security;

that is, the traditional approach to data security, this approach

utilises the aforementioned approach of logically separating data

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Ulster University's Research Portal

https://core.ac.uk/display/287021024?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

[6]. Evidently, none of the options available at present provide an

adequate balance of data security and functionality. Option 1A

and Option 2 offer full functionality at the expense of data

security, while Option 1B provides data security at the expense of

any and all functionality. The ideal solution to achieving an

optimal balance of data security and functionality within the

Cloud involves the CSP having the ability to search and operate

on data while it is in encrypted form – without having any

knowledge of the associated decryption key(s), or the associated

plaintext(s) [6].

SSE represents one of the few forms of Searchable Encryption

that is achievable using established standardised encryption

algorithms. Alternative forms of Searchable Encryption require

the use of non-standardised, special purpose encryption

algorithms [7]. SSE is considered one of the least secure forms of

Searchable Encryption (see figure 1) primarily due to Information

Leakage [9, 11]. Solutions exist to eradicate and obfuscate all

forms of Information Leakage in SSE; however existing solutions

have a significant effect on the search efficiency of SSE [18].

Evidently, the challenge for researchers is to improve the security

of SSE while maintaining its superior search efficiency. Figure 1

lists all known solutions to the problem of searching on encrypted

data; that is, symmetrically encrypted data, as well as public key

encrypted data. The y-axis of figure 1 lists all Searchable

Encryption solutions with respect to their efficiency, while the x-

axis lists all solutions with respect to security. As regards

efficiency, the SSE literature defines efficiency as the time-

complexity associated with finding a given Encrypted Search

String (ESS) within a body of encrypted data (expressed in Big O

Notation).

Figure 1: Efficiency Vs. Security Trade-off For SE Schemes (Kamara 2013)

In terms of security, the SSE literature defines security as the

amount of Information Leakage associated with using a given

Searchable Encryption scheme; that is, what the Server learns (or

can deduce) about the ciphertext by searching over it (expressed

in Terms of the numerous categories of Information Leakage)

[19].

II. SEARCHABLE ENCRYPTION

Searchable Encryption operates on the assumption that a given

Term - whether in plaintext form or encrypted form - is located in

the same position in both the plaintext version of the Document

and the encrypted version of the same Document. For Example:

Given a plaintext Document beginning with the Term ‘The’, the

description provided by [8] assumes that the first three characters

of both the plaintext version of the Document and the encrypted

version of the Document correspond to the Term ‘The’.

Essentially this description assumes that symmetric ciphers

encrypt data one character at a time, when in reality, this is not the

case. Modern symmetric ciphers encrypt data in blocks of a fixed

size, rather than character by character [19]. The effect of using

such ciphers is that the ciphertext associated with a given plaintext

Term is spread across the entire ciphertext block, rather than

appearing in the same position as the plaintext Term; thus

preventing traditional Sequential Searching. In addition, modern

symmetric ciphers typically operate using advanced block cipher

modes (another mechanism to counter cryptanalysis) which

‘chain’ the ciphertext of previously encrypted blocks to the

current plaintext block (by means of a bitwise XOR operation);

thus further complicating the problem of searching ciphertext for

the presence of an encrypted version of a plaintext Search String.

Recognising the inherent difficulty in achieving Searchable

Encryption as originally described by [8], subsequent work in the

area focussed on developing solutions to the problem as originally

conceived; albeit without actually using Sequential Searching

[16]. Specifically, researchers focussed on adapting the Inverted

Index – a mechanism that has been used in plaintext Information

Retrieval for decades – for use in Searchable Encryption [12, 13].

In its most basic form, an Inverted Index is a Data Structure that

maps Terms to the Document(s) they occur in; therefore

eradicating the need to Sequentially Search Documents [15].

When adapted for use with an encrypted Document Collection,

the resulting Inverted Index is titled Searchable Symmetric

Encryption (SSE) [12, 14].

The topic of Information Leakage forms an Integral part of SSE.

When the idea of Searchable Encryption was first proposed, one

of its founding principles was the assumption that the Server

storing the encrypted Document Collection is an adversary that is

actively working on subverting the security of the Document

Collection it possesses (with the ultimate goal of gaining access to

the Document Collection in plaintext form) [8]. As such, the SSE

Inverted Index is constructed and operates in a manner that takes

significant steps to reduce the Leakage of potentially useful

Information to the Server. In practice, this involves the use of

encryption for the Document Collection, the Lexicon, Posting

Lists and Search Strings; as well as the use of Data Structures that

hinder the Servers efforts in achieving its malicious goals [12,16].

Responsibility for creating the SSE Inverted Index is offloaded to

the Client. In order for the Server to construct the SSE Inverted

Index, decryption keys must be disclosed to the Server (as

mentioned previously, this is undesirable from a data security

perspective). Rather than reveal sensitive information to the

Server, SSE delegates responsibility of constructing the SSE

Inverted Index to the Client. Given that the Client is responsible

for constructing the SSE Inverted Index, it is therefore expected

that the Client forwards the SSE Inverted Index to the Server

along with the encrypted Document Collection whenever the latter

is forwarded to the Server for storage [16].

The steps involved in constructing an SSE Inverted Index are

exactly the same as those involved in constructing an IR Inverted

Index, albeit the Client has responsibility for generating the SSE

Inverted Index, and various forms of encryption are applied to

each dataset after they have been compiled; that is, the Document

Collection, the Lexicon and the Postings List [16, 17]. In addition

to the use of encryption, a different Data Structure – namely, an

Array - is utilised to store Postings instead of a Linked List (as is

used in the IR Inverted Index) [12].

An Inverted Index as typically utilised in plaintext Information

Retrieval (IR) contains Data Structures commonly used to store

the three data sets that make up the Inverted Index, as well as

what form of computer memory is typically used to store each

Data Structure.

Rather than storing Lexicon Terms in plaintext form, SSE requires

that a keyed-hash of each Term be stored instead [10, 20]. The use

of a keyed hash function for this purpose - instead of traditional

reversible encryption - may seem curious at first; however

researchers have successfully argued that the Lexicon’s sole

purpose within the Inverted Index is to provide the Client with the

ability to carry out searches and nothing more. Given that the

Lexicon is unlikely to be downloaded to the Client (and is

therefore unlikely to be decrypted - unlike the actual Documents),

the use of reversible encryption for encrypting Lexicon Terms has

largely been abandoned. Aside from the aforementioned reasons,

the use of a keyed hash function for this purpose has a number of

advantages in terms of reduced Information Leakage and

improved data security, including the following [19].

 First and foremost, the use of a hash function (keyed or non-

keyed) ensures that all encrypted Lexicon Terms within the

SSE Inverted Index are of equal length (a hash function

produces a Hexadecimal String of fixed length); therefore

masking the length of all underlying plaintext Lexicon Terms.

 Secondly, the use of a hash function (again, keyed or non-

keyed) ensures that an adversary has no means of decrypting

the encrypted Lexicon Term back to its plaintext form.

 Thirdly, ensuring that a keyed hash function is used – instead

of a traditional non-keyed hash function – protects SSE from

Rainbow Table Attacks; that is, pre-computed Hash Values of

common Dictionary Words.

The use of Linked Lists for Posting List storage is abandoned in

SSE due to Setup Leakage resulting from their modus operandi;

that is, sequential memory access, with Arrays being preferred

instead [12].

Specifically, given the first Link in a Linked List, it is a trivial

process to examine all subsequent links due to the fact that each

Link in a Linked List contains a pointer to the next Link. Given

that each Term in an IR Inverted Index has its own dedicated

Linked List to store Postings; it is therefore a trivial process to

derive the Term-Document Frequency (TDF) for each Term in the

Lexicon in advance of the associated Term being searched for.

Rather than using one Array for each Term in the Lexicon (doing

so would also result in TDF Storage Leakage; that is, the size of

the Array would be equivalent to the TDF), SSE utilises a single

one dimensional Array to store all Postings for all Terms (see

figure 3). Utilising this approach, Setup Leakage amounts to the

total number of Postings for the entire Lexicon; that is, trivial

Leakage.

Figure 2: Inverted Index Visualisation (Including Data Structures and Memory

Management

Figure 3: Postings Stored In an Array.

Given that all Postings are now stored in a single one dimensional

Array, some mechanism to keep track of what Postings belong to

what Terms is therefore required. The solution to this problem is

relatively similar to a Linked List, albeit the solution involved

does not utilise pointers (as is the case with Linked Lists). In order

to keep track of what Postings are associated with a given Term,

SSE requires that the Document ID of the first Posting associated

with a given Term is stored alongside the keyed-hash of the Term

in the Lexicon Hash Table (in RAM) (For Example: Doc ID 1).

Alongside this Document ID (in the Lexicon Hash Table) is an

Array Index denoting the location of the second Posting

associated with the Term (For Example: 94). At the Array Index

in question is the Document ID of the 2
nd

 Posting, as well as the

Array Index denoting the location of the third Posting (For

Example: 79).

From the Research Results presented in [10] it is apparent that the

search time associated with SSE is impressive – to the point that

one could argue SSE is efficient enough to be deployed in a Cloud

environment. In addition, the work of Cash et al. (2013) proves

that SSE does indeed scale to large Data Sets whilst maintaining

its search efficiency, and also has the ability to support

Boolean/Conjunctive Queries in an efficient manner whilst

maintaining Data/Query Privacy. Despite such impressive Results,

we believe both papers focussed on the performance of a single

component of SSE; that is, searching an SSE Inverted Index, and

not SSE as a whole. Specifically, the author feels that both papers

have glossed over the topic of SSE Inverted Index Construction.

Given that constructing an SSE Inverted Index is a necessary pre-

requisite to searching an SSE Inverted Index; the author feels the

topic deserves significantly more attention than that which it has

been given in the published literature thus far.

[10] cover the topic briefly, however as indicated previously, the

Results presented are somewhat skewed by the fact they only

include the Results of converting a pre-existing IR Inverted Index

into an SSE Inverted Index – the Results do not include the time

taken to generate the initial IR Inverted Index. [11] make no

mention of the time taken to generate the SSE Inverted Index used

in their work. In addition to largely ignoring the process of

constructing an SSE Inverted Index, both papers have also ignored

the process of transferring the SSE Inverted Index and the

encrypted Document Collection from the Client to the Server.

As [10] correctly points out, the time taken to transfer both the

SSE Inverted Index and the encrypted Document Collection from

the Client to the Server will vary depending on the underlying

system [10] failed to cover this part of SSE for this reason);

however the author personally feels that the same can also be

argued in relation to cryptographic operations (which are of

course reported on in detail in both implementations).

When discussing their Results in relation to searching an SSE

Inverted Index, both Kamara et al. (2012) and Cash et al. (2013)

readily acknowledge that their Results only cover searching the

SSE Inverted Index and decrypting the Postings associated with

the Lexicon Term being searched – their Results do not include

the time associated with retrieving and forwarding matching

Documents to the Client – another essential component of SSE.

In addition to their failure to examine SSE as a whole, the author

is also somewhat disappointed in the quality of information

relating to the Test Data Sets and findings of both papers. In

relation to Test Data, table 1 summarises the Test Data statistics

published (and not published) in both papers.

Information Disclosed Kamara et

al. (2012)

[10]

Cash et al.

(2013) [11]

Number of Documents In

Data Set

No Yes

Number of Terms In Data

Set

No No

Number of Unique Terms

In Data Set

No Yes (Enron

Data Set Only)

Number of Postings In

Data Set

Yes

(Postings In

Media File

Data Set Not

Disclosed)

Yes (Postings

In Census Data

Set Not

Disclosed)

Number of Postings

Associated With Highest

Frequency Lexicon Term

No Yes (Not

Disclosed For

Media File

Data Set)

Size of Test Data Set Yes Yes (Size Of

Census Data

Set Not

Disclosed)

Table 1: Test Data Statistics

The total number of Terms in the Data Set is relevant in that it

dictates the amount of work needed to be performed during

Document Tokenisation; that is, IR Inverted Index Construction,

the number of unique Terms in the Data Set is relevant in that it

dictates the number of Terms contained within the Inverted Index

(both the IR Inverted Index and the SSE Inverted Index), while

the number of Postings in the Data Set is relevant in that it

dictates the number of Postings contained within the Inverted

Index (both the IR Inverted Index and the SSE Inverted Index).

The number of Postings associated with the highest frequency

Lexicon Term is relevant in that the Term in question is typically

used to measure the worst case scenario of searching an SSE

Inverted Index, while the size of the Test Data Set is relevant in

terms of transmitting the Document Collection to the Server from

the Client. As can be seen from table 1, a number of these

statistics are not disclosed (or are only partially disclosed) by the

respective authors; therefore making it difficult to give context to

the associated experiment results.

In relation to Inverted Index Construction statistics,

Table 2 summarises the Test Data statistics published (and not

published) in [10] and [11].

Information Disclosed Kamara et al.

(2012)

Cash et al.

(2013)

Time Taken To Generate IR

Inverted Index

No No

Size Of IR Inverted Index No No

Time Taken To Convert IR

Inverted Index To SSE

Inverted Index

Yes No

Size of SSE Inverted Index No Yes

Time Taken To Encrypt

Document Collection

Yes No

Table 2: Inverted Index Construction Statistics

The time taken to generate the IR Inverted Index is significant in

that the processing time is linear in the number of Terms

contained within the Document Collection. The time taken to

generate the SSE Inverted Index is significant in that the

processing time is linear in the number of Postings contained

within the IR Inverted Index, while the size of the SSE Inverted

Index is relevant in terms of transmitting the SSE Inverted Index

to the Server from the Client.

As can be seen in table 2, neither [10] or [11] disclose any

information in relation to IR Inverted Index Construction. When

reporting the Results of converting their IR Inverted Index to an

SSE Inverted Index, [10] choose to do so by charting their Results

against the size of the Test Data Set (in MB)
1
. Personally the

author feels this information would be much more informative if it

were charted against the number of Postings in the Test Data Set,

given that the size of the underlying Data Set in no way reflects

the number of unique Terms or Postings in the Data Set. For

Example: a 10MB DOCX file may contain the same Term

repeated over and over again; that is, one unique Term => one

Posting. In addition, the author feels that the use of the Document

Collection size here is a poor choice given the fact that different

file formats can contain the same number of words, but differ

greatly in size (such a TXT Files and DOCX Files)
1
.

III. EVALUATION

We have therefore identified a number of issues with the

information available regarding existing implementations of SSE.

The existing SSE literature has failed to cover the whole spectrum

of activities associated with SSE [20]. Additionally, the existing

published literature has yet to examine the usage of SSE when

deployed in a Cloud computing environment. In relation to RQ2,

the existing published literature has only compared the

performance of SSE with a Database Server, and not a traditional

plaintext IR system that utilises an Inverted Index [11].

1 It should be noted that the chart in question also includes encrypting the

associated Document Collection (which is of course dependant on the size of the
underlying Document Collection); however the time associated with executing this

portion of the task represents only a fraction of the time associated with generating

the SSE Inverted Index.

Both software artefacts are examples of personal file hosting

applications. Like all file hosting applications, the objective of

both the “PlainTXT Storage and Search Engine” and “CipherTXT

Storage and Search Engine“ is to allow service users to store their

files in the Cloud, and to access/retrieve those files as and when

needed (via a web browser). In the case of the “PlainTXT Storage

and Search Engine” application, users will be able to store their

personal files in plaintext form, as well as having the ability to

search and retrieve those files by forwarding queries to the

application in plaintext form. In the case of the “CipherTXT

Storage and Search Engine” application, users will be provided

with the exact same functionality as the “PlainTXT Storage and

Search Engine” application, with the exception that both user’s

files and queries are encrypted prior to being forwarded to the

application for storage/usage.

Given the prototype status of both applications, a number of

standard features and functionality typically associated with

personal file hosting services have been classified as out of scope

for the initial version of both software artefacts. Both the

“PlainTXT Storage and Search Engine” and “CipherTXT Storage

and Search Engine“ applications were implemented using the Java

Programming Language. All Client-Side functionality associated

with both applications was implemented in the form of Java

Applets, while all Server-Side functionality was implemented in

the form of Java Servlets. The SSE scheme underlying the

“CipherTXT Storage and Search Engine” application is [10].

The Operating System was Windows Ultimate 64-Bit SP1. The

Java Development Kit (JDK) was v.8 and JRE was update 51,

build 16. The Web Server (Localhost) was Apache Tomcat 7.0.56.

Tests were run on an Intel Core i7 4900MQ @2.8GHz Quad Core

laptop with 24GB RAM (3 X 8GB KINGSTON DDR3 @

800MHz). The Hard Disk was a 925GB SSHD with RAID 1. All

tests were conducted using the default Java Virtual Machine

(JVM) - no additional runtime parameters were configured. All

experiments were performed on the ’20 Newsgroups’ Data Set

(Rennie, 2008). In its original form, the ’20 Newsgroups’ Data Set

consists of 18,828 files, subdivided into 20 folders. Initially, each

file in the Data Set has a numeric file name between 4 and 6 digits

in length with no file extension. Prior to being used in the

experiments, we first attempted to move all files in the Data Set

into a single folder; however at this point we noted that the names

of all files in the Data Set are not unique (the contents of each file

are unique however [21]. In an effort to avoid duplicate file

names, we randomly assigned an 8 digit numeric name to each file

in the Data Set. We also appended the TXT file extension to each

file in the Data Set. As part of Testing, we tested each aspect of

SSE with Data Sets that increased in size by an order of

magnitude. As such, it was necessary to derive smaller subsets

from the full ’20 Newsgroups’ Test Data Set. In total, 5 subsets

were derived (DS1 – DS5). The details associated with each

subset – and the full Data Set (DS6) – can be seen in table 6. We

present the results associated with SSE Inverted Index

Construction, SSE Inverted Index Searching and the comparison

of SSE and plaintext Information Retrieval (IR). All results

represent average values obtained over ten executions of each

experiment.

SSE Inverted Index Construction

The time associated with constructing an IR Inverted Index

appears to increase linearly as the number of Terms in the

underlying Document Collection increases. In relation to Test

Data, an IR Inverted Index was generated for Test Data Set 6

(approximately 5 million Terms) in approximately 7.6 seconds.

Performance of SSE vs. Plaintext IR

We found that the amount of time necessary for SSE uploading

increases in a non-linear manner when compared to the amount of

time necessary for plaintext IR uploading.

Figure 4: Plaintext IR Querying vs. SSE Querying

Figure 4 denotes the comparison of traditional plaintext

Information Retrieval (IR) querying and SSE querying. The

Experimental Results presented in figure 4 consist of the time

taken to identify the set of all Postings associated with the most

frequently occurring Lexicon Term in the underlying Document

Collection, and encapsulating the set of all matching Document

within a ZIP File which is then returned to the Client. It is

obvious from figure 4 that the amount of time necessary for SSE

querying increases in a non-linear manner when compared to the

amount of time necessary for plaintext IR querying.

Figure 5: Java Heap Memory Usage and Garbage Collection Statistics for SSE

Inverted Index Construction

In relation to searching an SSE Inverted Index, the results provide

additional proof of the efficiency of SSE when implemented in

software. The implementation of SSE developed as part of this

research was able to identify and decrypt a single Posting

associated with a given Lexicon Term in approximately 22

microseconds (μs). This performance is comparable with the

implementations of SSE developed by Kamara et al. (2012) which

was 7.3 Microseconds (μs) per Posting and Cash et al. (2013)

which was 100 Microseconds (μs) per Posting. Regarding the

efficiency of constructing an SSE Inverted Index, the results are

somewhat inconclusive. Given the five steps involved in

constructing an SSE Inverted Index, each step in the

implementation of SSE produced as part of this research

performed as expected with the exception of the second step:

Converting an IR Inverted Index to an SSE Inverted Index.

For Test Data Set 1 (DS1) through Test Data Set 4 (DS4), an SSE

Inverted Index was generated from an existing IR Inverted Index

in a time linear to the number of Postings stored in the IR Inverted

Index; however, for DS5 and DS6, this apparent linear

performance decreased dramatically. This decrease in

performance could be attributed to a combination of one or more

of the following: 1) The Java Virtual Machines (JVM) Garbage

Collection functionality, 2) Insufficient Java Heap memory, 3)

The use of String Objects in the Encrypted_Array_Node Class, 4)

The size of the SSE Inverted Index, and 5)

IV. CONCLUSION

The results show that carrying out a task using SSE is directly

proportional to the amount of information involved. In the case of

constructing an IR Inverted Index, the results show that the time

taken to generate an IR Inverted Index is directly proportional to

the number of Terms contained in the underlying Document

Collection. Converting the same IR Inverted Index to an SSE

Inverted Index is directly proportional to the number of Postings

contained within the IR Inverted Index, while the time taken to

encrypt the underlying Document Collection is directly

proportional to the number of Terms contained within the

Document Collection. In relation to searching in SSE, the time

taken to identify and decrypt the set of Postings associated with a

given Lexicon Term is directly proportional to the number of

Postings. Regarding the question of whether or not SSE is

efficient enough to be deployed in a Cloud environment, the

answer is context dependant. If deployed in an environment

whereby Search Results only have to be returned to the user in

small quantities (such as an Internet Search Engine (For Example:

ten results at a time)), then SSE would be more than efficient,

irrespective of the size of the underlying Data Set (due to the fact

that only a small number of Postings would need to be decrypted

at a given time). If deployed in an environment whereby all results

must be returned at once (as was the case with the implementation

of SSE developed as part of this research, SSE would only be

suitable for small and medium sized Data Sets.

REFERENCES

[1] Eurostat (2014) Cloud computing - statistics on the use by enterprises

http://ec.europa.eu/eurostat/statistics-explained/index.php/Cloud_computing_-

_statistics_on_the_use_by_enterprises

[2] Hashizume, K., Rosado, D. G., Fernández-Medina, E. and Fernandez, E. B.

(2013) An analysis of security issues for cloud computing
http://www.jisajournal.com/content/pdf/1869-0238-4-5.pdf

[3] Nguyen, M., Chau, N., Jung, S. and Jung, S. (2014) A Demonstration of

Malicious Insider Attacks inside Cloud IaaS Vendor

http://www.ijiet.org/papers/455-F028.pdf

[4] ICO (2015) Monetary Penalty Notice: Staysure.co.uk Limited

https://ico.org.uk/media/action-weve-taken/mpns/1043368/staysure-monetary-
penalty-notice.pdf

[5] Levick (2015) DATA SECURITY & PRIVACY
http://levick.com/experience/specialty/data-security-privacy

[6] Mather, T., Kumaraswamy, S. and Latif, S. (2009) Cloud Security and Privacy,
California: O'Reilly.

[7] Gentry, C. (2009) A Fully Homomorphic Encryption Scheme, unpublished
thesis (PhD), Stanford University.

[8] Song, D. X., Wagner, D. and Perrig, A. (2000) 'Practical Techniques For
Searches On Encrypted Data', in Titsworth, F. M., ed., IEEE Symposium on

Security and Privacy, 2000, Berkeley, California, 14-17 May 2000, Washington,

D.C.: IEEE Computer Society, 44-55.

[9] Gentry, C., Halvei, S. and Smart, N. P. (2015) Homomorphic Evaluation of the

AES Circuit (Updated Implementation) https://eprint.iacr.org/2012/099.pdf

[10] Kamara, S., Papamanthou, C. and Roeder, T. (2012) Dynamic Searchable

Symmetric Encryption Proceedings of the 2012 ACM conference on Computer
and communications security, pp: 965-976, https://eprint.iacr.org/2012/530.pdf

[11] Cash, D., Jarecki, S., Jutla, C., Krawczyk, H., Rosu, M. C. and Steiner, M.

(2013) Highly-Scalable Searchable Symmetric Encryption with Support for

Boolean Queries, Crypto 2013, Part 1, LNCS 8042, pp: 353-73

[12] Curtmola, R., Garay, J., Kamara, S. and Ostrovsky, R. (2006) Searchable

Symmetric Encryption: Improved Definitions and Efficient Constructions
http://eprint.iacr.org/2006/210.pdf

[13] Bosch, C., Hartel, P., Jonker, W. and Peter, A. (2014) A Survey of Provably
Secure Searchable Encryption. http://eprints.eemcs.utwente.nl/24788/01/a18-

bosch.pdf

[14] Luenberger, D. G. (2006) 'Information Science' in, Princeton, New Jersey:

Princeton University Press, 284-300.

[15] Manning, C. D., Raghavan, P. and , S., H. (2008) Introduction to Information

Retrieval, Cambridge, England: Cambridge University Press.

[16] Goh, E. (2003) Secure Indexes

http://crypto.stanford.edu/~eujin/papers/secureindex/secureindex.pdf

[17] Goldreich, O. and Ostrovsky, R. (1992) Software Protection and Simulation

on Oblivious RAMs

[18] Stefanov, E., Papamanthou, C. and Shi, E. (2013) Practical Dynamic

Searchable Encryption with Small Leakage, IACR Cryptology ePrint Archive, pp:

832 https://eprint.iacr.org/2013/832.pdf

[19] Stallings, W. (2014) Cryptography and Network Security: Principles And

Practices, New Jersey: Pearson Education.

[20] [Chase, M. and Kamara, S. (2010) Structured Encryption and Controlled

Disclosure http://eprint.iacr.org/2011/010.pdf

[21] Rennie, J. (2008) The 20 Newsgroups Data Set

http://qwone.com/~jason/20Newsgroups/

