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Abstract - Image processing has traditionally involved the use of square operators on regular rectangular image 

lattices.  For many years the concept of using hexagonal pixels for image capture has been investigated, and 

several advantages of such an approach have been highlighted. We present a design procedure for hexagonal 

gradient operators, developed within the finite element framework, for use on hexagonal pixel based images. In 

order to evaluate the approach, we generate pseudo hexagonal images via resizing and resampling of rectangular 

images. This approach also allows us to present results visually without the use of hexagonal lattice capture or 

display hardware. We provide comparative results with existing gradient operators, both rectangular and 

hexagonal. 
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1. Introduction 

In machine vision, feature detection is often used to extract salient information from images. Image content often 

represents curved structures, which increase the complexity of the information to be processed compared with 

structures that can be described by a discrete set of directions. Most well-known operators on a conventional 

rectangular lattice exhibit limitations when detecting curved edges, most commonly due to the processing being 

aligned principally in the horizontal and vertical directions. Potentially image information is excluded or lost due 

to failure to represent and process curves accurately [24]. One method to improve the treatment of curved objects 
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is the use of compass operators that rotate feature detection masks to successfully detect diagonal edges [19]. An 

alternative approach is to increase the image resolution if possible [15]. This can help to reduce the loss of 

information, but increase in image resolution generally leads to an increase in computational cost. To overcome 

this problem, an alternative sampling lattice, i.e., hexagonal, can be introduced.   

 

Machine vision systems are often modelled on characteristics of the human vision system, in which photoreceptors 

in the human fovea are densely packed in an hexagonal structure as illustrated in Figure 1. The characteristics of 

the human vision system have been used to construct a noise spectrum [3] and, Gabor filters [31] for use on a 

hexagonal grid structure.  Applications have been developed including biologically-inspired fovea modelling with 

neural networks that correspond to the hexagonal biological structure of photoreceptors [9], and silicon retinas for 

robot vision [17], [28]. Indeed, hexagonal lattices have been explored for approximately forty years [8], [33], [29]; 

research on processing hexagonal images includes areas such as image reconstruction [33], [13], hexagonal filter 

banks [11], blue-noise halftoning [9], and robot exploration [22]. 

 

 

There is a number of fundamental advantages of using the hexagonal grid structure for digital image 

representation. One of the major advantages is the consistency available in terms of neighbouring pixel distances 

when tiling an image plane. In a rectangular grid, the distance d between neighbouring pixel centres depends on 

whether the neighbours are vertically/horizontally adjacent, (with d=1), or diagonally adjacent (with 𝑑 = 2) as 

illustrated in Figure 2 (a). 

 

 
 

 

Figure 1: Cross section of human fovea showing the hexagonal structure of the photoreceptor 

 cones densely packed [5] 
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Figure 2.  Adjacency properties of (a) a square lattice, (b) a hexagonal lattice 

 

In a hexagonal lattice, the distances between all neighbouring pixels are equal, i.e., d=1 in all cases, as shown in 

Figure 2(b). This equidistance property facilitates the implementation of circular symmetric kernels and is 

associated with increased directional accuracy when detecting edges, both straight and curved [10]. The accuracy 

of circular and near circular operators for edge detection has been demonstrated in [27], [6]. Sampling on a 

hexagonal grid has also been shown to incur less aliasing [19] and greater efficiency in terms of sampling density 

than on a square lattice. Vitulli [23] shows that to achieve the same average vertical sampling density (i.e., the 

same number of pixel rows in the image) 13% fewer pixels are required with hexagonal sampling than with square 

sampling. Hence, less storage in memory will be needed for the image data, and potentially less computational 

time to process the image.  

 

Many edge detection algorithms that exist for conventional images are based on components strongly aligned with 

the horizontal and vertical axes, and hence they are not readily adaptable to a hexagonal lattice. To date, only a 

small number of hexagonal gradient operators have been designed for use on hexagonal images, such as the work 

of Davies [6], Middleton [15], and Staunton [24]. More recently, Shima [30] designed new consistent gradient 

operators for direct use on hexagonal images; the approach is based on that in [25] where the operators are derived 

by minimizing the difference between the ideal gradient response and that obtained by the gradient operator. In 

addition, recent work has highlighted the advantages of omni-directional feature extraction [26], and in particular, 

Paplinski [1] has introduced tri-directional feature extraction on traditional rectangular pixel-based images.  The 

use of a hexagonal image structure facilitates tri-directional feature extraction by introducing three natural axes 

along which directional derivative operators may be easily computed. One of the main advantages of using the 

three natural axes of symmetry is that directional derivatives along axial directions can be computed efficiently 
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by rotation.  We need compute operators for only one specific axial direction (say, x-axis) and then transform the 

operator through 60o rotations to generate operators along the other two axial directions.    

 

We present an efficient design procedure for the development of hexagonal tri-directional derivative operators 

that can be applied directly to hexagonal images. We show that only one operator (x-directional derivative) needs 

to be computed and the other two operators can then be obtained via appropriate rotation. We demonstrate that, 

unlike the approach of previously developed operators for use on hexagonal images, our design procedure 

facilitates the development of gradient operators of any size. For example, the operators developed by Davies [4], 

which use masks designed on the Cartesian axes, are not readily scalable to larger neighbourhood operators; the 

tri-directional hexagonal operators developed by Shima [18] use Fourier transforms, are quite computationally 

expensive and do not offer flexibility to readily scale the operator neighbourhood. In Section 3 we show our 

operator design procedure in detail, demonstrating that only a small number of simple function evaluations are 

required.  

 

The paper is organised as follows: Section 2 describes the resampling technique that enables an image to be 

represented using hexagonal pixels.  In Section 3 we present the tri-directional operator design, highlighting how 

this can be readily scalable to operators of any size. In Section 4 we present performance evaluation that illustrates 

that the proposed gradient operators are superior to the current state-of-the-art techniques when comparing 

performance over a range of edge orientations and displacements. Our approach, combined with the spatial 

sampling efficiency of a hexagonal structure, also provides improvements in computational performance in 

comparison with the use of traditional rectangular pixel-based images.  A conclusion is provided in Section 5. 

2. Resampling Techniques 

One of the main restrictions on adoption of the hexagonal lattice for image representation and processing is the 

absence of availability of hardware: both sensors that enable the capture of hexagonal images and devices that 

enable their display. In order for research to advance in this area a resampling technique must be incorporated to 

enable the processing and display of hexagonal images using existing square lattice hardware. 

   

In Gardiner et al. [7], a comparative evaluation was completed to determine the most appropriate resampling 

technique to generate hexagonal pixel-based images, evaluating those discussed in [34], [16], [21], [4]. Based on 
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the evaluation results obtained in [7], we have chosen to use the resampling technique in [4] throughout this work. 

Wuthrich [4] proposed a method of creating a pseudo hexagonal pixel, known as a hyperpel, from a cluster of 

square pixels. In [20], this approach is adapted to use sub-pixels to enable a hexagonal pixel to be formed from a 

cluster of square sub-pixels. Sub-pixel creation limits the loss of image resolution. As illustrated in Figure 3, each 

pixel of the original image is represented by a 77×  pixel block of equal intensity in the new image [20]. This 

creates a resized image of the same resolution as the original image with the ability to display each pixel as a 

group of sub-pixels. 

 

Figure 3.  Resizing of a pixel to a 7×7 pixel block 

 

The motivation for image resizing is to enable the display of sub-pixels, which is not otherwise possible.  With 

this structure now in place, a cluster of sub-pixels in the new image, closely representing the shape of a hexagon, 

can be selected; this cluster represents a single hexagonal pixel in the resized image, and its intensity value is the 

average of the intensity values of its sub-pixels. Selection of the number of sub-pixels to be clustered for each 

hexagonal pixel is based on two issues: the arrangement must allow a tessellation of the image plane; and the 

cluster must closely resemble a hexagon in shape. Based on our evaluation in [7], we use the 56 sub-pixel cluster 

illustrated in Figure 4.  

 

Figure 4.  Sub pixel cluster representations of a hexagonal pixel 
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3. Scalable Tri-Directional Operator Design Framework 

We present a design procedure for gradient operators that is developed within a finite element framework.  By 

this we mean that a number of principles that underpin finite element computation are used to develop and 

implement the operators.  Firstly, we establish a mesh of equilateral triangular elements based on the hexagonal 

pixel lattice.  The image is then represented as a piecewise polynomial function (piecewise linear) over this 

computational mesh.  To develop an operator that is implemented on a specific neighbourhood a test function is 

selected and used in a weak form of the operator.  This involves numerical integration of the test function with 

the image derivative over the neighbourhood; operators at different scale can be achieved by selecting differently 

sized neighbourhoods and correspondingly scaled test functions.  As in the finite element method, an operator is 

constructed by a process of element assembly. This means that a neighbourhood integral is computed by 

assembling a collection of element integrals corresponding to the triangular elements contained within the 

neighbourhood.  Hence it is unnecessary to compute an entire operator all at once; rather, simple element integrals 

are computed in a systematic fashion and the element integrals are “assembled” using element-node relationships 

that are a standard part of the mesh description in the finite element method.  Each element integral can be 

computed efficiently by low order integration (three function evaluations) as the test function is smooth on each 

element and each basis function is linear (and, therefore, its derivative constant). Coupled with the six-fold 

symmetry afforded by the computational mesh that is based on the hexagonal pixel lattice, this approach provides 

low computational complexity when scaling to larger operators.  

 

The use of the finite element framework enables a unified approach to be taken to the design and implementation 

across different pixel lattices.  In [17] we have used the finite element framework with a traditional rectangular 

pixel array to develop and analyse near-circular operators.  When used with a hexagonal pixel array the six-fold 

symmetry of the naturally occurring computational grid of equilateral triangular elements enables particularly 

efficient implementation through use of rotational symmetries. This means that, unlike other hexagonal methods, 

not only are we able to provide a systematic technique for scaling operators on a hexagonal grid, we can do this 

with low computational complexity – even more so than on a rectangular grid, due to the increased degree of 

rotational symmetry present in the computational mesh.  
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3.1 Hexagonal image representation 

With reference to the resized hexagonal image, it is possible to represent this image by an array of samples of a 

continuous function ),( yxu  of image intensity on a domain Ω . Figure 5 shows a selection of hexagonal pixels 

with nodes placed at the centre of each pixel. These nodes are the reference points for computation based on finite 

element techniques to be used throughout the domain Ω . 

 

x

yz

 

Figure 5.  Axes directions in a hexagonal image 

3.2 Operator design 

We propose operators for use on a hexagonal pixel-based image with structure as illustrated in Figure 5.  The 

scalable operator design procedure is based on the use of a “virtual mesh” consisting of equilateral triangular 

elements and which overlays the hexagonal pixel array as shown in Figure 6.  

 

 

Figure 6.  Virtual mesh of equilateral triangular elements 
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Typically image processing gradient operators are based on the construction of two independent directional 

derivative operators aligned in the horizontal and vertical directions. Here we present a computationally efficient 

approach to hexagonal image processing operator implementation by designing a tri-directional operator, i.e., 

three hexagonal operators that are aligned along the x-, y- and z- hexagonal axes illustrated in Figure 5. 

Computation is efficient as only one operator needs to be computed: say, the x- directional operator. This operator 

can then be rotated by !60  and !120  to obtain the y- and z- directional derivative operators respectively.  

 

Redundancy exists between the three operator masks of a tri-directional operator, allowing, for example, the x-

directional operator mask to be computed as a combination of the other two operator masks using the relationship

.zxy += This is not considered to be a major weakness of the operator design as this relationship facilitates the 

implementation of Cartesian axes operators if required by appropriate combination of the tri-directional masks. It 

should be noted that, although the hexagonal structure naturally contains three axes, we use only two axes in the 

co-ordinate system in order to ensure a unique representation.  Hence, we have chosen to work with the x- and y- 

axes shown in Figure 7. 

 

For the derivation of the primary operator, the x-directional operator, with any node ),( ii yx  we associate a 

piecewise linear basis function which has the properties 
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Figure 7.  Hexagonal co-ordinate system 
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),( yxiφ is thus a "tent-shaped" function with support restricted to a small neighbourhood centred on node )( ii yx  

consisting of only those elements that have node ),( ii yx  as a vertex. Then we may approximately represent the 

image u over a neighbourhood σ
iΩ  centred on node i by a function  

∑
∈

=
σ

φ
iDj

jj yxUyxU ),(),(  
 

(2) 

 

in which the parameters }{ jU are the sampled image intensity values and σ
iD  is the set of nodes contained in    

σ
iΩ . Hence we obtain a piecewise linear representation of the image on the neighbourhood σ

iΩ , where the 

parameter σ is representative of the neighbourhood size. 

 

As we are concerned initially with the development of only a x-directional derivative operator, a weak form is 

obtained by considering only the x derivative term, multiplying it by a test function 1Hv∈ , and integrating over 

the image domain Ω  to give 

∫
Ω ∂
∂

= ωvd
x
uuE )(  

 

(3) 

 

In the finite element method a finite-dimensional subspace 1HS h ⊂  is used for function approximation. Our 

design procedure also incorporates a finite-dimensional test space 1HT h ⊂σ  that explicitly embodies a scale 

parameter ,σ  enabling the development of adaptive derivative operators. Hence, we use a test function σψ i that 

is restricted to have support over an operator neighbourhood σ
iΩ . Operator neighbourhoods for the first three 

operator sizes (7-, 19-, 37-nodes) are shown in Figure 8.  The test function is then used in the weak form of the 

first derivative operator, providing the functional  

∫
Ω

∂

∂
=

σ

ωψ σσ

i

iii d
x
UUE )(   

(4) 

In the following Section 3.3 we start by explaining the operator imlementation process in the case of the smallest 

(7-node) operator.  We then explain how implementation is extended to larger operators and how rotational 

symmetries are exploited to maintain low computational complexity. 
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Figure 8.  Hexagonal operator neighbourhoods for operator sizes H7, H19 and H37 

 

3.3 Operator Implementation 

To illustrate the implementation of the primary 7-point first order hexagonal operator, consider the H7 hexagonal 

structure in Figure 8. Here the smallest neighbourhood centred on node i  covers a set of six elements }{ me . The 

test function σψ i  associated with the central node i  shares common support with iφ  and the surrounding six basis 

functions { }kφ . Hence )(UEi
σ  can be computed over the six elements in the neighbourhood σ

iΩ by substituting 

the image representation (equation 2) into the functional )(UEi
σ , which yields 

 

∑
=

=
N

j
jiji UKUE

1

)( σσ  
 

(5) 

where 

∑
Ω⊂

=
σ

σσ
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m
ijij kK

|
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(6) 
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and σ,m
ijk is the element integral 

∫ ∂
∂

=
me

i
jm

ij d
x

k ωψ
φ σσ,  

 

(7) 

computed over element σ
ime Ω⊂ . The test functions σψ i used in this operator design are a set of Gaussian basis 

functions expressed as 

( )
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(8) 

and restricted to the operator neighbourhood σ
iΩ . The test function builds in smoothing to the operator design, 

removing the necessity for any image pre-processing.  The value of σ is determined as 𝑊/1.96, where W is the 

operator width; this ensures that 95% of the central cross-section of the Gaussian function falls within the operator 

neighbourhood. 
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Figure 9.  Six elements centred at node i of a neighbourhood σ
iΩ 	

 

For each of the six triangular elements within the neighbourhood, a triangular element operator must be generated 

whose entries map directly to the corresponding spatial locations within the 7-point operator neighbourhood. To 

illustrate this, consider element 1e  shown in Figure 9. The Gaussian test function σψ i  shares common support 

with the linear basis functions jφ , where λβα ,,=j  and thus the first derivative triangular element operator is 

computed as 
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⎥
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Using a two co-ordinate system whose origin is at node i as in Figure 7, σ,1
ijk is computed as 

dxdy
x

k
x

i
j

i J
1

0

1

0
,1 ∫ ∫

−

∂

∂
= σσ

α ψ
φ

 
 

(10) 

for λβα ,,=j . With nodal separation normalised to unity as in Figure 7, the Jacobian J has a value of 23 . 

Using the coordinate system with origin at node i, the basis functions jφ  can be defined on element 1e  as  

yx −−=1αφ ,       x=βφ     and       y=λφ  (11) 

and when differentiated with respect to x we obtain 

1−=
∂

∂
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To illustrate element operator computation, consider nodes βα ,  and λ  in 1e . Then σ
α
,1
ik may be written as 
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σ
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ik  

may be written as 
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and 0,1 =σ
λik . 
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Figure 10.  Local co-ordinate reference for equilateral triangle 

 



 13 

As computation of each element integral σ,m
ijk  involves evaluation of a Gaussian function, numerical integration 

is used to approximate the integrals. In order to achieve this in a systematic manner, a local co-ordinate reference 

system for a right-angled triangle is introduced as illustrated in Figure 10, with co-ordinates ξ  and η  such that 

0≥ξ , 0≥η  and 01 ≥−− ηξ . A transformation maps the hexagonal coordinate system used for each element to 

a Cartesian coordinate system in order to enable use of a standard two-dimensional Gauss-Legendre integration 

rule. Mappings from me  to ê  are defined by  

 

m
i

mm
i

mm xxxxxx 11312 )()( +−+−= ηξ  (15) 

m
i

mm
i

mm yyyyyy 11312 )()( +−+−= ηξ  (16) 

 

Since jφ is linear on each element, and σψ i is smooth, sufficient accuracy and computational parsimony can be 

achieved by using just three integration points in each element (which correspond, after mapping, to three standard 

Gauss- Legendre integration points in the standard right-angled triangle). Hence to compute each value k in each 

triangular element operator K in equation (9) requires only three evaluations of a Gaussian function; so 9 such 

function evaluations are required to compute K. Due to the six-fold reflectional symmetry of the six element 

neighbourhood shown in Figure 9, only two element matrices, K, have to be computed in order to determine the 

complete operator shown in equation (17).  The computational complexity of the design approach is therefore 

low, as only a maximum of 18 Gaussian function evaluations are required to compute the operator. 

 

On completion of each element operator, the 7-point mask is constructed by finite element assembly. This 7-point 

operator computes the local gradient along the x-direction and has the structure shown in equation (17). The 

operator is denoted by x
7H , and the values of the co-efficients a  and b  are 0.147 and 0.295, respectively. 
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By rotating the x-directional operator anti-clockwise by 60o and 120o, the y- and z- directional operators can be 

readily obtained, respectively, as 
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When calculating the gradient response for tri-directional derivative operators, redundancy is introduced due to 

the relationships by rotation between the three operators, and the gradient magnitude can be represented using 

only operators x
nH  and z

nH as  

).)()(
3
2 22 z

n
x
n

z
n

x
nn HHHHG ++=

 

(19) 

 

To extend the operator implementation to larger scales we consider how rotational symmetries may be used to 

achieve computational efficiency. For the smallest operator 𝐻,- developed above, it was necessary to compute 

element integrals over only element 𝑒/ in Figure 7, and, since the basis functions are linear, only a single value, 

σ
α
,1
ik , was required. Then σ

α
σ
β

,1,1
ii kk −= , and 0,1 =σ

λik . Since the test function σψ i has infinite rotational 

symmetry, element integrals over the other five elements 65432 ,,,, eeeee  σ
iΩ⊂ e1, e2, e3, e4, e5 ⊂ Ω89may be 

obtained as σ
α
,1
ik±  or 0 by making use of rotational symmetries. The entire operator 𝐻,- may then be constructed 

efficiently through finite element assembly. This approach is readily extended to larger operators. For the next 

operator 𝐻/:- , we need consider only the extension of the sector containing element 𝑒/, i.e., one-sixth of the 

neighbourhood, comprising elements 𝑒/, 𝑒,, 𝑒; and e: in Figure 7.  Within this sector, from rotational symmetry 

it can be seen that element integrals computed over e, will be the same as those computed over 𝑒,, and so element 

integrals are required over only two new elements: 𝑒,	and 𝑒;.  Element integrals over the other five sectors of the 

neighbourhood for 𝐻/:- 	are then obtained through rotational symmetries, enabling 𝐻/:- 	to be constructed by finite 

element assembly after computing element integrals on only two new elements. Similarly, for 𝐻2,-  we need 

consider only extension of the sector to include new elements 𝑒14, 𝑒15, 𝑒1,, 𝑒1; and 29e . Here, element integrals 

computed over 𝑒14 and 𝑒1:, and over 𝑒15	and 𝑒1;, will be the same, respectively. Hence element integrals are 

required over only three new elements: 2625,ee e14, e14and 𝑒1,. In general, it is straightforward to establish that 

the computational complexity of extending the scale of the operator is linear in terms of the number of new 

elements over which element integrals need to be computed. Since computation of any element integral requires 
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just three function evaluations of the test function, computational complexity is therefore simply linear in function 

evaluations as the operator scale is increased. 

4. Performance Evaluation 

Evaluation is presented to compare the performance of our proposed approach of scalable hexagonal tri-directional 

operators with other existing derivative operators that can be applied directly to hexagonal images and with 

equivalently sized square operators for use on standard rectangular lattice images. Hexagonal operators used for 

comparison in this evaluation include the modified Sobel [15] and modified Prewitt [24] hexagonal operators, the 

Davies hexagonal operator [6], and the Shima hexagonal operator [30]. It should be noted that hexagonal Sobel, 

Prewitt and Davies operators exist only at one scale, namely the scale associated with the smallest proposed 

operator size, 7H , whereas the Shima operator has been developed using two neighbourhood operator sizes, 7-

point  and 19-point.  

 

One advantage of hexagonal operators is their directional anisotropy due to the equidistant neighbourhood pixel 

separation. Because of this directional anisotropy, we can consider hexagonal operators to be near-circular 

operators, and, therefore, to conduct a fair comparison with square operators, we compare our set of proposed 

hexagonal operators with the finite element based near-circular operators developed for use on square pixel-based 

images in [2]. Such operators have already demonstrated improved angular accuracy for edge detection compared 

with similar square operators on a rectangular lattice. 

 

To implement and evaluate our proposed operators using hexagonal pixel-based images we create a virtual 

hexagonal environment that simulates the use of a hexagonal image sensor. We initially create hexagonal pixel-

based images, as described in Section 2, and then process the images using the operators described in Section 3 

and the comparators listed above (modified Sobel, modified Prewitt, Davies and Shima). Evaluation of operator 

performances takes place within the virtual hexagonal environment. To assess the performance of our proposed 

operators, evaluation is conducted on both synthetic image data and real image data. In Section 4.1, two evaluation 

approaches are applied to synthetic data: Figure of Merit [32], comparing the operator’s edge response with the 

expected edge response with respect to edge location; and Edge Sensitivity Analysis [14], comparing the accuracy 

of the operator’s response with respect to magnitude, strength and edge displacement.  In Section 4.2, evaluation 

on real image data is conducted using the Robust Visual Method [18],  an  evaluation technique that provides a 
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measure of performance based on a visual rating score. Using these three measures of operator evaluation provides 

a strong evaluation framework to fairly compare our proposed hexagonal derivative operators with existing 

operators. 

 

4.1 Synthetic Image Data Evaluation 

The first evaluation approach presented is the Figure of Merit. In order to accurately measure the performance of 

hexagonal gradient operators, we have modified the well-known Figure of Merit technique to accommodate the 

use of hexagonal pixel-based images. This technique considers three major areas of error associated with the 

determination of an edge: missing valid edge points; failure to localise edge points; classification of noise 

fluctuations as edge points. In addition to these considerations, when measuring edge detection performance, edge 

detectors that produce smeared edge locations should be penalised, whilst those that produce edge locations that 

are localised should be awarded credit. Hence Pratt introduced the Figure of Merit technique as one that balances 

the three types of error above, defined as 

R =
1

max	(IC, ID)
1

1 + αd1

DI

8J/

 (19) 

where IA is the actual number of edge pixels detected, II  is the ideal number of edge pixels, d is the separation 

distance of a detected edge point normal to a line of ideal edge points, and α is a scaling factor.  The Figure of 

Merit is normalised such that R takes values between 0 and 1, where 1 represents a perfectly detected edge.  The 

scaling factor, α, is most commonly chosen to be 1/9, although this value may be adjusted to penalise edges that 

are localised but offset from the true edge position.  Since knowledge of the actual edge location is necessary, this 

method can only be used on synthetic images. 

 

To provide a realistic environment to compare operator responses, the Figure of Merit (FoM) technique is used 

on images with varying signal-to-noise ratios (SNR), where SNR = h1/σO1 , h is the height of the step edge and σO1  

is the variance of the noise. Synthetic images for Figure of Merit measurements typically contain horizontal, 

vertical or oriented edges. However, one proposed advantage of hexagonal pixel-based images is their ability to 

accurately represent curves in real images. Therefore, we extend the standard use of the Figure of Merit technique 

to incorporate the measure of detected curved edges. The synthetic test images used for evaluation are generated 

using h=58 with SNR = 100, 50, 20, 10, 5 and 1 and contain a horizontal edge, an edge oriented at 60o or a curved 

edge (examples of which are presented in Figure 11).  Five sets of test images were generated for each edge type, 



 17 

at each SNR (totalling 90 test images).  The FoM was calculated for each operator over the test image set and 

averaged to obtain an accurate Figure of Merit result.  

 

 

(a) Horizontal edge (SNR=1) 

 

(b) 60o oriented edge (SNR=10) 

 

(c) Curved Edge (SNR=100) 

Figure 11. Example images for use in Figure of Merit 

 

The results shown in Figure 12 indicate that the accuracy of the proposed H7 tri-directional operator is greater 

than that of the Prewitt operator in all evaluated edge directions, and the same as obtained by the Sobel and Davies 

operators. This is due to the Sobel and Davies operators being equivalent to the proposed operator H7 in relation 

to their weight proportions, i.e. the weight values of the operators are proportioned to achieve smoothing by giving 

greater importance to the centre weight values.  

 

As our proposed operator is readily scalable to any operator size, we also compare the operator performance with 

the Shima operator, the only existing hexagonal operator that can accommodate a neighbourhood exceeding seven 

pixels in size. The Shima operator has been developed using two neighbourhood operator sizes, 7-point and 19-

point (denoted as Shima7 and Shima19 respectively), and so these are compared with our H7, H19 and H37 tri-

directional operators. The Figure of Merit results are presented in Figure 13(a)–(c), which demonstrates that 

although our proposed 7-point hexagonal operator (H7) performs equivalently to the 7-point Shima operator, the 

larger scale operators (H19 and H37) perform significantly better than both the 7-point and 19-point Shima 

operators, particularly on images  with  high  levels  of  noise.    

 

To further evaluate the accuracy of our scalable tri-directional operators, we compute Figure of Merit results to 

compare the performance of the proposed operators applied directly to hexagonal images with the performance 

of equivalently sized square operators for use on standard rectangular lattice images.  Again, three hexagonal 

operator sizes are used for evaluation with three equivalent near-circular operators, namely 3x3, 5x5 and 7x7, 

denoted by NC3x3, NC5x5 and NC7x7 respectively. The results in Figure 13(d)-(f) show that, in most cases, the 
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proposed hexagonal operators detect edges more accurately than the equivalent near-circular operators applied to 

square images, particularly in images with high levels of noise. 

 

(a) FoM computed on a horizontal edge 

 

(b) FoM computed on a curved edge 

 

(c)  FoM computed on an oriented edge 60o 

Figure 12: Figure of Merit results to compare tri-directional operator with existing 7-point hexagonal operators 
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(a) FoM computed on a horizontal edge 

 

(d) FoM computed on a horizontal edge 

 

(b) FoM computed on a curved edge 

 

(e) FoM computed on a curved edge 

 

(c)  FoM computed on an oriented edge 60o 

 

(f)  FoM computed on an oriented edge 60o 

Figure 13: Figure of Merit results to compare tri-directional operators with: (a)-(c) Shima operators 

(hexagonal pixel based operators); (d) – (f) circular operators of equivalent sizes 
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For the larger scale operator H37 we also provide comparative performance evaluation with Marr-Hildreth and the 

SUSAN operator of similar size. In Figure 14(a) and Figure 14(b) we see that Figure of Merit values are 

substantially better for H37 than for Marr-Hildreth or SUSAN for low signal-to-noise ratios. 

 

 
 

(a)  FoM computed on a horizontal edge 
 
 

 

 
 

(b) FoM computed on a vertical edge 
 
Figure 14: Figure of Merit results to compare tri-directional operators with Marr-Hildreth Laplacian of Gaussian 

and the SUSAN operator 
 

The second performance evaluation approach, edge sensitivity analysis [14], is presented in Figure 16, Figure 17 

and Figure 18. This approach enables comparison of operator performance over a range of edge orientations and 

displacements.  The edge model takes into consideration the edge orientation and the displacement of the edge 

from the centre point of the edge model. These can be measured by creating an edge model of an infinite straight 

step edge with unit intensity on one side and zero intensity on the other, allowing the edge to be characterised by 

the straight line defining the boundary. The line is parameterised with respect to its orientation from the origin, 𝜃, 

and the line’s displacement from the origin, 𝜌, see Figure 15. 
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This edge sensitivity model has been designed for use on a conventional rectangular lattice, but we have extended 

the model for use on the hexagonal lattice. Kitchen and Malin’s edge model is used to create an infinite horizontal 

straight step edge where both 𝜃 and 𝜌 can be incremented simultaneously. The pixel intensities at each increment 

can be directly resampled to a hexagonal pixel-based image, where a hexagonally structured operator can be 

applied directly to the edge sensitivity model. Hexagonal operators can then be assessed directly using the images 

generated by the edge sensitivity evaluation technique in order to evaluate the sensitivity of an operator’s response 

with respect to edge orientation and displacement. This adaptation allows the sensitivity of both rectangular and 

hexagonal operators to be compared fairly on a common framework.  

xθ

ρ

y

 
Figure 15. Parameters of edge sensitivity model 

 

An ideal result is represented by the horizontal dashed lines at each orientation in the edge sensitivity graphs. In 

Figure 16 the response from the proposed 7-point tri-directional operator is compared with the hexagonal Prewitt 

operator and the equivalently sized square neighbourhood operator (NC3x3). Due to the equivalence of the Sobel, 

Davies and Shima7 operators with the proposed H7 operator, the edge sensitivity analysis for these operators is 

not shown. Results show that the H7 tri-directional operator provides similar performance to the Prewitt operator, 

with the performance of the NC3x3 operator being slightly superior. However, results for larger neighbourhood 

operators shown in Figure 17 and Figure 18 demonstrate how the performance accuracy of the proposed tri-

directional operator increases as the operator size increases (H19 and H37),  providing improved performance over 

existing hexagonal and square neighbourhood operators. This is clearly shown by the edge sensitivity error tables 

Table 1, Table 2 and Table 3, where the average error for each angle is compared across operators of equivalent 

size.  Table 1 compares the average error for operators equivalent in size to the proposed H7 operator; Table 2 

compares operators equivalent in size to H19, and Table 3 compares operators equivalent in size to H37. 
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(a) Edge sensitivity results for Prewitt hexagonal operator 

 

(b)  Edge sensitivity results for H7 hexagonal operator 

 

(c)  Edge sensitivity results for NC3x3 square operator 

Figure 16: Edge sensitivity results comparing square and hexagonal operator responses 
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(a) Edge sensitivity results for Shima19 operator 

 

(b)  Edge sensitivity results for H19 operator 

 

(c)  Edge sensitivity results for NC5x5 operator 

Figure 17: Edge sensitivity results comparing square and hexagonal operator responses 
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(a)  Edge sensitivity results for NC7x7 operator 

 

(b)  Edge sensitivity results for H37 hexagonal operator 

Figure 18: Edge sensitivity results comparing square and hexagonal operator responses 

 

 

Angle Prewitt NC3x3 H7 

0o 0 0 0 
5o 1.496 0.634 1.582 

10o 2.861 1.187 2.482 
15o 3.950 1.628 2.660 
20o 4.623 1.925 2.388 
25o 4.758 1.965 1.715 
30o 4.469 1.653 0.585 
35o 3.566 1.144 0.596 
40o 2.045 0.577 1.459 
45o 0 0 1.932 

Table 1: Edge sensitivity errors for 7-point operators 
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Angle Shima19 NC5x5 H19 

0o 0 0 0 
5o 0.679 0.484 0.477 

10o 0.979 0.762 0.520 
15o 0.814 0.850 0.209 
20o 0.416 0.850 0.295 
25o 0.318 1.162 0.523 
30o 0.605 1.564 0.565 
35o 1.011 1.605 0.623 
40o 1.369 1.054 0.793 
45o 1.491 0 0.851 

Table 2: Edge sensitivity errors for 19-point operator 

 
 
 

Angle NC7x7 H37 

0o 0 0 
5o 0.189 0.185 

10o 0.180 0.233 
15o 0.250 0.238 
20o 0.358 0.362 
25o 0.221 0.496 
30o 0.575 0.446 
35o 1.365 0.448 
40o 1.217 0.641 
45o 0 0.837 

Table 3: Edge sensitivity errors for 37-point operator 

 

4.2 Real Image Data Evaluation 

In support of these observations, a qualitative method of evaluation using real images, the robust visual method, 

is used to further compare the performance of the proposed hexagonal operator with existing approaches. The 

Robust Visual Method is used to visually evaluate operator edge maps, based on human evaluators rating the 

visual integrity of edge maps generated by different operators. Most methods of evaluating operator output 

responses rely on the use of ground truth, but creating ground truth for real images can be time consuming and 

inaccurate. An advantage of the robust visual evaluation method is that it uses real images that rely on the 

subjective evaluation of edge maps by the human visual system and therefore does not require the use of ground 

truth. The real images used are selected such that they have a centrally placed object in the image foreground 

(Figure 19). 
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               (a) 

 
               (b)  

               (c) 
 

                (d) 

 
              (e) 

 
              (f) 

 
               (g) 

 
               (h) 

Figure 19. Image set for Robust Visual Method of evaluation 

 

In the robust visual method, the subjects rank each edge image on a scale of 1 to 7 according to how well they can 

recognise the centrally placed object, where 7 indicates easy recognition and 1 indicates no coherent information.  

The Intraclass Correlation Coefficient, calculated by the statistical measure ICC 3, k = UVWXYVW
UVW

 was used to 

ensure image rating consistency within the set of human subjects, where BMS is the mean square value of the 

rating, EMS is the total mean square error and k is the number of evaluators.  In phase 1 of the technique, for any 

one image the human subjects rate six edge images generated by an operator over a range of thresholds. This 

results in the visually best edge map corresponding to each image for each operator being selected by the 

evaluators.  In phase 2, the human subjects then rated the selected edge maps for each image on a scale of 1 to 7 

in order to compare the overall performance of different operators.  Again consistency was checked using 

ICC(3,k). Initially edge maps were generated for each of the eight images at a range of thresholds using the 

proposed 7-point (H7), 19-point (H19) and 37-point (H37) Linear-Gaussian hexagonal operators, and for 

comparison, equivalently sized Shima hexagonal operators (Shima7 and Shima19) and near-circular square 

operators (NC3x3, NC5x5, NC7x7,) have been applied to the same set of images. Figure 20 shows an example edge 

map set (for six different threshold (T)) for the H7 operator applied to the image shown in Figure 19(e).   
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(a) T=20 

 

(b) T=25 

 

(c) T=30 

 

(d) T=35 

 

(e) T=40 

 

(f) T=45 

 

Figure 20. An example image set for the H7 operator at various thresholds values 

 

The information collected from each evaluator was analysed for consistency using an Intraclass Correlation 

Coefficient. Correlation measures for each operator are presented in Table 4. These results indicate satisfactory 

consistency between the rankings obtained from the seven human evaluators.  

 

 
Operator Type ICC(3,7) 
7-point Linear-Gaussian (H7) 0.7674 
7-point Shima (Shima7) 0.8996 
3x3 near-circular Square (NC3x3) 0.8501 
19-point Linear-Gaussian (H19) 0.7849 
19-point Shima (Shima19) 0.8992 
5x5 near-circular Square (NC5x5) 0.8493 
37-point Linear-Gaussian (H37) 0.7664 
7x7 near-circular Square (NC7x7) 0.7612 

 
Table 4: Phase one correlation ratings for each operator 

 
 
The edge map with the highest mean rating, for each image evaluated by each operator, was selected to be used 

in phase two of the evaluation. This image set was used to determine which operator performed best overall with 

respect to detecting edges. Again seven evaluators ranked the image set and consistency was tested using the 
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Intraclass Correlation Coefficient. The correlation values for phase two are shown in Table 5. Again the values 

show satisfactory consistency of the data obtained from the evaluators for each operator.  

 

 
Operator Type ICC(3,7) 
7-point Linear-Gaussian (H7) 0.6953 
7-point Shima (Shima7) 0.8562 
3x3 near-circular Square (NC3x3) 0.5690 
19-point Linear-Gaussian (H19) 0.6496 
19-point Shima (Shima19) 0.8340 
5x5 near-circular Square (NC5x5) 0.6848 
37-point Linear-Gaussian (H37) 0.6559 
7x7 near-circular Square (NC7x7) 0.8565 

Table 5: Phase two correlation ratings for each operator 

 

The mean ratings throughout the image set in phase two for each of the evaluated operators are presented in Table 

6. These ratings indicate which operator provides the best results when used to detect edges averaged over the set 

of test images. 

 
Operator Type Mean Rating 

7-point Linear-Gaussian (H7) 5.500 
7-point Shima (Shima7) 4.2857 
3x3 near-circular Square (NC3x3) 4.7321 
19-point Linear-Gaussian (H19) 5.4643 
19-point Shima (Shima19) 4.2143 
5x5 near-circular Square (NC5x5) 4.6607 
37-point Linear-Gaussian (H37) 5.2321 
7x7 near-circular Square (NC7x7) 4.2857 

Table 6: Phase two mean rating for each operator 

 
The results show that the proposed 7-point operator has been ranked highest by the evaluators at generating 

visually pleasing edge maps when compared with an equivalent conventional square operator and the 7-point 

Shima hexagonal operator. Also the proposed 19-point operator has been ranked highest compared with 

equivalently sized operators, and the proposed 37-point operator ranked highest when compared with an 

equivalently sized near-circular operator. These results, combined with the results obtained from the Figure of 

Merit and Edge Sensitivity Analysis evaluation techniques highlight the improved accuracy obtained when using 

the proposed hexagonal operator for edge detection.  
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5. Conclusion 

To date, almost all existing hexagonal operators have been developed based on a 7-point neighbourhood, with 

only the Shima hexagonal operator extending to a larger neighbourhood, i.e. a 19-point neighbourhood (as 

illustrated in Figure 7). However, as the Shima operator is developed within the frequency domain, it does not 

readily scale to accommodate larger neighbourhoods in a way that would enable content-adaptive implementation 

across the image plane. In this paper we have presented a design procedure for hexagonal operators that is easily 

scalable to any size of neighbourhood, thus enabling content-adaptive implementation. We have illustrated the 

approach for the case of adaptive first order tri-directional derivative operators with the application of edge 

extraction and analysis, though other derivative operators, and corresponding applications, may be readily 

developed within the same framework. 

 

Our comparative evaluation of the proposed Linear-Gaussian hexagonal operators, applied to the tasks of edge 

extraction and analysis, has embraced a range of techniques, including Figure of Merit, edge sensitivity analysis, 

and robust visual method. Unlike operators restricted to a single 7-point neighbourhood, the proposed approach 

is scalable and our results illustrate the relative benefits in terms of improved performance, compared with existing 

hexagonal operators, when processing images with high levels of noise. To set our hexagonal operator 

performance into an absolute context, the accuracy of the proposed Linear-Gaussian operators was also compared, 

at each scale, with finite element based near-circular square operators of equivalent size (operating on a regular 

rectangular pixel lattice). Results illustrate that, at each scale, the Linear-Gaussian hexagonal operators perform 

similarly to, and in some cases better than, existing edge detection methods on standard square images. Hence, 

we conclude that our proposed approach to hexagonal operator design provides acceptable levels of accuracy for 

hexagonal image processing in absolute terms, whilst readily providing the flexibility to be incorporated into 

scale-adaptive applications; such flexibility is not easily available through previous hexagonal design techniques. 
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