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Clinical deficiency of the B-vitamin riboflavin (vitamin B2) is largely confined to developing
countries; however accumulating evidence indicates that suboptimal riboflavin status is a
widespread problem across the developed world. Few international data are available on
riboflavin status as measured by the functional biomarker, erythrocyte glutathione reductase
activation coefficient, considered to be the gold standard index. One important role of
riboflavin in the form of flavin dinucleotide is as a co-factor for the folate-metabolising en-
zyme methylenetetrahydrofolate reductase (MTHFR). Homozygosity for the common
C677T polymorphism in MTHFR, affecting over 10 % of the UK and Irish populations
and up to 32 % of other populations worldwide, has been associated with an increased
risk of CVD, and more recently with hypertension. This review will explore available studies
reporting riboflavin status worldwide, the interaction of riboflavin with the MTHFR C677T
polymorphism and the potential role of riboflavin in personalised nutrition. Evidence is ac-
cumulating for a novel role of riboflavin as an important modulator of blood pressure (BP)
specifically in individuals with the MTHFR 677TT genotype, with results from a number of
recent randomised controlled trials demonstrating that riboflavin supplementation can sign-
ificantly reduce systolic BP by 5–13 mmHg in these genetically at risk adults. Studies are
however required to investigate the BP-lowering effect of riboflavin in different populations
and in response to doses higher than 1·6 mg/d. Furthermore, work focusing on the transla-
tion of this research to health professionals and patients is also required.

Riboflavin: Methylenetetrahydrofolate reductase: MTHFR C677T: Blood pressure:
Personalised nutrition

Riboflavin (vitamin B2) is a water-soluble B-vitamin
defined chemically as 7,8-dimethyl-10-1′-D-ribityl isoal-
loxazine. It acts as a precursor for FMN and FAD(1).
Clinical riboflavin deficiency is not generally considered
to be a problem in the developed world but in recent
years evidence has shown that sub-optimal status may
be more widespread than generally perceived based on
studies reporting the functional biomarker, erythrocyte
glutathione reductase activation coefficient (EGRac)
generally considered as the gold standard index of status.
Few international data are however available based on
EGRac and reports on riboflavin status are more com-
monly based solely on dietary intake data. Although
riboflavin is required for numerous metabolic reactions

its role (in the form of FAD) as a cofactor for the folate-
metabolising enzyme, methylenetetrahydrofolate reduc-
tase (MTHFR) has recently received particular attention.
Homozygosity (MTHFR 677TT genotype) for a com-
mon polymorphism in MTHFR, affecting over 10 % of
the UK and Irish populations and up to 32 % of other
populations worldwide(2), has been associated with an
increased risk of CVD(3) and more recently with hyper-
tension(4). Emerging evidence from intervention trials
supports a novel role for riboflavin supplementation in
protecting against hypertension specifically in individuals
with the MTHFR 677TT genotype(5–7). This genotype-
specific effect of riboflavin potentially offers a persona-
lised approach for the prevention and treatment of
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hypertension. This review will explore available studies
reporting riboflavin status in populations worldwide
and consider its potential role in human health, with a
particular emphasis on the interaction of riboflavin
with the MTHFR C677T polymorphism. In this regard,
the potential role of riboflavin in personalised nutrition
and its translation to the management of patients with
hypertension will also be discussed.

Riboflavin and health

Roles of riboflavin in human health

Riboflavin is a water-soluble B-vitamin, which acts as a
precursor for the coenzymes FMN and FAD, the meta-
bolically active vitamin forms(1). These coenzymes (FAD
and FMN) participate in intermediary metabolism and
catalyse numerous oxidation–reduction reactions, play-
ing a fundamental role in themetabolism of energy, certain
drugs and toxins and in antioxidant protection(8,9).
Furthermore, riboflavin interacts with a number of other
nutrients, including metabolically linked B-vitamins and
iron. Early animal studies have linked riboflavin deficiency
with impaired iron absorption, increased intestinal loss of
iron, and/or impaired iron utilisation for the synthesis of
Hb(10). More recently, supplementation with riboflavin
has been shown to enhance circulating Hb levels in human
subjects(11) furthermore, correcting riboflavin deficiency in
individuals who were both riboflavin and iron deficient
improved the response of iron deficiency anaemia to iron
therapy(12). Irrefutable evidence has shown the metabolism
of other B-vitamins is dependent on riboflavin coenzymes.
Riboflavin is involved in vitamin B6 metabolism; the en-
zyme pyridoxine-phosphate oxidase requires FMN for the
conversion of pyridoxine phosphate to its coenzyme form
pyridoxal-5 phosphate(13). Historical evidence from animal
studies reported that pyridoxine-phosphate oxidase activity
is sensitive to changes in dietary riboflavin intake and thus
riboflavindeficiencymayalter pyridoxal 5′phosphate activ-
ity(14). Research from our centre conducted a number of
yearsagoconfirmedthe interrelationshipbetweenriboflavin
and vitamin B6 in human subjects and showed that ribofla-
vin supplementation of older adults not only improved bio-
marker status of riboflavin, but also enhanced blood
pyridoxal-5 phosphate (vitamin B6) concentrations(15).
Niacin synthesis is also reliant on the FAD-dependent en-
zyme kynurenine mono-oxygenase, which is required for
the synthesis of the coenzymes NAD and nicotinamide ad-
enine dinucleotide phosphate from tryptophan. Riboflavin
deficiency decreases the conversion of tryptophan to NAD
and nicotinamide adenine dinucleotide phosphate resulting
inniacindeficiency(8).Workfromourcentreandothershave
demonstrated the key role riboflavinplays inC1metabolism
via its role as a co-factor for the MTHFR enzyme.

Riboflavin absorption and transport

Dietary riboflavin occurs mainly in the form of FAD and
smaller amounts occur as FMN or as free riboflavin(16).
Unlike free riboflavin, FAD and FMN must be

hydrolysed in the intestinal lumen to yield free riboflavin
prior to absorption. Animal studies have shown that the
uptake of dietary riboflavin from the intestine is
increased in riboflavin deficiency(17) and urinary excre-
tion was found to increase linearly with increasing diet-
ary intakes in individuals with optimal status(18). The
transport of flavins in blood is by loose binding to albu-
min and tight binding to a number of immunoglobulins
in serum particularly IgA, IgG and IgM(19). A number
of physiological factors have been reported to influence
the rate of intestinal absorption of riboflavin. Diets
high in psyllium gum decrease the rate of intestinal ab-
sorption, whereas bile salts increase absorption(20).
Alcohol is reported to interfere with the digestion of
food flavins into riboflavin and the intestinal absorption
of riboflavin(21). Notably, concentrations of riboflavin
synthesised by bacterial metabolism in the human
colon may be more than 6-fold higher than dietary
intakes(22).

Riboflavin requirements and sources

Worldwide dietary recommendations for riboflavin range
from 1·1 to 1·6 mg/d for adults, an increment of 0·3 mg/d
is recommended during pregnancy to cover the increased
tissue synthesis for fetal and maternal development and
an additional 0·4–0·5 mg/d during lactation(23–25).
Clinical signs of deficiency in human subjects appear at
intakes <0·5–0·6 mg/d and urinary excretion of riboflavin
is seen at intake levels of approximately 1 mg/d(1).
Riboflavin is found in a wide variety of food but yeast ex-
tract and offal products especially those based on liver
are the only rich sources, containing more than 2 mg/
100 g(26). The latest National Diet and Nutrition
Survey reported that milk and milk products, meat,
and fortified breakfast cereal make the greatest contribu-
tion to riboflavin intake in a British diet(27) (Table 1).
Unlike any European country, the USA has a mandatory
riboflavin enrichment policy to replace the riboflavin lost
from starch during milling (0·40 mg for wheat starch)(28).
Similarly, a mandatory enrichment of starch with ribofla-
vin (4 mg/kg for starch) is in place in Canada. No toxic
effects have been reported in relation to intakes of
riboflavin at doses higher than dietary recommenda-
tions(29–32), the absorption of riboflavin appears to be
limited to approximately 30 mg at any one time(13) with
apparently little or no absorption at higher doses(33).

Table 1. Food sources of riboflavin in the UK (NDNS)(27)

Sources mg/average serving mg/100 g

Milk 0·45 0·90
Yoghurt 0·35 0·44
Eggs 0·26 0·52
Fortified breakfast cereal 0·22 0·74
Spinach 0·21 0·24
Chicken 0·15 0·15
Cheese 0·11 3·67
Bread (White) 0·09 0·36

NDNS, National Diet and Nutrition Survey (2008–2009 to 2011–2012).
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Furthermore, the Institute of Medicine in the USA did
not establish a tolerable upper intake level for riboflavin
when the RDA was revised in 1998(1). A harmless side-
effect of high-dose riboflavin intake is the increased in-
tensity of urine colour to bright yellow.

Riboflavin deficiency

Isolated clinical riboflavin deficiency does not have
unique or characteristic physical features. The classical
symptoms, angular stomatitis, cheilosis and glossitis,
are not specific to riboflavin deficiency and may be due
to other vitamin deficiencies. Furthermore, after 3–8
months of inadequate riboflavin intake other symptoms
are reported to appear including magenta tongue, sebor-
rheic dermatitis, vascularisation of the cornea and nor-
mochromic normocytic anaemia(1,8). Other than dietary
inadequacy certain endocrine abnormalities i.e. adrenal
and thyroid hormone insufficiency(20,34) and certain
drugs can inhibit the conversion of riboflavin into its ac-
tive coenzyme derivatives(35,36).

Newborn infants are at increased risk of riboflavin
deficiency when maternal status is poor during preg-
nancy(37) or as a result of phototherapy treatment for
hyperbilirubinaemia(38). Pregnant women with riboflavin
deficiency have been reported to be 4·7 times more likely
to develop preeclampsia compared to those with ad-
equate riboflavin status(39). It has been suggested this
may be associated with mitochondrial function, oxidative
stress and blood vessel dilation(39). Furthermore, a com-
mon polymorphism (C677T) in the gene encoding the
FAD-dependent enzyme MTHFR has been associated
with an increased risk of preclampsia(40). A number of
studies have reported that riboflavin requirements are
higher with increased physical activity levels(41,42), exces-
sive alcohol consumption and smoking(21,43).

Assessment of biomarker status of riboflavin

Riboflavin status can be measured in a range of biologic-
al samples, including urine, plasma and erythrocytes.
The method for the estimation of riboflavin status,
which is regarded as the gold standard is EGRac, a func-
tional assay that measures the activity of glutathione re-
ductase before and after in vitro reactivation with its
prosthetic group FAD(44). EGRac is calculated as a
ratio of FAD stimulated to unstimulated enzyme activ-
ity, with higher values reflective of lower riboflavin sta-
tus. However currently there is no consensus as to the
appropriate EGRac cut-off values to indicate low/high
status, with studies reporting deficiency ranges from
>1·2, >1·3 or >1·4(11,45,46). Recent changes made to the
assay methodology resulted in the acceptance of a cut-
off ≥1·3 although others have suggested that this cut-off
value should be further increased(46). A systematic review
by Hoey et al.(44) identified EGRac to be an effective
biomarker of riboflavin status at a population level
with severe deficient-to-normal riboflavin status. This
conclusion was drawn from randomised controlled trials
and found EGRac to be sensitive to changes in

supplementation periods of at least 4 weeks with doses ran-
ging from1·0 to5·0 mg.TheEGRacassay reflects long-term
riboflavin status; howeveranumberof conditions areknown
to affect the performance of the assay, including deficiency
of glucose-6-phosphate dehydrogenase, β-thalassemia,
hypothyroidism and hyperthyroidism(47).

Riboflavin status can also be assessed by urinary ex-
cretion although this is influenced by age, physical activ-
ity, body temperature, treatment with certain drugs and
negative nitrogen balance(48). Riboflavin excretion is
reduced to 40 µg/24 h during deficiency compared with
120 µg/24 h when optimal status is achieved(49). A num-
ber of studies have used biological samples particularly
plasma and erythrocytes to measure riboflavin status dir-
ectly but the results are inconsistent(50,51). FMN is gener-
ally regarded as a more useful marker of status than
FAD, which appears to be relatively unresponsive to
riboflavin intakes(52).

Riboflavin status: the global picture

In the developing world riboflavin deficiency is common-
ly acknowledged; less well recognised however is the evi-
dence emerging to suggest that sub-optimal riboflavin
status may also be more wide-spread in developed coun-
tries than previously considered. The majority of
population-based studies report dietary intake data
only for riboflavin and relatively few have included a bio-
marker of riboflavin status.

A number of European studies have identified low
dietary intake of riboflavin(27,53,54). Furthermore,
Troesch et al.(55), reported the percentage of men and
women with dietary riboflavin intakes below the recom-
mended nutrient intake using national dietary surveys;
intakes were lowest in the Netherlands (25–50 % of
men and >50–70 % of women) followed by the UK (5–
25 % of men and >25–50 % of women), then Germany
(5–25 % of men and women) and the USA (<5 % of
men and 5–25 % of women). A systematic review includ-
ing data from adults ≥65 years (n 28 000) in Europe,
North America, Australia and New Zealand concluded
that 41 % of males and 31 % of females had dietary in-
take values below the estimated average requirement,
with riboflavin identified as one of six nutrients consid-
ered to be a possible public health concern(56).
Similarly in Asia, a number of large population-based
studies and national dietary surveys have reported inad-
equate riboflavin intakes(57–59). It has been suggested
that the Chinese population tend to excrete very little
riboflavin and thus their requirement may be lower
than that of other populations(60); however, this requires
further investigation.

Far fewer studies have reported EGRac values and
when they are reported they are typically limited to
certain age and ethnic groups and lack standardised
EGRac cut-off thresholds making comparisons between
population groups difficult. Using a cut-off EGRac
value of ≥1·40, one study of 311 children in Botswana
reported riboflavin deficiency in up to 40 %(61). In elderly
free living adults in Guatemala (n 433) the prevalence of

Riboflavin, C1 metabolism, hypertension 3
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riboflavin deficiency was reported to range from 50 to 75
% using a cut-off EGRac value of >1·3, and status was
found to be strongly correlated with milk consump-
tion(62). Consistent with this evidence, a larger study con-
ducted in an elderly Taiwanese population (n 2379)
reported that one in four had marginal riboflavin defic-
iency based on EGRac >1·2(63). More recently, biomark-
er status of riboflavin was investigated in women of child
bearing age in Cambodia; 89–92 % of women were
reported to be deficient or have suboptimal status
based on an EGRac value ≥1·3. For comparison pur-
poses in the latter study, a small convenient sample of
women in urban Vancouver Canada (n 49; two-thirds
European descent and one-third Chinese), were investi-
gated and somewhat surprisingly 70 % were reported to
have suboptimal or deficient riboflavin status(64).

The UK is one of the very few countries worldwide to
report biomarker data for riboflavin in a population-
based survey. The most recent National Diet and
Nutrition Survey indicates that all age/sex groups had a
mean EGRac >1·30, with the poorest status reported in
11–18 year olds (EGRac values of 1·47 reported for
boys and 1·53 for girls). However, 21 % of girls reported
dietary riboflavin intakes below the lower reference nutri-
ent intake(27). The high prevalence of biochemical
riboflavin deficiency in the UK population is not fully
understood as dietary intakes for riboflavin are sufficient,
with the exception of 11–18 year olds with mean intakes
of 1·97 mg/d for men and 1·50 mg/d for women reported.

Based on the available evidence sub-optimal riboflavin
status appears to be common in many populations. The
significance of these findings is not clear; however, it is
possible that marginal riboflavin status in the absence
of clinical deficiency may have adverse functional effects
and long-term consequences for health. A standardised
method of EGRac assessment is required and consider-
ation of the current threshold (EGRac ≥1·3) needs to
be reinvestigated to better reflect functional impairment.
The intake and requirements of populations requires fur-
ther investigation based on robust biomarker data.

Riboflavin and C1 metabolism

The B-vitamins folate, vitamins B12 and B6 and ribofla-
vin are fundamental for C1 metabolism, the metabolic
process involving the transfer and utilisation of C1
units in a network of biochemical pathways required
for DNA and RNA biosynthesis, amino acid metabolism
and methylation reactions. Riboflavin in its co-factor
form FAD is critical for the folate metabolising enzyme
MTHFR, required for the irreversible conversion of 5,
10-methylenetetrahydrofolate to the predominant circu-
lating and cellular form of folate, 5-methyltetrahydrofo-
late, which then serves as a methyl donor for the
remethylation of homocysteine to methionine. A com-
mon variant in the MTHFR gene is the 677C� T poly-
morphism, which involves a point mutation, in which
cytosine (C), localised at nucleotide 677 of the gene, is
replaced by thymidine (T), in turn producing an alanine
to valine substitution in the enzyme. This results in a

thermolabile form of MTHFR with approximately 30 %
decreased enzyme activity and elevated homocysteine con-
centration in vivo(65). The prevalence of the MTHFR
677TT genotype is reported to be 10 % worldwide, but
this varies in different geographical regions and ethnic
groups; ranging from 4 to 26 % in Europe, 4 to 18 % in
USA, 20 % in Northern China to as high as 36 % in
Mexico(2).

In vitro evidence suggests that the reduced activity of
the variant enzyme is the result of an increased propen-
sity to dissociate from its FAD cofactor(66,67). Early ani-
mal studies showed that MTHFR enzyme activity is
lower in the livers of riboflavin deficient rats than in con-
trols(68). These findings were confirmed by Bates and
Fuller(69) who reported a dose-dependent relationship be-
tween riboflavin status and MTHFR activity. More re-
cently in human studies, riboflavin supplementation
was shown to lower plasma homocysteine specifically in
individuals with the MTHFR 677TT genotype(70), sug-
gesting that the variant enzyme can be stabilised by opti-
mising riboflavin status. A number of studies have
identified riboflavin as an important determinant of
homocysteine among individuals with the TT genotype,
which is independent of folate status(50,71,72). This evi-
dence confirms the modulating role of riboflavin in deter-
mining homocysteine concentration in individuals with
the TT genotype.

Riboflavin, C1 metabolism and CVD risk

In addition to its role as the main genetic determinant of
plasma homocysteine concentration, the C677T poly-
morphism in MTHFR has been independently associated
with a higher risk of CVD, certain cancers, neural tube
defects and most recently with hypertension. Of particu-
lar interest, extensive evidence has led to a number of
meta-analyses reporting a strong association between
this polymorphism and CVD, particularly stroke(73–76).
It has been estimated that individuals with the
MTHFR 677TT polymorphism have a 14–21 %
increased risk of CHD(75,77,78). Of note, these
meta-analyses have identified important geographical
influences on the extent of excess CVD risk due to this
polymorphism, strongly suggesting that environmental
factors may have a modulating effect on the phenotype
and thus CVD risk.

Novel role of MTHFR genotype and blood pressure

Globally, hypertension accounts for 16·5 % of deaths
each year (9·4 million); an estimated 45 % of deaths
due to heart disease and 51 % of deaths due to stroke
are a result of hypertension(79). High blood pressure
(BP), even within the normal range substantially
increases the risk of CVD and death, while a lowering
of systolic BP by as little as 2 mmHg can decrease
CVD risk by as much as 10 %(80). Hypertension is a poly-
genic disease that occurs as a result of a complex inter-
action of diverse environmental conditions and genetic
factors. Risk factors include high dietary sodium intake,

E. McAuley et al.4
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excess weight, excessive alcohol consumption and lack of
physical activity(81). Notably, twin studies have reported
the heritability of BP variation to be as much as 50
%(82,83). In the past decade, genome-wide association stud-
ies have identified several genetic loci associated with BP
variation in European populations, including one near
the gene encoding the folate metabolising enzyme
MTHFR(84–86). This finding was also replicated in
non-European cohorts including Chinese, Japanese,
Indian and US populations(87–90).

Generally consistent with these findings from genome-
wide association studies, there is a growing body of evi-
dence from observational studies to support a specific as-
sociation between the 677C� T polymorphism in the
MTHFR gene and BP variation(91–94). As the evidence
has accumulated numerous meta-analysis were con-
ducted, all reporting significant associations of the
MTHFR 677C�T polymorphism with hypertension
(Table 2). Although there is strong evidence linking this
polymorphism with hypertension, a number of observa-
tional studies have reported conflicting or inconclusive
results. Many of the studies that failed to detect signifi-
cant associations used small sample sizes or suffered pos-
sible selection bias(93,95–99). Some studies have reported a
gender specific association; one large population study in
>3000 Japanese individuals reported that the MTHFR
677C�T polymorphism was associated with a 42 %
increased risk of hypertension in women but not in
men(96). In contrast, in a Spanish cohort, the TT geno-
type was found to be a significant predictor of hyperten-
sion in men but not in women, however, only 26 % of the
sample were females(100).

Recent work conducted at our centre has considered the
BP-lowering effect of riboflavin supplementation in indivi-
duals with theMTHFR 677TT genotype. The first of these
trials was conducted in premature CVD patients (mean
age 54 years) and demonstrated that riboflavin (1·6 mg/d
for 16 weeks) decreased systolic BP (−13·2 (SD 15·0) mmHg;
P≦ 0·02) and diastolic BP (−7·5 (SD 12·0) mmHg; P= 0·02)
specifically in individuals with the TT genotype, while no

BP response was observed in those with CC or CT geno-
type(5). These findings were later confirmed in a 4-year
follow-up cross-over design study, which demonstrated in
the same cohort (mean age 59 years) that riboflavin (at the
same dose and duration of intervention) significantly low-
ered systolicBP (−9·2 (SD 12·8) mmHg;P= 0·001) anddia-
stolic (−6·0 (SD 9·9) mmHg; P = 0·003) BP specifically in
the TT genotype group(6). These findings were subsequent-
ly confirmed in hypertensive patients without overt CVD
aged 70 years (5·6 (SD 2·6) mm Hg lowering in systolic
BP; P= 0·033)(7). The extent of response to riboflavin sup-
plementationobserved in these trials appears to lessenwith
increasing age. Based on the available evidence(5–7) and in
agreement with preliminary findings from a large
population-based study(101), it appears that age is a signifi-
cant factor in relation to the BP phenotype and its respon-
siveness to riboflavin and should be considered in future
studies. To date, a low-dose supplementation level (1·6
mg/d) of riboflavin has been used and the effect of higher
doses is not known. Thus, it remains possible that greater
BP-lowering could be achieved with a larger dose of
riboflavin. Of note, in all of the aforementioned trials the
BP-lowering effect of riboflavinwas shown to be independ-
ent of the number and type of antihypertensive drugs being
currently administered.

Mechanism of MTHFR C677T polymorphism, riboflavin
and blood pressure

The exact mechanism by which the MTHFR C677T
polymorphism affects BP (and riboflavin modulates the
relationship) has not been clearly identified; however,
there are a number of plausible explanations which
could explain these effects. In two separate studies in-
volving patients undergoing coronary artery bypass
graft surgery, it was identified that those with the
MTHFR 677TT genotype had reduced vascular concen-
trations of 5-methyltetrahydrofolate which in turn were
associated with deregulation of nitric oxide (NO); a po-
tent vasodilator known to play a key role in BP(102,103).
This group and others have not considered the role of
riboflavin; however, riboflavin supplementation, could
in theory stabilise the variant MTHFR enzyme and re-
store 5-methyltetrahydrofolate concentrations in vascu-
lar cells, thereby improving NO bioavailability, which
could in turn improve endothelial function and lower
BP in individuals with the TT genotype. It is also pos-
sible that this novel gene–nutrient interaction may be a
result of an imbalance of non-methylated folate deriva-
tives in the endothelial cells in individuals with the TT
genotype which in turn could reduce endothelial NO syn-
thase coupling. In individuals with the TT genotype an
accumulation of formylated tetrahydrofolates has been
detected in erythrocytes, while only 5-methyltetrahydro-
folate was found in the erythrocytes of individuals with
the CC genotype(104). It has been suggested that an accu-
mulation of 10-formyl tetrahydrofolate in endothelial cells
may affect folate metabolism and in turn affect endothelial
NO synthase activity(105). Therefore, riboflavin may en-
hanceendothelialNOsynthaseactivitybycorrecting the im-
balance inmethylatedv. non-methylated tetrahydrofolate in

Table 2. Meta-analyses of association of C677T polymorphism in
MTHFR with hypertension*

Author Sample size (n) Populations
Odds ratio
(95% CI){

Qian et al.(116) 2814 cases Caucasian 1·24 (1·02, 1·50)
3099 controls Chinese

Niu et al.(117) 1520 cases Chinese 1·87 (1·31, 2·68)
1334 controls

Yang et al.(4) 6584 cases Worldwide 1·36 (1·20, 1·53)
6760 controls

Wu et al.(118) 5207 cases Worldwide 1·62 (1·32, 1·99)
5383 controls

Yang et al.(119) 5418 cases Worldwide 1·59 (1·32, 1·92)
4997 controls

MTHFR, methylenetetrahydrofolate.
* A number of these meta-analyses have considered hypertension in
pregnancy, only results for hypertension have been considered in this
review.
{Odds ratio refers to MTHFR CC v. TT genotypes.

Riboflavin, C1 metabolism, hypertension 5
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those with the TT genotype or by increasing 5-methyltetra-
hydrofolate and thus decreasing BP irrespective of
BP-lowering drugs(105). Further work is required to investi-
gate mechanisms linking this polymorphism with BP and
the potential for riboflavin to provide a targeted option to
treat elevated BP in this genotype group.

Implications for the use of riboflavin as a personalised
blood pressure management option

The concept that nutrient recommendations require differ-
entiation for specific subgroups of the population is not a
new concept and was described as far back as the
1970s(106). Many definitions for personalised nutrition
exist; however recently, Ronteltap et al.(107) defined perso-
nalised nutrition at three levels, where one level builds on
the foundations of another and level 3 is regarded as the
ultimate personalisation, with advice based on the indivi-
dual’s diet, phenotypic parameters and genetic profile.
Given that evidence is accumulating to support the role
of riboflavin in modulating BP in individuals with the
MTHFR 677TT genotype, translating this research, both
to health professionals responsible for the management
of BP and those genetically at risk, should be considered.
However, limited evidence is available regarding the atti-
tude of health professionals towards riboflavin as a tar-
geted treatment option for BP management.

In recent years, there is increasing public interest in
genetic testing in the health field, in a study investigating
attitudes to genetic testing among 2000 individuals, 81 %
of respondents believed that knowing their genetic risk
could lead to better control of their lives(108). A number
of studies have reported that individuals identified as
having a higher disease risk through genetic testing
may be more motivated to change dietary habits(109–111).
Nevertheless a number of concerns towards genetic test-
ing have been reported including cost, privacy, misuse of
genetic information and fear that results could influence
insurance companies and job opportunities(107,108,110,112).
Despite these criticisms many believe that genetic testing
has the potential to motivate consumers to adopt
changes that aim to prevent the onset and development
of diseases(113,114). Currently however, personal genetic
testing is only easily obtained by Direct-to-Consumer
genetic testing kits without interpretation by a healthcare
professional(115). Furthermore, very few diet–gene–health
relationships have been tested for causality in human
intervention studies(109). This has resulted in concerns
regarding the analytical validity and clinical utility of
the genetic testing for general consumer purposes.

Potential role of the health professional in personalised
medicine

Given the important role of general practitioners (GP) in
BP management their attitude towards riboflavin as a
treatment option for hypertension in individuals with
the MTHFR 677TT genotype is important for the trans-
lation of this novel role for riboflavin. A number of

studies have highlighted the role of GP in genetic testing
of their patients(120,121); however, few have considered the
attitude of GP towards targeted treatment options for dis-
eases and the potential role ofGP in the delivery of persona-
lised medicine. One study of Canadian oncologists,
cardiologists and family physicians (n 363) reported that al-
though themajority of respondents agreed that personalised
medicine could influence treatment plans and improve out-
comes, a number of barriers were perceived, including lack
of clinical guidelines, limited provider knowledge and the
lack of evidence-based clinical information. These
Canadian physicians recognised that they lacked the educa-
tion, information and support they needed topractice perso-
nalised medicine effectively and that they required national
strategies, resources and training(121). Thus, although many
health care professionals recognise the potential of nutrige-
nomics in the prevention and treatment of diseases, many
feel pessimistic about incorporating this new concept into
their practice as they do not believe it provides sufficient in-
formation to adequately advise patients(122,123). A number
of challengeshavebeen identified in thedeliveryof this infor-
mation to the patient and it is clear that increasing genomics
education in the training of health care professionals is
required.Such interventionwaspreviously found to improve
both self-reported and assessed genomics knowledge among
medical students(124). Further work is clearly needed to in-
vestigate attitudes, particularly of GP, towards riboflavin
as a treatment option for hypertension in patients identified
with theMTHFR 677TT genotype.

Conclusion and future work

There is emerging evidence that sub-optimal riboflavin
status is a problem not confined to developing countries,
but also evident in the developed world. Apart from the
widely recognised roles of riboflavin in human health, a
novel and important role of riboflavin in modulating
BP specifically in individuals with the MTHFR 677TT
genotype is emerging. Optimal riboflavin status may
therefore be particularly important in maintaining health
for the 10 % of individuals worldwide (and up to 30 % in
some populations) who share this genetic characteristic
and are thus at increased risk of developing hypertension.
Riboflavin potentially offers a personalised approach to
the prevention and treatment of hypertension in these
genetically at risk individuals. Further studies are how-
ever required to further investigate the BP-lowering effect
of riboflavin in different populations and in response to
doses higher than 1·6 mg/d. Furthermore, work focusing
on the translation of this research to health professionals
and patients is also required.
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