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Abstract—Comprehensive characterization and identification 

of cancer subtypes have a number of applications and implications 

in life science and cancer research. Technologies centered on the 

integration of omics data hold great promise in this endeavor. This 

paper proposed a multiplex network-based approach for 

integrative analysis of heterogeneous omics data. It represents a 

useful alternative network-based solution to the problem and a 

significant step forward to the methods in which each type of data 

is treated independently.  It has been tested on the identification of 

the subtypes of glioblastoma multiforme and breast invasive 

carcinoma from three omics data.  The results obtained have 

shown that it has achieved the performance comparable to state-

of-the-art techniques (Normalized Mutual Information > 0.8). In 

comparison to traditional systems biology tools, the proposed 

methodology has several significant advantages. It has the ability 

to correlate and integrate multiple data levels in a holistic manner 

which may be useful to facilitate our understanding of the 

pathogenesis of diseases and to capture the heterogeneity of 

biological processes and the complexity of phenotypes. 

 
Index Terms— Multiplex networks; omics data; cancer 

subtypes; data integration 

I. INTRODUCTION 

OMPREHENSIVE characterization and identification of 

cancer subtypes associated with distinct molecular profiles 

and differential clinical outcomes has significant applications 

and implications in life science and cancer research since it may 

 
 

lead, for example, to a better understanding of cancer evolution,  

new treatment insights, optimal patient stratification and the 

design of new, effective therapeutic strategies [1], [2]. A 

breakthrough reclassification of pancreatic cancer has been 

published in Nature recently and a total of 4 key subtypes, i.e. 

Squamous, Oancreatic Progenitor, ADEX, and Immunogenic, 

have been identified, providing a basis to offer new insights into 

personalized therapeutic treatments [1]. A new approach to the 

classification of patients for therapeutic purposes based on the 

recognition of intrinsic biological subtypes within the breast 

cancer spectrum was adopted by the 12th St Gallen International 

Breast Cancer Conference Expert Panel [3]. It has been 

highlighted that Luminal A patients generally only receive 

endocrine therapy, while for most patients with Triple negative, 

chemotherapy is required.  

However, due to its highly heterogeneous nature, different 

conclusions regarding the number of cancer subtypes in a tissue 

have been drawn depending on the types of data used and 

methodologies employed. In the context of the analysis of 

glioblastoma multiforme (GBM), for instance, Nigro et al. [4] 

identified two molecular subtypes with one group containing 

the most common copy number alteration, loss of chromosome 

10. By applying consensus hierarchical clustering to the 

analysis of expression data from 200 GBM and 2 normal brain 

samples assayed on three gene expression platforms, Verhaak 

et al. [5] classified GBM into 4 subgroups, i.e. Proneural, 

Neural, Classical and Mesenchymal. Using the same datasets, 

i.e. DNA methylation, mRNA expression and miRNA from 215 

patient samples with GBM and 105 samples with breast 

invasive carcinoma (BIC), Wang et al. [6] applied SNF and 

suggested 3 subtypes in GBM and 5 subtypes in BIC while 

Specicher and Pfeifer [7] identified 6 subgroups in GBM and 7 

in BIC with multiple kernel learning. 

Due to the ability to provide system-level measurements for 

nearly all biomolecules in the cell and opportunities to study 

biological systems at different levels, recent years have seen a 

growing trend toward the integration of diverse omics data for 

the identification of cancer subtypes. Recent examples include 

the identification of subtypes of pancreatic cancer associated 

with distinct histopathological characteristics and differential 

survival using a combination of the whole-genome and deep-
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exome sequencing with gene copy number analysis [1].  

While the growing availability of diverse omics data offers 

huge opportunities to generate a more thorough and 

comprehensive view of biological problems, mining such 

abundant information poses great challenges to research 

communities, requiring the development of advanced 

integrative analysis platform to capture the heterogeneity of 

biological processes and the complexity of phenotypes [6]. 

A. Current effort on omics data integration: a brief overview  

The recognized significance of data integration in the era of 

omics has triggered intense efforts across the global. For 

example, as a large-scale, collaborative effort led by the 

National Institute of Health, The Cancer Genome Atlas 

(TCGA) has collected massive, high quality information 

generated from various molecular levels for over 30 types of 

human cancer derived from about 10,000 cases of tumor and 

matching normal tissues samples. By enabling to map 

molecular alternation at multiple levels, TCGA provides a 

valuable resource to accelerate our understanding of the 

molecular basis of human cancers [8]. A number of EU projects 

focusing on integrative analysis of diverse omics data have been 

funded under EU FP7-Health programme. Examples include 

the STATegra project (http://www.stategra.eu/), which 

involves 11 partners from different countries. Since 2007, the 

European Commission has actively participated several 

international large scale omics research initiatives including 

International Cancer Genome Consortium (https://icgc.org/) 

and International Human Epigenome Consortium (http://ihec-

epigenomes.org/). Gomez-Cabrero et al. [9] characterized 

current efforts on data integration in the life science. A recent 

review on the emerging approaches for omics data integration 

to uncover genotype-phenotype interactions was provided by 

Ritchie et al. [10]. 

Over the past decades, a wide range of computational 

approaches have been proposed and developed. Using a model-

based integration strategy, Akavia et al. [11] developed a 

computational framework that integrates chromosomal copy 

number and gene expression data for detecting aberrations that 

promote cancer progression. Relying on the use of kernel-based 

statistical learning methods, Lanckriet et al [12] introduced a 

computational framework for genomic data fusion, in which 

each type of data is represented via a kernel function that 

defines similarities between pairs of entities, such as genes or 

proteins. It has been shown that kernel functions derived from 

different types of omics data can be combined in a 

straightforward fashion. Kim et al. [13] introduced a graph-

based approach for predicting clinical outcomes in brain cancer 

and ovarian cancer by integrating multi-omics data as a 

transformation-based integration. A graph-based semi-

supervised learning was used as a classification algorithm. 

Integration of multi-level genomic data sources was achieved 

by finding an optimum value of the linear combination 

coefficient for the individual graphs derived from each type of 

data. Using a joint latent variable model for integrative 

clustering, the iCluster method [14] seeks to find a single 

common clustering structure for all omics data involved. The 

number of clusters needs to be estimated by heuristic 

approaches. 

More recently, Wang et al. [6] introduced a novel network-

based approach, i.e. Similarity Network Fusion (SNF), for 

aggregating data types on a genomic scale. It consists of two 

main steps: constructing a patient-similarity network for each 

available omics data and fusing all networks into a single 

similarity network with a nonlinear combination method to 

represent the full spectrum of underlying data. The approach 

has been applied to combine 3 omics data, i.e. mRNA 

expression, DNA methylationa, and miRNA expression for five 

cancer datasets including glioblastoma multiforme (GBM). It 

has been shown that SNF substantially outperforms single data 

type analysis and established integrative approaches. 

B. The objectives in this study 

In this study we proposed an alternative network-based data 

integration strategy, i.e., a multiplex network-based integrative 

approach for exploring large volumes of multivariate patient 

data based on the extension of our previous analysis [15]. 

Similar to SNF, for each type of data, a patient-similarity 

network is generated. After that, a multiplex network is formed 

by introducing a coupling strength that links each node in a 

network slice and its counterpart in each of the other network 

slices. To demonstrate its performance, the proposed method is 

applied to identify the subtypes of GBM and BIC. An empirical 

study of the impact of the selection of learning parameters on 

the performance is carried out.  

The rest of paper is organized as follows. Section II briefly 

describes the methodology, datasets under study, and 

evaluation metrics used to assess the significance of results. The 

formation of multiplex networks and its implementation are 

provided. The results and discussions are presented in Section 

III. The conclusions, together with the discussion of limitations 

and future research, are given in Section IV. 

II. METHODOLOGY 

Inspired by the recent work published by Mucha et al. [16], 

a multiplex network(MN)-based clustering approach is 

proposed to explore large volumes of multivariate patient data. 

As illustrated in Fig. 1, for each given dataset, a network will 

be constructed, in which each node corresponds to a patient and 

each edge represents the similarity between a pair of patients 

derived from the given dataset. The whole multiplex networks 

can be represented using a 3rd-order tensor 𝐴 = (𝐴𝑖𝑗𝑠)𝑛×𝑛×𝑘 , 

where n is the number of patients and k is the number of datasets 

under consideration. Each element 𝐴𝑖𝑗𝑠  is the non-negative 

value representing the weight associated with the link between 

a pair of patients in the network derived from dataset s. 

A. Cluster detection across multiscale networks 

Unlike the traditional approach, in which each network is 

treated independently, we propose a flexible framework for 

integrative clustering analysis of heterogeneous data based on 

the adaptation of the generalized modularity proposed by 

Mucha et al. [16]. The generalized modularity shown in (1) will 

be used as an objective function to optimize partitions across 

networks. As shown in (1), there are two parts in the 

representation, i.e. the first part is responsible for the 

modularity derived from each network [17] and the second part 

is to enforce a consensus in terms of cluster assignments. The 

http://www.stategra.eu/
https://icgc.org/
http://ihec-epigenomes.org/
http://ihec-epigenomes.org/
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optimal solution will be achieved when the same node (patient) 

across all the networks is assigned to the same cluster. The 

significance of the second part is determined by the coupling 

strength, ω, representing the relationship between two sets of 

datasets. When ω = 0, the optimal partition is achieved from 

separate optimisation in each network. As ω is increased, the 

optimisation will gradually force the cluster assignment of a 

node to remain in the same partition across networks. This 

becomes more evident when similar patterns are observed 

across datasets. Such a feature lends itself naturally to providing 

a flexible framework for integrative clustering analysis of 

multiple heterogeneous data.  

𝑄𝑚 =
1

2𝜇
∑ [(𝐴𝑖j𝑠 − 𝛾𝑠

𝑘𝑖𝑠𝑘𝑗𝑠

2𝑚𝑠

) 𝛿(𝑐𝑖𝑠 , 𝑐𝑗𝑠)]

𝑖𝑗𝑠

+
1

2𝜇
∑𝜔𝑖𝑠𝑟𝛿(𝑐𝑖𝑠 , 𝑐𝑖𝑟)

𝑖𝑠𝑟



(1) 

where Aijs, kis, and ms represent the adjacency matrix, the 

degree of node i, and the total number of links in network s 

respectively. 𝜔𝑖𝑠𝑟  stands for the strength between networks 

constructed from datasets s and r for node i and 𝜇 =

 
1

2
∑ (∑ 𝐴𝑖𝑗𝑠 + ∑ 𝜔𝑗𝑠𝑟𝑟𝑖 )𝑗𝑠 . For each network s,  𝛾𝑠  is the 

resolution parameter used to examine cluster structure at 

multiple scales and 𝑐𝑖𝑠 represents cluster assignment of node i 

in network s. For simplicity, the inter-slice couplings between 

network s and r, 𝜔𝑖𝑠𝑟 ,  take binary values {0, ω} indicating 

absence/presence of the inter-slice links. 𝛿(𝑐𝑖𝑠 , 𝑐𝑗𝑟) is the 

Kronecker delta function which is equal to 1 when two nodes 

in a network or a node from two slices are assigned to the same 

community. 

 

B. Implementation 

The implementation was based on the generalized Louvain 

MATLAB code [18]. It implements a Louvain-like greedy 

community detection method that is based on modularity 

optimization [19]. As illustrated in Fig. 2, the algorithm consists 

of two main stages that are repeated iteratively. Starting with 

assigning a different cluster to each node in a network, the first 

phase is repeated by moving a node from its community and 

placing it in the community of its neighbours at a time to 

optimize the specified quality function until no further 

improvement can be achieved. The second phase is to build a 

new network whose nodes represent the communities found 

during the first stage. 

 

 

Fig. 2 An illustration of a Louvain-like greedy community detection method 

The beauty of the generalized Louvain approach [18] is that 

it works directly with the modularity matrix and thus can be 

used with any quality function specified in terms of a 

modularity matrix. The corresponding multislice modularity 

matrix associated with the quality function defined in Eq.(1) 

can then be derived as illustrated in Fig. 3. In this study, we 

considered the type of interlayer connectivity as categorical, i.e. 

the interslice couplings connect an individual (patient in this 

study) in a network to himself or herself in each of remain 

networks as shown Fig. 1. The reader is referred to [18] for a 

detailed description of its implementation. 

 

[
 
 
 
 
 
 
 
 (

𝐵001 ⋯ 𝐵0𝑛1

⋮ ⋱ ⋮
𝐵𝑛01 ⋯ 𝐵𝑛𝑛1

) 𝜔1𝑠 𝜔1𝑟

𝜔1𝑠 (
𝐵00𝑠 ⋯ 𝐵0𝑛𝑠

⋮ ⋱ ⋮
𝐵𝑛0𝑠 ⋯ 𝐵𝑛𝑛𝑠

) 𝜔𝑠𝑟

𝜔1𝑟 𝜔𝑠𝑟 (
𝐵00𝑟 ⋯ 𝐵0𝑛𝑟

⋮ ⋱ ⋮
𝐵𝑛0𝑟 ⋯ 𝐵𝑛𝑛𝑟

)
]
 
 
 
 
 
 
 
 

 

Fig. 3 An illustration of a modularity matrix for categorical multislice networks. 

𝐵𝑖𝑗𝑠 = 𝐴𝑖j𝑠 − 𝛾𝑠
𝑘𝑖𝑠𝑘𝑗𝑠

2𝑚𝑠
 where Aijs is the adjacency matrix for slice s. ωsr represents 

the interslice coupling between slices s and r. 

Fig. 1. A flexible, multiplex network-based framework for integrative 
clustering analysis. s, k, and r represent similarity networks constructed from 

the corresponding datasets. Each node in the networks is associated with a 

patient and each edge represents the similarity between a pair of patients 
derived from the given dataset. ωisr represents the coupling strength between 

two slices, i.e. s and r, for node i. 
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C. Datasets under study  

Three types of omics data available from the TCGA website 

preprocessed by Wang et al. [6] were used: mRNA expression, 

miRNA expression, and DNA methylation. The proposed 

method has been applied to the analysis of two cancer types, i.e. 

GBM with 215 samples in which 134 were male and 81 female 

and BIC with 104 female samples. The platforms used to 

generate the data  and the details of data preprocessing 

including g normalization can be found in [6]  

The formation of multiplex networks was based on patient-

wise similarity matrices published by Wang et al. [6]. They 

were computed with a scaled exponential similarity kernel [6] 

as defined below. 

𝑃(𝑖, 𝑗) = 𝑒𝑥𝑝 {−
𝑑2(i, j)

𝜇𝜖𝑖,𝑗

} (2) 

where µ is a hyperparameter and 𝜖𝑖,𝑗 is used to avoid scaling 

problems. 𝑃(𝑖, 𝑗) represents similarity between two patients, i 

and j, and 𝑑(𝑖, 𝑗) is a distance function used to calculate the 

patient-wise distance for a given dataset. After that, a K nearest 

neighbours (KNN)-based method is used to estimate local 

affinity. The similarities between non-neighbouring patients are 

set to zero as illustrated below. 

𝑆(𝑖, 𝑗) = {

𝑃(𝑖, 𝑗)

∑ 𝑃(𝑖,𝑚)𝑚∈𝑁𝑖

              𝑗 ∈ 𝑁𝑖

  0                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3) 

where 𝑆(𝑖, 𝑗) represents the normalized similarity based on  

the  K most similar patients (Ni) for each patient. 

D. Evaluation metrics 

To assess the significance of differences between GBM 

subtypes identified in terms of their survival profiles, the log 

rank test of the Cox regression model [21] was used. It is a 

nonparametric hypothesis test. The null hypothesis is two 

groups have identical survival functions. The p value estimated 

indicates how likely the observed differential survival profiles 

occur by chance. The Kaplan-Meier estimator [22] is utilized to 

estimate the survival function, �̂�(𝑡), i.e. the probability that a 

patient survives longer than time t.  

In order to study whether certain type of proteins/genes are 

enriched in a GBM subtype, we adopted hypergeometric 

distribution function defined as follows. 

𝑝 = 1 − ∑ (
𝐾
𝑖
) (

𝑁 − 𝐾
𝑛 − 𝑖

) (
𝑁
𝑛
)⁄

𝑘−1

𝑖=1

 (4) 

where N and K represent the sizes of population and the 

sample (subtype in our case) drawn from the population without 

replacement respectively, and n and k stand for the numbers of 

certain types of proteins/genes in the population and the sample 

respectively. The estimated p represents the probability of 

observing at least k members from a sample drawn from a 

population of size N having n members in total without 

replacement by chance. 

III. RESULTS AND DISCUSSION 

E. GBM subtypes derived from clustering analysis of the 

multiplex networks 

Two learning parameters need to be set in the clustering 
algorithm used in the study, i.e. γ (resolution parameter) and ω 
(coupling strength). Unless indicated otherwise, γ is set to 0.2 
throughout this study. As expected, separate subtypes were 
generated with ω = 0 for each network with each patient was 
assigned to 3 separate subtypes. A total of 19 subtypes were 
produced when ω is set to zero: 6 for mRNA expression data, 5 
for DNA methylation and 8 for miRNA expression. As ω was 
introduced, subtypes merged across networks quickly. This not 
only reduced the total number of subtypes but more importantly 
patients were gradually assigned to one subtype. When ω was 
increased to 0.3, a total of 3 subtypes were derived: 63 in G1, 23 
in G2, and 131 in G3 as shown in Table I. 

TABLE I THE CHARACTERISTICS OF 3 GBM SUBTYPES IDENTIFIED 

Subtypes dentified G1 G2 G3 

Number of patients  
61 

(M: 38, F:23) 
23 

(M:11, F:12) 
131 

(M: 85, F:46) 

Average age 

(years) 
52.85 40.61 61.61 

Average survival 

time (days) 
657.56 1140.65 467.96 

 

As illustrated in Fig. 4, similarity networks derived from 3 

datasets exhibit very different patterns. DNA methylation 

appears to support connectivity in the medium sized cluster, i.e. 

Subtype G1 (Fig. 4(b)). While patterns shown in Fig.4(a) 

suggest relatively strong intercluster mRNA expression-based 

similarity, it would be hard to derive any convincing conclusion 

from the miRNA-based similarity network (Fig. 4(c)). 
 

 

Fig. 4. Patient similarities in each subtype for each of the dataset: (a) mRNA 

expression data; (b) DNA methylation data; (c) miRNA expression data. The 

graph was drawn using MATLAB code released by Wang et al. [6]. The 
similarity value of each pair correlates with color intensity, black with the 

similarity level equal to zero. 

F. Correlation with Clinical Variables 

We first investigated the correlation between GBM 

subtypes identified and age, one of the most important 
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prognostic factor in GBM [23]. A statistically significant 

difference in terms of the average age was observed across 3 

subtypes (ANOVA test, p < 0.0001) with the smallest patient 

cluster (Subtype G2) being closely associated with younger 

patients (median age 34 years). Two post-hoc tests, namely 

Bonferroni’s method and Tukey's Honestly Significant 

Difference (HSD) test, indicate that all pairs of subtype mean 

ages are significantly different (p < 0.05). 

Next we studied survival profiles associated with each 

subtype, i.e. the number of days to the last follow-up where4 

available [6]. As depicted in Fig. 5, survival times are 

significantly different among three GBM subtypes with patients 

in Subtype G2 having a more favorable prognosis (Average 

survival time 1140.65 days). The overall Cox log rank p value 

for 3 subtypes is 0.000251. 

 
Fig. 5. Kaplan-Meier survival curves for three GBM subtypes as identified 

(overall Cox log rank p-value for 3 subtypes is 0.000251). 

Finally, we examined patient response to treatment with 

temozolomide (TMZ), a chemotherapy drug used to treat 

certain types of brain tumors including GBM. As illustrated in 

Fig. 6, patients with GBM in Subtypes G1 and G3 had a 

significantly increased survival time (Cox log-rank test, p < 

0.005), whereas for patients associated with Subtype G2, no 

significant difference in survival time was observed. 

Fig 6. Survival analysis of GBM patients for treatments with TMZ in Subtype 

G1. Patients associated with Subtype G1 had a significantly increased survival 

time (Cox log-rank test, p < 0.005). Similar observation can be made when 
examining patients in Subtype G3. 

G. Comparisons with state-of-the-art and established 

subtypes 

We first compared our results with the study by Wang et al. 

[6] published in Nature Method in 2014. As summarized in 

Table II, a comparable result was obtained in our study. Patients 

assigned to Clusters 1, 2 and 3 by SNF are highly enriched in 

Subtypes G3, G1, and G2 respectively (hypergeometric test, p 

< 0.0001). The value of Normalized Mutual Information (NMI) 

between subtypes identified and cluster labels obtained by SNF 

(0.80) suggests a high concordance between two results. 

TABLE II COMPARISONS WITH CLUSTERS IDENTIFIED USING SNF [6] 

Subtypes 

identified 
Clusters identified by SNF 

Cluster 1 Cluster 2 Cluster 3 

G1 1 59 1 

G2 2 0 21 

G3 126 5 0 

 

The comparison with 4 established subtypes, i.e. Classical, 

Mesenchymal, Neural and Proneural, determined primarily by 

expression data [5] is summarized in Table III. Subtypes G1 and 

G2 are strongly enriched for the mesenchymal GBM 

(hypergeometric test, p < 10-12) and the proneural type 

(hypergeometric test, p < 10-13), respectively. Subtype G3 

contains samples that belong to all 4 types of GBM, however, 

both classical and neural samples are over-represented in this 

subtype (hypergeometric test, p < 0.01). Given that 4 

established subtypes were mainly determined based on the 

analysis of their expression data, the distribution of other omics 

data over these 4 subtypes deserves further investigation. 

TABLE III COMPARISONS WITH 4 ESTABLISHED GBM SUBTYPES  

Subtypes 

identified 
4 established subtypes [5] 

Classical Mesenchymal Neural Proneural 

G1 7 34 7 9 

G2 1 0 1 20 

G3 40 20 20 23 

 

 A recent study by Sturm et al. [24] identified an epigenetic 

subgroup of GBM with a distinct global methylation pattern 

characterized by a somatic mutation in IDH1. Interestingly we 

found that out of 15 patients with an IDH1 mutation, 13 belong 

to the Subtype 2 identified in this study. 

H. Applying the MN approach to the analysis of breast cancer 

To further evaluate the MN performance, we applied it to the 

analysis of BIC. The optimal number of subtypes identified is 

3, which is in agreement with the numbers suggested by Wang 

et al. [6] based on the analysis of similarity networks using the 

two heuristics, i.e. eigengaps and rotation cost. 

The characteristics of 3 BIC subtypes are shown in Table IV. 

Both patients in Subtypes B1 and B2 were diagnosed with 

infiltrating ductal carcinoma, which is the most common type of 

breast cancer. All 7 patients diagnosed with infiltrating lobular 
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carcinoma were found in the Subtype B1. However, no 

significant difference between ductal and lobular carcinomas 

was observed in terms of their survival profiles (Cox log-rank 

test, p > 0.1). 

TABLE IV THE CHARACTERISTICS OF 3 BIC SUBTYPES IDENTIFIED 

BIC Subtypes B1 B2 B3 

Number of patients 46 30 29 

Average age (years) 56.43 51.94 60.38 

Average survival 
time (days) 

1310.98 939.17 733.41 

Infiltrating Ductal 
Carcinoma 

37 29 26 

Infiltrating Lobular 
Carcinoma 

7 0 0 

ER+ 45 8 27 

 PR+ 45 5 20 

Chemotherapy 21 23 16 

Hormone therapy 21 4 14 

*ER+: Estrogen-receptor-positive; PR+: Progesterone-receptor-positive;  

 
There is marginally significant difference between the 3 

subtypes in terms of their ages at initial pathologic diagnosis 
(Kruskal-Wallis test, p = 0.05) with the subtype B3 associated 
with elderly patients (mean rank: 61.55).  

Turning to survival analysis, statistically significant 

difference in survival profiles between the subtypes were 

observed as depicted in Fig. 7 (Cox log-rank test, p < 0.01) with 

the largest subgroup (Subtype B1), in which 45 out of 46 

patients are both estrogen receptor (ER) positive and 

progesterone receptor (PR) positive, having a more favorable 

prognosis (Average survival time 1310.98 days). This is 

consistent with the clinic observation that patients with both 

ER+ and PR+ have better clinical outcomes, which is supported 

by the recent study published in Nature [25]. 

According to latest 5-year survival rates for women of 

different ages with breast cancer in England from Cancer 

Research UK (https://www.breasthealthuk.com/about-breast-

cancer/breast-cancer-survival-rates), women aged between 40 

and 70 have better outcomes than younger women and women 

older than 70, especially for patients over 80 years of age whose 

survival rate is about 68.5%. However, no significant difference 

was found in survival between age groups across all three 

subgroups (Cox log-rank test, p > 0.1). This could be partially 

attributed to the lack of sufficient number of patients in some 

age groups. For example, only two subtype B1 patients belong 

to the groups younger than 40 and over 80, respectively. 

A variety of drugs have been used to treat breast cancer. 
Among 76 patients which have drug information available, 
about 35 drugs have been used with cyclophosphamide being the 
commonly used one. While there are 11 drugs found to be used 
to treat all 3 subtype patients, some drugs are used to treat a 
particular subtype of patients. For example, drugs bevacizumab, 
clodronic acid, doxorubicin, toremifene, gemcitabine, 
methotrexate, and Taxane are used only to treat patients 
associated with Subtype B2. 

 
Fig. 7. Kaplan-Meier survival curves for three BIC subtypes as identified (overall 

Cox log rank p-value for 3 subtypes is less than 0.01). 

Finally, we compared our results with state-of-the-art and 

known subtypes. The comparison with the 5 subtypes identified 

by Wang et al. [6] is shown in Table V. A high value of NMI 

(0.803) was obtained, indicating a high degree of concordance 

between two sets of clustering. 

TABLE V COMPARISONS BIC SUBTYPES WITH CLUSTERS IDENTIFIED USING 

SNF [6] 

Clusters 

identified by 

SNF 

BIC Subtypes identified 

B1 B2 B3 

Cluster 1 0 7 0 

Cluster 2 0 22 0 

Cluster 3 0 0 10 

Cluster 4 46 1 1 

Cluster 5 0 0 18 

TABLE VI COMPARISONS BIC SUBTYPES WITH 4 WELL KNOWN MOLECULAR 

SUBTYPES [25] 

MOLECULAR 

SUBTYPES 

BIC Subtypes identified 

B1 B2 B3 

Luminal A 40 2 9 

Luminal B 3 0 15 

Basal-like 0 23 0 

HER2-enriched 2 5 5 

 
It has been shown that each of four main breast cancers, i.e., 

Luminal A, Luminal B, Basal-like, and HER2-enriched exhibits 

significant molecular heterogeneity as highlighted in the study 

reported in [26]. Comparing with its results (Table VI), we 

found that luminal A cancers which are the most likely to retain 

activity of two major tumor suppressors, i.e. PB1 and TP53, are 

highly enriched in Subtype B1 that have the best  prognosis as 

shown Fig. 7 (hypergeometric test, p < 0.0001).  Luminal B 

tumours in which the TP53 pathway is often inactivated are 

highly over-represented in the more aggressive Subtype B3 

patients. All 23 basal-like breast cancers which are more likely 
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to lose the function of TP53, RB1 and BRCA1 are found in the 

group of patients in Subtype B2, over 70% of which are triple 

negative, i.e. negative for ER, PR and HER2. 

I. The impact of learning parameters  

The construction of patient-wise similarity networks was 

based on the approach introduced in [6] in which the following 

two parameters were used: (1) k, the number of neighbours 

which is used to measure local affinity with K nearest 

neighbours (KNN); and µ, a hyperparameter used to determine 

similarity kernel. It was recommended setting µ in the range of 

[0.3, 0.8] and k less than 30. In this section we first examined 

the impact of these parameters on the performance. Without 

losing generality, the BIC dataset was used in this analysis. We 

assessed the performance based on the comparison with the 

SNF approach [6]. 

As shown in Table VII, the high level of concordance was 

achieved when k is set to a range between 7 and 10 which is 

consistent with Wang et al. study [6]. They suggested to set k 

equal to 𝑁/10  approximately (N is the number of subjects) 

where the knowledge of the number of clusters is not available. 

The performance is significantly deteriorated when k greater 

than 15, especially when k = 20, the model essentially fails to 

differentiate patients with all the patients grouped together. 

TABLE VII THE IMPACT OF THE SELECTION OF THE NUMBER OF NEIGHBOURS 

(K) ON THE ANALYSIS  

Number of 

neighbours (k) 
5 7 10 12 15 20 

The number of 

subtypes identified 
5 3 3 2 2 1 

NMI 0.667 0.812 0.803 0.618 0.701 0.000 

 

The impact of the selection of the hyperparameter, i.e. µ, is 

depicted in Table VIII. The model appears to be sensitive to the 

variation of µ with the best performance was obtained when µ 

is set to the range between 0.45 and 0.50. 

TABLE VIII THE IMPACT OF THE SELECTION OF THE HYPERPARAMETER, µ, ON 

THE ANALYSIS 

µ 0.40 0.45 0.50 0.55 0.60 0.70 

The number of 

subtypes identified 
8 4 3 2 2 1 

NMI 0.671 0.853 0.803 0.538 0.487 0.000 

 

There are two learning parameters required for the multiplex 

network clustering algorithm used in our study, i.e. γ and ω. As 

expected the value of a resolution parameter γ has significant 

impact on the number of subtypes identified. The best 

performance was achieved when γ is set to the range of [0.2, 

0.3]. Turning to the parameter ω representing to the couple 

strength between networks, we found that the system is robust 

to the selection of ω when γ is set to 0.2 and ω is greater than 

0.1. 

IV. CONCLUSIONS 

It has been well recognized that comprehensive 
characterization and identification of cancer subtypes have a 
number of applications and implications in life science, for 
example, leading to a better understanding of heterogeneity of 
phenotypes and cellular organization at different levels.  
Technologies centered on the integration of omics data hold 
great promise in this endeavor. This paper proposed a multiplex 
networks-based approach for integrative analysis of 
heterogeneous omics data. It represents a useful alternative 
network-based solution and a significant step forward to the 
methods already in use in which each type of data is treated 
independently.  It has been tested on the identification of GBM 
and BIC subtypes from three omics data, i.e. RNA expression, 
DNA methylation and miRNA expression. Results obtained 
have shown that a high level of concordance (NMI > 0.8) has 
been achieved in comparisons to state-of-the-art techniques. The 
proposed methodology has several useful features. For example, 
it allows researchers to compare the biological/clinical patterns 
observed in a patient against data from large numbers of other 
patients which may be from different ethnic groups and subject 
to different environmental and epigenetic influences. It provides 
a flexible platform to integrate different types of patient data, 
potentially from multiple sources, allowing discovering 
complex disease patterns with multiple facets. The proposed 
platform has the ability to correlate and integrate multiple data 
levels in a holistic manner to facilitate our understanding of the 
pathogenesis of disease. 

This paper also provides an empirical analysis of the impact 

of the selection of some learning parameters on the analysis. It 

suggests that in general the results are not critically sensitive to 

the selection of k used to measure local affinity for a given 

patient. However, it appears that the system is quite sensitive to 

the variation of hyperparameter, i.e. µ. As expected, the values 

of the resolution parameter γ and the couple strength ω have 

impact on the number of subtypes identified although it appears 

to be robust to the selection of ω when γ = 0.2 and ω > 0.1 in 

the analysis of BIC data.  However, there is no standard way to 

determine the optimal value of these learning parameters in 

advance. Currently the determination of the learning parameters 

including resolution and coupling strength was based on trial 

and error. How to automatically determine the best combination 

of learning parameters would be part of future research. 

Another future direction concerns the way in which the 

coupling strength is determined. For simplicity, in this paper we 

have specified the parameter to an equal value between 

networks. Clearly, a more desirable solution is to assign the 

strength between networks in the way which could reflect the 

characteristics of datasets under investigation.  

The proposed method was applied to the identification of 

subtypes of GBM and BIC. We are extending our analysis to 

the study of other human cancers such as pancreatic cancer and 

colon adenocarcinoma.  
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