
This is the authors’ final version of the paper which was published in Communications in Nonlinear Science and 

Numerical Simulation, 40 (2016), 51-70. doi: 10.1016/j.cnsns.2016.04.013 

 

© 2016. This manuscript version is made available under the CC-BY-NC-ND 4.0 license 

http://creativecommons.org/licenses/by-nc-nd/4.0/ 

 

A Single Predator Multiple Prey Model with Prey Mutation 
 

Rory Mullan, Gavin M. Abernethy, David H. Glass and Mark McCartney 

 

School of Computing and Mathematics, University of Ulster, Jordanstown campus, Shore 

Road, Newtownabbey, Co. Antrim, BT37 0QB, UK
*
 

 

 

Abstract—A multiple species predator-prey model is expanded with the introduction of a coupled map 

lattice for the prey, allowing the prey to mutate discretely into other prey species. The model is examined 

in its single predator, multiple mutating prey form. Two unimodal maps are used for the underlying 

dynamics of the prey species, with different predation strategies being used. Conclusions are drawn on 

how varying the control parameters of the model governs the overall behaviour and survival of the 

species. It is observed that in such a complex system, with multiple mutating prey, a large range of non-

linear dynamics is possible. 

 

1. Introduction 
 

The simplest form of mathematical model for predator-prey dynamics is a two species model, 

where a single predator predates upon a single prey. While in principle such models may be 

generalised to multiple species systems, where both multiple predators and multiple prey 

occupy the ecosystem, in practice such systems are often not analytically tractable, and can 

require significant resources to simulate computationally. Ecosystems can be modelled using 

a range of techniques from discrete and continuous time models from the level of populations 

to individual agent based simulations [1,2].   

 

In the field of ecological modelling, a lot of recent research has focused on two species 

predator-prey models, which have been used to investigate chaotic population dynamics [3-

7], the effect of the prey growth rate [8] and population dispersal [9-11]. In comparison, less 

work has been undertaken looking at multiple species predator-prey models where the system 

has been expanded to allow for multiple competing predators and prey. Work in this area has 

been undertaken examining the dynamic behaviour and chaotic orbits that can occur in these 

models [12,13], and the effect of implementing various functional responses (the effect of 

predation, per predator, upon the prey species) upon the dynamics [14,15].  

 

The modelling of a functional response is one of the most studied aspects of mathematical 

ecology, with Holling’s Type II disc equation [16] proving particularly popular. Several 

sophisticated forms have been proposed, and the question of which of these is the most 
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biologically-justified has been the subject of recent debate [17]. Other studies have suggested 

that models featuring nonlinear functional responses and adaptive foraging may be essential 

for the maintenance of stable, complex ecosystems [18]. This is the dominant question of this 

subject [19] - the relationship between complexity and stability that has overshadowed 

theoretical ecology since May’s 1973 [20] work on random graphs challenged the intuitive 

belief that greater complexity increases the stability of an ecosystem. This question has been 

explored in some detail using both models and empirical data, examining the effect upon 

numerous concepts of ``stability’’ [21] under variation of properties of food webs such as 

predator-prey ratios, the proportion of possible feeding links in a system that are realised 

[22], the effects of competition between species, and the proportion of ``weak’’ feeding links 

[23]. 

 

A key area of the study presented in this paper is the inclusion of mutation in a predator-prey 

ecosystem.  Mutation has previously been introduced into both single species predator-prey 

ecosystems [24,25] where it was used to simulate adaption towards the environment, and in 

multiple species predator-prey models [26] where the various traits of the predator and prey 

are allowed to evolve, introducing new species into the ecosystem. A recent approach 

building on the static food web models found in the ecological literature in the 1990s has 

been the development of several eco-evolutionary models that seek to combine classical 

population dynamics with the creation of new species by random mutation, and the 

maintenance of the ecosystem by natural selection [27-32]. A key feature of these models is 

that the species themselves are not pre-selected, and the trophic relationships that are present 

in the resulting food web are an emergent result of the selection process operating on 

population dynamics. An overview of the development of one such model in the light of 

historical food web research can be found in [33]. 

 

A similar area of study relates to the modelling of predator-prey meta-populations, where a 

single predator and single prey species occupy a spatial plane, with the two species able to 

move around and interact on the plane. This creates a predator-prey model that models the 

dynamics of the species in both space and time. There are several ways of modelling this: 

reaction-diffusion based predator-prey models [34,35], kernel based models [9], and coupled 

map lattice (CML) based models [36-38]. The most relevant of these to the study presented 

here are the CML-based implementations, which model the predator and prey as discretely-

coupled elements on a lattice. Studies in the physics literature have considered the dynamics 



on such structures [39-40], and they have been applied to modelling population dynamics on 

spatial systems of plants [41] and insects [42]. Multiple-species predator-prey relationships 

on a two-dimensional lattice were studied using the discrete generalised Lotka-Volterra 

equations in [43]. This approach has the advantage of being relatively simple to compute, 

whilst introducing a natural ordering which allows the constraint that species may only move 

to an adjacent region on the lattice. By varying the species’ intrinsic growth rates along the 

lattice, we may model differences in sustaining life between the environments. How these 

ideas are implemented in the present study will be discussed in more detail later. 

 

This paper uses a generalised multiple species form of a discrete time predator-prey model 

proposed by Neubert and Kot [3]. Predation strategies, which dictate how the predators go 

about hunting the prey, have been included in a previous generalisation of the Neubert and 

Kot model which has been studied by Mullan et al [44]. The model here is expanded with the 

introduction of a CML to govern the dynamics of the prey, which has several advantages as 

noted above. This allows the prey to mutate discretely into other prey species and is executed 

with a single predator hunting upon the set of mutating prey. Building upon previous work in 

this way results in a multiple species model that is computationally feasible and capable of 

yielding insights on the range of dynamics occurring in such a system, the role of mutation 

and the important issue of ecosystem stability. After describing the model, results will then be 

presented, first showing a broad overview of where survival occurs in the model based on the 

assigned control parameters, and then with a focus being placed on the underlying dynamic 

behaviour of the species within the model as its configuration changes. Both the Ricker and 

logistic maps are used to model the prey dynamics with comparisons being drawn between 

these two unimodal maps. 

 

 2. Multiple species predator-prey model 

 

The following single species discrete time predator-prey model was proposed by Neubert and 

Kot [4]  

 

𝑁𝑡+1 = 𝑁𝑡𝑒𝑟(1−𝑁𝑡−𝑃𝑡)                              

 𝑃𝑡+1 = 𝑐𝑁𝑡𝑃𝑡                                                 

 

(1a) 

(1b) 



where Nt  represents the prey population at time step t and Pt represents the predator 

population at time step t. Two control parameters here define the behaviour of the predator 

and prey: c defines the effectiveness of the predator at predating upon the prey and r  defines 

the reproduction rate of the prey. The Ricker model is being used to model the behaviour of 

the prey. 

 

In previous work [44], this model was generalised as follows to allow for multiple predators 

and prey to occupy the ecosystem: 

 

𝑁𝑡+1
(𝑗)

= exp(−(∑ (𝑓(𝑖𝑗)𝑐𝑖𝑗)𝑚
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(𝑖)
)) 𝑁𝑡

(𝑗)
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(𝑗)
)) 
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=  ∑ (𝑓(𝑖𝑗)𝑐𝑖𝑗)𝑁𝑡
(𝑗)

𝑃𝑡
(𝑖)𝑛
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where  𝑁𝑡
(𝑗)

represents the j
th

 prey species at time step t and 𝑃𝑡
(𝑖)

represents the i
th

 predator 

species at time step t , with cij and 𝑟𝑗  acting as the control parameters. Whereas (1b) can be 

generalised straightforwardly to (2b), (1a) is harder to generalise. A direct generalisation of 

(1a) does not distinguish between the differing effectiveness of predator i in depleting the 

prey j’s population as it contains no dependence on the control parameter c. It is therefore 

reasonable to include the term cij as given in (2a).  

 

The two generalised equations allow for m predators and n prey to occupy the ecosystem, 

with each prey having an individual r value corresponding to its population growth rate, and a 

cij term, which measures the predatorial effectiveness of the i
th 

predator at predating upon the 

j
th

 prey. The term f
(ij)

 is introduced to model how predator i divides its effort hunting the set 

of prey species.The inclusion of this term  is necessary to permit co-survival of predator and 

prey species in the model as the number of species in the ecosystem increases. An extensive 

study of this model with the use of various predation strategies can be found in [43]. 

 

Here the model is further expanded with the introduction of mutation amongst the prey. This 

is effectively a CML model forming the prey dynamics in the predator-prey ecosystem.   The 

result for a single predator is to replace equation (2a) with:  
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(2a) 

(2b) 

(3) 



with a summation over the variable k being introduced which runs over the n prey species. 

Here the probability of prey k mutating into prey j is defined as kjp . 

 

Equation (3) uses the Ricker model to model the growth rate of the prey. As well as this, a 

further unimodal discrete time map has been used to govern the prey dynamics in the model. 

A predator-prey model where the logistic map has been used in place of the Ricker model is 

defined as: 
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where the terms are to be understood as for (3). 

 

In this paper we use a variant of equation (2b) which for a single predator can be expressed 

as: 

( ) ( )
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The assumption being made is that the predator population effectively has a carrying capacity 

on each prey. The reason for this choice is discussed further at the end of the next section. 

 

The two mutation models described by (3,5) (for a Ricker map based system) and (4,5) (for a 

logistic map based system)  allow for a single predator with a predation strategy defined by 

the array [ f
 j
 ]  and predatorial effectiveness defined by the array  [ cj ]  to predate  on  n 

mutating prey, with each prey having an individual value rj determining the growth rate of its 

population in absence of predation.  

2.1 Mutation 

 The sum of the probabilities for each possible mutation of prey species k to any of the other 

species j, kjp , plus the probability that it does not mutate, 𝑝𝑘𝑘, must sum to one, 

1

 1    k
n

kj

j

p


  .

 

 

 

Further, all the probabilities must lie in the range [0,1], i.e. 

(5) 

(4) 

(6) 



 

[0,1] j,kkjp   .                                                     

 

Nearest neighbour (N-N) mutation is employed to simulate mutation of the prey. Here the 

matrix takes the form: 

1
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where p is the probability of a prey mutating into a neighbouring species, n being the total 

number of prey and the term 1-p accounting for the prey species at the edges of the system. 

The fact that 0kjp   means the maximum probability of a prey mutating into a neighbouring 

prey is 0.5 in line with (6) above. Here each species will contribute half of its population to 

each of its neighbouring species in the next iteration of the model. This means that those 

populations that are not along the edges make no contributions to their own population at the 

next time step. 

 

High mutation rates ( kjp  > 0.1) would not be considered biologically relevant, since 

biological mutation occurs with much lower probabilities. However, if we were considering 

the model spatially, i.e. that
kjp represented not the probability of mutation, but of migration 

to a neighbouring population group, then higher values of kjp would be reasonable, and so 

allowing for this interpretation, they are considered here. 

2.2 Assignment of control parameters 

The control parameter rj  defines the growth rate of the prey species j in the model. In the 

current work these have been scaled linearly across the prey species via 

 

𝑟𝑗 =
𝑗

𝑛
𝑟𝑚𝑎𝑥 

 

where 𝑗𝜖{1, … , 𝑛}. This gives a linear distribution of the r control parameter values from 

rmax/n to rmax. It is this differing r value for each prey’s growth rate that draws a distinction 

between each of the prey species. 

(8) 

(7) 

(9) 



 

In all cases 𝑐𝑗 = 𝑐 meaning that the predator has an equal efficiency of predating upon all the 

prey species. A predation strategy which is dependent on the relative size of the prey 

populations is defined via: 
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where α specifies an exponent with which the focus of the predator changes.  

Six different values of α have been considered. α = 0, which corresponds to the predator 

focusing an equal amount of effort hunting each of the surviving prey species, regardless of 

their current population density, α = 1, where the predator distributes its effort towards the 

current population density of the prey species, modelling an opportunistic predator that 

attacks any prey that it encounters. Then with the increasing values of α of α = 2, α = 4 and α 

= 7, with each increase of α increasing the predator’s focus towards the prey species with the 

highest current population densities. Finally α = ∞, is an extreme focus in which the predator 

exerts 100% of its effort predating upon the single prey, which has the highest current 

population density.   

 

It is possible to interpret this model in terms of predator migration similar to other work in 

the field if we think of the model as a single predator species that utilises different predation 

strategies across a one dimensional space. Instead of interpreting the prey as different species, 

we can instead interpret each prey to be a different area, with a different sub-population of a 

prey species.  With this interpretation α dictates how much time the predator is spending 

predating in each area. At α = 0, the predator is spending an equal amount of time in each 

area, no matter how densely populated the areas are with prey, and then as α grows the 

predator is starting to divert its predation effort towards areas which contain a greater density 

of prey.  The α = ∞ case can then be interpreted as the entire pack of the predator species 

migrating together, and solely focusing on the area in which the greatest density of the prey 

exist. The differing r values could be interpreted as the different areas having different 

characteristics that affect the growth rate of the prey.  

 

Finally, we return to the choice of predator dynamics given by equation (5). This choice is 

made to prevent a pathological scenario which could otherwise arise is cases where the 

(10) 



predator uses a focusing strategy as described by (10). Namely, a predator can deplete one 

prey population, increase its population, then in the next time-step move to another prey 

(which is now the largest), again increase its population, and so on. At each time step the prey 

populations which are not being predated on have a chance to recover, to be predated on at a 

later time step. In some scenarios this allows the predator population to increase without 

bound. The use of the carrying capacity term in (5) prevents this. 

3. Numerical Results  

The two predator-prey models outlined in (3), (4) and (5) above have been run for a 10 prey, 

single predator ecosystem. In the logistic model the maximum value for which the prey 

species will survive is r = 3, and so rmax has therefore been fixed to rmax = 3 for all runs in both 

the logistic and Ricker based models. This allows for direct comparison to be drawn between 

the two unimodal discrete time maps.  

 

For all runs N1 is populated with an initial population density of 
1N  = 0.5. The system is then 

run for 1000 time steps after which the predator is introduced with a population density of 
0P  

= 0.5. This means that at the time of introduction of the predator, all prey species are 

populated, and behaving as they would in their CML form with no predation. After the 

introduction of a predator the predator-prey ecosystem is then run for 9,000 time steps before 

results are collected over the next 1,000 time steps. 10,000 time steps were deemed to be 

sufficient for the system to converge upon its post transient state.  It was found that running 

for a greater number of iterations did not show significant differences in the output of the 

model.  Populations which fell below 10
-16 

were set to zero.  

3.1 Area of Survival 

Figures 1 and 2 show species survival as predation rate c and mutation rate  p vary  for the 

logistic and Ricker based models respectively for a range of predation strategies defined by  

α. Figure 1 presents results for both the predator and prey for the logistic based model. . In 

Figure 1(a) where α = 0 the predator population survives between c = 1 and c = 4.7, with the 

boundary of predator survival becoming fragmented as c approaches 5 and the mutation rate p 

is varied. Between c = 3 and c = 4.7 the predator survival is highly reliant on mutation rate p. 

For some values of p and c the predator survives an initial decline due to overhunting. Thus 

scenarios occur where within the first 5 iterations the predator overhunts the prey, causing a 

decline in its own population, followed by a recovery of both the prey and predator 



populations and the post transient stabilisation of the ecosystem. In the cases where the 

predator dies off it overhunts the prey to the point where it cannot support its own population 

at all and so it quickly dies off. The prey here are surviving between c = 0 and c = 8.6, with 

the area of survival again being fragmented above c = 5.5. This is due to the predator either 

overhunting the prey populations to complete extinction, or leaving extremely small prey 

populations at the time of predator collapse, which eventually allows survival of all prey 

populations as mutation causes repopulation, with the prey populations reverting back to their 

CML form. Above  c = 8.6 the predator hunts the prey to extinction in all cases. There are 

five distinct regions of predator and prey survival displayed here. With c <1 a region exists 

where the predator’s c value is too low to support itself, it quickly dies off leaving the prey to 

survive while never having much impact on the prey in the transient phase. This region is 

present for all values of α and in both the Ricker and logistic based models and will not be 

discussed further. There is also a stable co-survival region between c =  1 and c = 3, where 

co-survival of the predator and prey species occurs for all values of p, a  fragmented region of  

predator survival between c = 3 and c = 4.7 discussed above, a  fragmented region of prey 

survival without predator survival seen between  c = 4.7 and c = 8.6 and the region of 

complete extinction above c = 8.7. It is of note here that mutation has had little impact on 

regions of survival. 

 

In 1(b) the predator population survives between c = 1 and c = 3.83, here the fractured edges 

on predator survival have become much less pronounced, occurring between c = 3.5 and c = 

3.83. The region discussed in Figure 1(a), where the predator kills off all the prey populations 

for all values of p at high values of c, no longer exists. Two things are of note when 

comparing the behaviour in Figure 1(a) and 1(b). The space in which co-survival occurs has 

declined in size in comparison to Figure 1(a) along the c axis, and the area in which the prey 

survive in the absence of a predator has increased. This is a trend that continues as the value 

of α increases further: in Figure 1(c) co-survival occurs between c = 1 and c = 3.5, in Figure 

1(d) the predator population survives between c = 1 and c = 2.81 and in in Figure 1(e) the 

predator population survives between c = 1 and c = 2.4.  This shows that as α increases the 

space in which co-survival occurs has declined in size. The area in which the prey species 

survive in the absence of the predator however is increasing; with it becoming less fractured 

between areas of prey extinction and survival as α grows. When α =4 and α = 7 the prey are 

successfully surviving for the vast majority of (c,p) space. It should be noted that the 

mutation rate p has very little effect on the area of survival in all these cases. 



In 1(f), where α = ∞, co-survival occurs between c = 1 and c = 3.4. This is an increase in area 

in comparison to 1€ where α = 7 but smaller than the  α ≤ 2 cases. The predator here is never 

hunting the prey species to extinction, all prey species survive for all values of c and p. The 

death of the predator is caused by the predator population growing too large to be supported 

by the prey species, with the predator therefore becoming extinct due to the use of (5). This 

strategy behaves differently to the trend where increasing the value of α is decreasing the 

maximum c value at which co-survival is seen. This is because when α = ∞ the strategy 

becomes a single predator predating upon a single prey within a CML at each iteration, and 

from (5) there is an increased risk that over predation on this single species will lead to 

predator collapse.   

 

The simplest strategies here allow co-survival for the greatest region of initial conditions.  

The greatest co-survival area is seen when α = 0, which models a species which divides its 

hunting effort up amongst all surviving species evenly. The region then decreases when α = 

1, which models an opportunistic predator which attacks any prey which it encounters, and 

then decreases further still as α grows, modelling predators which spend increasingly more 

effort hunting prey species with the highest current population density.   

 

Figure 2 shows survival results obtained using the Ricker based predator-prey model. The 

main difference compared to the logistic model is that for all the values of α considered, 

every prey species now survives for all parameter choices, including the regions of large c 

where they were driven to extinction when using the logistic model. For this reason, Figure 2 

only shows results for predator survival. The Ricker model clearly has significant benefits for 

prey survivability, and this is independent of the presence of predators and the strength of 

predation.  

 

For all values of α, a clear structure is visible of a column in c where the predator may 

survive for most or all values of p. The lower boundary in c necessary to sustain the predator 

is almost independent of p in all cases, and the upper boundary starts with a very fractured 

structure in p for lower values of α, but becomes smoother and less p-dependent as the 

predator becomes more focused. In particular, rate of mutation has relatively little effect on 

predator survival when α is greater than 1. This column of survival is similar to that observed 

when using the logistic model for the prey, but there are some differences. The upper 

boundary in c is much smoother than the corresponding boundary for a given value of α when 



using the logistic model, and the column is slightly narrower in the Ricker case - that is, there 

are some values of c that will permit predator survival in the logistic case but not the Ricker 

case. The maximum value of c that allows predator survival decreases as α increases, 

reducing from approximately c = 5.6 when α = 0 to c = 1.8 for α = , which contrasts with 

values of c = 8.7 and c = 3.4 respectively when using the logistic model.  

 

Another interesting feature of this column structure, which only occurs for the Ricker 

model, and which persists for all values of α considered, is the region of low p where this 

region of survival becomes noticeably wider. In section 3.3 we will discuss the dynamic 

properties of the system that this region corresponds to. The minimum value of c necessary to 

facilitate predator survival is approximately 1 for the case α = 0, and decreases slightly as α is 

increased in contrast to the logistic model where it remains closer to c = 1 for all values of α. 

That is, as the predator becomes more focused, it is able to survive reduced rates of 

effectiveness when the Ricker model is used. In general, however, the predator survival plots 

for α = 2, 4, 7,  are similar and, in particular, there is much less difference between the plots 

for α = 7 and α =  when using the Ricker model compared to the logistic model.  

 

Overall, despite some differences in predator survival between the Ricker and logistic 

models, both exhibit similar behaviour. In particular, in both models the predator becomes 

extinct when its predatorial effectiveness c is too small, predator survival is largely 

independent of p for α > 1, and predators survive for a range of values of c, but die out once c 

becomes too high.   

 

3.2 Bifurcation diagrams for the logistic based model 

Figure 3 presents bifurcation diagrams showing predator behaviour in the logistic based 

predator-prey model with different values of α. The range of c values between c = 0 and c = 5 

in increments of 0.5 are presented with the p parameter being varied. The predator’s 

dynamics can display a broad range of behaviour as the p parameter changes. This includes 

the predator population stabilising on fixed values, bifurcating, period bubbling and chaotic 

behaviour. 

Figure 3(a) presents a bifurcation diagram showing the predator’s behaviour where α = 0. 

This is the predation strategy which allows  predator survival for the widest range of c, as 



noted when discussing Figure 1. The conditions under which the predator survives in this plot 

fall between c = 1.5 and c =4.5. For the lowest values of c, where co-survival occurs (c = 1.5) 

the system’s dynamics largely appear to be in a chaotic state for the full range of p, with 

some narrow windows of periodic behaviour within the chaos. As c grows to c = 2, the 

system’s dynamics generally behave chaotically with p < 0.415, above which the ecosystem’s 

dynamics period half out of a chaos, settling on a period 5 orbit, and no longer displaying 

chaotic dynamics when p > 0.415. This stabilising behaviour is seen for higher values of c: at 

c = 2.5 the dynamics period half out of the chaotic state at p = 0.228 settling on a period two 

orbit with p >0.47, at c = 3 the system period halves out of chaos at p = 0.09 with the output 

falling upon a period two orbit for p >0.24.  

When c > 3, the survival and behaviour of the predator species is erratic, this lies within the 

fragmented boundary of predator survival for high c values noted in the discussion of Figure 

1(a). Here the predator either collapses or enters a chaotic orbit as the mutation rate p varies. 

With c = 3.5, the dynamics are periodic for all values of p >0.04, while with c  > 3.5, the 

dynamics become erratic in the co-survival area, with the ecosystem behaving chaotically in 

the event of the predator surviving. When discussing Figure 1 it was noted that the space in 

which the co-survival occurs shows little reliance on the mutation rate p, however Figure 3 

show that the underlying dynamics of the ecosystem are highly dependent upon the mutation 

rate.      

The effect of c  on the population density of the predator can also be seen in Figure 3(a). 

Increasing the value of c increases the predator’s maximum population density up to the point 

where the predator becomes overly effective and therefore collapses. At c = 1.5, the 

predator’s population dynamics fall between P = 0.3 and P = 0.44. As c increases to c = 2, the 

dynamics of the predator population now fall between P = 0.55 and P = 0.8. This trend 

continues until c = 4.5, where the predator dynamics now fall between P = 0.46 and P = 1.98. 

As the predator gets more effective at predating on the prey, it is able to support a higher 

population as is visible across the full range of α values in Figure 3. This is reflected in the 

prey’s behaviour shown in Figure 4, which shows the corresponding bifurcation diagrams for 

the N1  prey population for each value of α. This prey species has an r = 0.3 control parameter 

due to (9). In Figure 4, where the prey survives in the absence of predation, the prey species 

will revert back to its predation free CML. If it survives in the absence of a predator, this prey 

species will converge upon N1 = 1. In Figure 4(a), with c = 1.5, the N1  population is being 



reduced so that its behaviour is falling within the range, N1  = 0.81 to N1  = 0.9. When c = 2, 

the N1   population has been further reduced so that the output now lies within the range N1  = 

0.55 to N1  =0.7. This trend continues further as c increases, the N1  prey population is being 

reduced as the predator becomes more effective at predating upon it. This is in line with the 

observation that the predator population density is increasing as c increases. Figure 5 shows 

this with predator and N1 with an increasing value of c and α = 0. It can be seen that the 

average rate of predator survival is increasing as c increases, which in turn is causing a 

decline in the average rate of the N1 prey population. Upon checking the rest of the prey 

species behaviour, it was confirmed that this trend is apparent across all the prey species. As 

c increases, the predators have a greater impact across all prey species, decreasing their 

average population density. 

As noted in the discussion of Figure 1, as the predation strategy defined by α increases the 

maximum c for which co-survival occurs decreases. Due to the increment value of 0.5 on c 

this is not always obvious when inspecting the plots in Figure 3. However, as a general trend, 

it is observable. In Figure 3b where α= 1 the predator has survived between c = 1.5 and c = 

3.5, in Figure 3(c) where α= 2 the predator has survived between c = 1 and c = 3.5. The 

predator here with c = 1 has survived where it became extinct at the lower values of α, but in 

both of these cases survival occurs at c = 3.5. In Figure 3(d), however, where α= 4, the 

predator has only survived between c = 1 and c = 2.5 and this is also the case in Figure 3(e) 

where α = 7. In Figure 3(f) with α = ∞ the predator has survived between c = 1 and c = 3, an 

increase as noted above when discussing Figure 1(f) due to the different behaviour when α = 

∞.  

Stabilising behaviour, where the system period halves out of chaos and remains on a periodic 

attractor for all remaining values of p, noted when discussing Figure 3(a), occurs in Figure 

3(b) with α = 1 for c = 2.5, 3 and 3.5 for values of p > 0.46, 0.4 and 0.43 respectively. With α 

> 1 this stabilising behaviour is no longer seen. With α = 1 and α = 2, and with c = 3.5, the 

maximum plotted value for which co-survival survival is occurring, the ecosystem’s 

dynamics are generally behaving chaotically, with the predator population covering a wide 

range of values. With α > 4, survival is no longer seen at c = 3.5, with the maximum plotted 

value of co-survival being c = 2.5 when α = 4 and α =7. In figure 3(e) with α = 7, and c = 2.5, 

co-survival only takes place between p = 0.31 to p = 0.37. The dynamics for the upper c 

values for α = 4 and α =7 display a visible reliance on the p value, with long windows of 



periodic behaviour occurring in between chaotic dynamics. For α = 4, with c = 2.5 a window 

occurs between p = 0.25 – 0.406, where there are regions of periodic behaviour, and with α = 

7 and c = 2 a band occurs between p = 0.33 – 0.47 where the behaviour is entirely periodic. 

Figure 6 provides examples of the intermittently chaotic orbits that can occur in the system. 

Using the plots presented in Figure 3, several observations about the effect of α on the 

predator population density can be made. It can be seen that the range which the surviving 

predator’s population is falling upon is increasing as α increases. If we look at Figure 3(a), 

when α = 0 and look at the c = 1.5 plot, the range of the predator’s populations is falling 

between P = 0.3 and P = 0.44. In Figure 3(b), with α = 1, the corresponding range lies 

between P=0.36 and P=0.45. This trend continues up to α = 7 in Figure 3(e), where the range 

now lies between P=0.46 and P=0.75. In Figure 3(f) with the extreme predation strategy of α 

= ∞ the behaviour is visibly different to the earlier α values, with the population much more 

erratic, and behaviour that suggests multiple attractors as p changes. The corresponding 

population here is falling between P = 0.56 and P = 0.77. It is also of note that the more 

focused predation strategies (α ≥ 2) are allowing predator survival at c = 1. 

In Figure 4 the interesting behaviour for the N1 prey species lies within the region of co-

survival. Outside of this region it will either converge on N1  = 1 (CML behaviour) or N1 =0 

(hunted to extinction). Within this area of co-survival the N1 prey population always stays 

below N1  = 1 for all values of c and for all values of α. The behaviour of each plot can be 

directly correlated with the behaviour of the predator in the corresponding plot in Figure 3. 

When the predator is more successful, the prey’s population in turn will be impacted to a 

greater degree. Since this is a coupled system between the predator and prey, the broad 

dynamics of the system are always linked; in any case where the predator population is 

chaotic all prey populations will also be chaotic, and where the predator population is 

periodic, all prey populations will also be periodic. The dynamics of the prey species 

therefore follow the underlying dynamics as discussed for Figure 3. A further observation is 

that the N1  population is being impacted more by the predator at lower values of p which will 

be commented on later.  

The behaviour of the N1 prey in Figure 4(f) is quite different from all the other cases. Here α 

= ∞ with the predator’s strategy being to fully focus on the prey species with the highest 

current population density. The N1 prey is the prey with the lowest r value in the system, and 

is also an edge species. It only mutates into and receives contribution from a single 



neighbour. Interesting behaviour can be seen in the first prey species here in cases where the 

predator survives with a high c value. If we observe the behaviour with c = 3 and p = 0.25, 

there are cases where in the bifurcation diagram it appears that the prey is on a periodic orbit. 

Investigation of the underlying dynamics here show that this prey species for the vast 

majority of its runtime is converged on N1 =1. When it becomes the most populous species of 

prey, the predator exerts all of its effort upon this prey, completely collapsing its population. 

It then receives mutation from its single neighbour, N2, which has a population density of 

N2=1 and therefore gives a 25% contribution and so the N1  population becomes N1  = 0.25. 

This process continues in the model, with slight growth caused by its small growth rate of r = 

0.3 and the neighbour’s contribution it receives at each iteration, until the N1  prey re-

converges on N1 = 1.  When represented as a bifurcation diagram, this behaviour visually 

appears similar to a ‘standard’ periodic attractor, but in fact it is the population being killed 

off, and then gradually stepping back into its post transient state. 

Figure 7 shows a plot of the average population density of the predator and each of the prey 

with the logistic based predator-prey model and c = 2 against the p control parameter for 

different values of the focus strength α. Within the following discussion 𝑃̅ is used to denote 

the average predator population. The model is run for 10,000 iterations for each value of p, 

with an average being taken over the last 1000 iterations of the 10,000 time step runtime. 

These graphs allow us to see the effect that the predation strategy has on the average survival 

rate of the predator and prey species. From the earlier observation made using Figure 3, it is 

apparent that as α increases the predator’s population density in the model is also increasing.  

In Figure 7(a) the average population density for the predator lies between 𝑃̅ = 0.65 and 𝑃̅ = 

0.7, with a peak average population of 𝑃̅ = 0.73 at p = 0.1 and the minimum average of 𝑃̅  = 

0.66 appearing at p = 0.01. Above p = 0.22  the average population of the predator becomes 

largely independent of the mutation rate, with 𝑃̅ = 0.68 for all remaining p values.  In Figure 

7(b) with α = 1, the average predator population density lies 𝑃̅ = 0.72 to P =0.75 with a peak 

of P = 0.75 occurring at p = 0.12 and a minimum of P  = 0.72 occurring at p = 0.5. The 

mutation rate with this strategy holds more influence over the predator’s average; above the 

peak at p = 0.12, the predator’s average population uniformly declines as p increases, 

suggesting that high mutation of the prey with this strategy is detrimental to the predator’s 

average survival. The average is higher for all values of p, however, in comparison to α = 0. 

In Figure 7(c) with α = 2, the average predator population density lies between P =0.76 to P



=0.78 with a peak of P =0.78 occurring at p = 0.05 and a minimum of  P  = 0.76 occurring at 

p = 0.5. The behaviour is similar to the α = 1 case, but overall the impact of mutation is less. 

Again the minimum average population with this predation strategy is higher than the 

maximum average predator population density with the earlier predation strategies. This is a 

trend that continues as α increases. In Figure 7(d) with α = 4, the average predator population 

density lies between P =0.82 to P =0.86 with a peak of  P =0.864 occurring at p = 0.496 and a 

minimum of P  = 0.0.82 occurring at p = 0.45. The behaviour here is very similar to the 

previous cases for low values of p, with the average population growing to a relatively high 

value, and then gradually declining as p grows, but here the average population sharply 

increases as p grows larger than 0.45. The average increases again as α grows to α = 7 in 

Figure 7(e), with the average predator population density lying between  P =0.83 to  P =1.08, 

with P  >0.89 for the vast majority of the tested space. A small window between p = 0.2 – p 

=0.22 sees P drop discontinuously to 0.83. The mutation rate here is very heavily impacting 

the average population density of the predator.  In Figure 7(f) with α = ∞, the average 

predator population density lies between  P =1.1 and  P =1.39. The behaviour here is very 

erratic, especially when p>0.3, where the output looks to be jumping between two different 

attractors as suggested when discussing Figure 3(f).  

Looking at the prey with the lowest r value, r = 0.3, which corresponds to the graphs 

presented in Figure 4, as noted earlier a clear influence of the effect of mutation can be seen, 

especially with α ≤ 2. In Figure 7(a) where α = 0, a gradual increase of this species population 

between N1 = 0.56 at p = 0.01 and N1 = 0.73 at p  = 0.5 can be seen. Similar behaviour in this 

species is also seen in Figure 7(b) and 7(c) and 7(d) but with the difference becoming less 

clear as α increases. As p increases, the contribution from prey species with higher growth 

rates and higher population density increases, which for these low values of α allows for 

more contribution from neighbouring species with higher current population density, causing 

an overall increase in the population density of N1. With the higher values of α values 

presented in Figure 7(e) and 7(f), the species behaviour does not show as much reliance on 

mutation, with more significant variation apparent at α =7. 

For prey with 0.3< r <2.1 the mutation rate and α have less impact on the prey species 

average survival rate. For the species where r > 2.1, where the species’ underlying dynamics 

can display chaotic behaviour covering a wide range of values, non-smooth behaviour of the 

average population density can be seen as p varies. 



 

Figure 8 shows bifurcation diagrams with α varying between 0 and 10 and with a fixed p 

value. Figure 8(a) and 8(b) use a fixed p value of 0.41, showing the predator and N1 prey 

respectively.  p = 0.41 has been chosen since it is a point which sees survival for the full 

range of c values where co-survival is seen, observable in Figure 3(a), at which the predator 

is surviving between c = 1.5 and c  = 4.5. It is clear that varying the value of α impacts the 

underlying dynamics of the ecosystem, with the various bifurcation diagrams showing a full 

range of chaotic dynamics, with clear periods of periodic behaviour within the chaos for all 

values of c. As noted when discussing Figure 3, increasing the value of α is decreasing the 

highest c for which co-survival is seen. This is clearly apparent here, for c = 4.5, the predator 

is surviving up to α = 0.04, for c = 4 the predator is surviving up to α = 0.36, for c = 3.5 the 

predator is surviving up to α = 0.14, for c = 3 the predator is surviving up to α = 3.16 and for 

c = 2.5 the predator is surviving up to α = 5.68.  The range of the chaotic attractor for these 

examples is increasing as α increases. With c = 2 and c =1.5, the predator is surviving for the 

full range of α between 0 and 10. The α value at which the c =1 first survives can be seen as α 

= 1.6.  

 

The impact of α on the prey species can be seen in Figure 9, which shows the average 

population survival of the species in the ecosystem with p = 0.41 and α varying between 0 

and 10. Figure 9(a) shows the species’ average behaviour with c = 1.5. The average predator 

population density here is increasing as α increases. It is having a greater impact on those 

species where r ≥ 2.7, with their average population decreasing as α increases.  These are the 

two species with the widest range to their populations, and therefore the species that can have 

the highest maximum value. Although their average value is being reduced, the predator is 

spending most of its time predating upon them, impacting them to a greater degree. The other 

species have less range to their populations, with some species’ average population density 

slightly increasing as α increases and some slightly decreasing. Figure 9(b) shows the species 

average’ behaviour with c = 2. More interesting dynamics are displayed here, initially the 

system behaves in a similar manner, with those species with highest r values being impacted 

and the predator population increasing most with α < 6. At  α > 6 however the average 

predator population rapidly jumps from 0.9 to 1.1. The impact upon the prey changes, with 

the r = 2.1 prey becoming the species with the lowest average value, and with there being 

much less impact on the r =3 species. This behaviour coincides with a long period of stable 

periodic behaviour observable in Figure 8 in the c = 2 plot between α = 6.03 to α = 9.02, 



where the system goes from behaving similarly to the c = 1.5 plot to displaying markedly 

different dynamics. This suggests that the system is jumping onto a different attractor at this 

point.   

3.3 Bifurcation Diagrams Ricker Based Model 

Figure 10 presents bifurcation diagrams showing predator behaviour in the Ricker based 

predator-prey model for different values of α. These results are directly comparable to the 

results shown in Figure 3 for the logistic based model. Figure 11 shows the corresponding 

bifurcation diagrams for the N1 prey population for different value of α. These results are 

directly comparable to Figure 4.  

As noted when discussing Figure 2, the overall region of co-survival is narrower in the range 

of c values in comparison to the logistic based model. Similar to the logistic based model and 

as noted when discussing Figure 3, as α increases the maximum c for which co-survival 

occurs decreases. In Figure 10(a) where α = 0 the predator survives between c = 1 and c =5 

for at least some values of the mutation rate p, while survival occurs between c = 1 and c = 

3.5 for α = 1 in Figure 10(b) and between c = 1 and c = 2.5 for α = 2 in Figure 10(c). In 

Figure 10(d), Figure 10(e) and Figure 10(f) where α = 4, 7 and ∞ respectively, the predator 

survives between c = 1 and c = 1.5. This clearly illustrates what one would expect from a 

comparison of the species survival plots, that the column of predator survival is more 

restricted in the Ricker model than in the logistic model for α > 0. It is also of note that in all 

cases the co-survival area successfully begins at c = 1, whereas in the logistic based example, 

survival was not seen at c = 1 until α > 1. 

 As in the discussion of Figure 3 and Figure 4 for the logistic model, the results for the Ricker 

model in Figures 10 and 11 display a wide range of dynamics as the mutation rate changes, 

with an increasing value of c increasing the predator’s population density within the region of 

co-survival, which in turn decreases the prey population densities as the predator becomes 

more effective at predating upon them. One difference between the models is that for α > 0 

the Ricker model tends to explore a greater range of the phase space. This is particularly 

evident for α = 1 with the Ricker populations visiting the full range of 0 to 3.2, whereas under 

the logistic model the population values are restricted to lie between 0.35 and 2. Another 

interesting feature of the Ricker results can be seen in Figure 10(d) which provides a nice 

example of an attractor consisting of two distinct, but overlapping regions of phase space for 

α = 4 and c = 1.5.  In some cases mentioned in Figure 3(a) and Figure 3(b)  it was observed 



that increasing the mutation rate could have a stabilising effect on the ecosystem, where the 

system period halved out of chaos and behaved periodically for all remaining values of p. 

This behaviour is also observed in the Ricker based model in Figure 10, for example, at c = 2 

for α = 0 and α = 1 and at c = 1.5 for values of α from 0 to 4. This behaviour is also evident 

within the bifurcation diagrams for the first prey species, N1, in Figure 11.   

The results in Figure 11(a) for α = 0 are very similar to those obtained using the logistic 

model which were presented in Figure 4(a). In general, the behaviour remains fairly similar to 

that in the logistic case for higher values of α and, in particular, the trend of the population 

decreasing with predation rate c for a given value of α is evident. For α = 1, 2, for each value 

of c, the prey starts in an apparently chaotic region, collapses to a low-period orbit, and then 

bifurcates back to chaos as the mutation rate is increased from zero. When α =  the first 

species has very little fluctuation in its population and remains close to a value of one, the 

value it would have in the absence of predation, except for very high mutation rates (p > 

0.48). As well as being distinct from the cases where α is finite, the results for α =  are 

distinct from the logistic case. While the population remains close to one where it survives, 

there is no evidence of it becoming extinct and then being brought back into existence as the 

result of mutation from the neighbouring prey species N2 as there was in the logistic case.  

Figure 12 shows a plot of the average population density of the predator and each of the prey 

with the Ricker based predator-prey model and c = 1.5, with the p control parameter being 

varied and with the use of various values of α. This figure is comparable to Figure 7 which 

shows a similar plot for the logistic based model, but note that a different c value of 1.5 is 

used in Figure 7 since this corresponds to a region of co-survival (see Figure 2). Note that the 

average prey populations are in general smoother and less variable in p in comparison to the 

corresponding results obtained for the logistic model. A further difference compared to the 

logistic case is that in the range of low p, corresponding to the wider region of predator 

survival in the survival plots (Figure 2), the average population of the predator is much larger 

than for large p and in some cases it is larger than that of some or even all of the prey species 

for α > 1. However, when p increases beyond this range, the predator population falls 

significantly and there is often a discontinuity in the prey populations as they align 

themselves with a (usually lower) average population value which then remains relatively 

unchanged as p continues to increase from that point onward. The critical value of p at which 

this change occurs increases slightly with increasing α (for α = 0 it is approximately p = 0.11, 



but by α = 4 it is p = 0.17). This critical value of p is due to bifurcations causing a rapid onset 

of chaos in the structure of the system observed in the corresponding predator and first prey 

species bifurcation diagrams for c = 1.5. 

Figure 13 shows how increasing the value of α affects the dynamics of the model with a high 

mutation rate of p = 0.49. This value of p was chosen since it permits survival at higher 

values of c at α = 0 (see Figure 2). Once again, the results are similar to those presented for 

the logistic model in Figure 8 (at p = 0.41), although survival occurs for higher c values in the 

Ricker model. Figure 13(a), which shows the behaviour of the predator, reinforces our earlier 

observation that increasing the value of α decreases the maximum value of c that allows 

predator survival. As α increases, the maximum predator population size that is visited (in the 

case of periodic or chaotic behaviour) for a fixed value of c will increase until the population 

visits a negative value whilst in the chaotic region and the predator thus immediately goes 

extinct. The plot continues with the next highest value of c, which although also increasing 

with α will have a lower population at that point.  

Figure 13(b) shows the corresponding bifurcation diagram for the first prey species, N1. It 

should be noted that in the event of the single predator going extinct, the simulation is halted. 

Thus, when the bifurcation diagrams end abruptly for values of c > 1.5, this is because the 

predator has died out. So this should not be taken as indicative of a collapse of the prey 

species. As one might expect from the previous discussion, as the predation rate c decreases 

the simulations continue for greater values of α and allow for greater maximum populations 

of the prey. This corresponds to the behaviour found in the logistic model in Figure 8(b). 

3.4 Discussion of Results 

Throughout this paper a predator-prey model has been explored with a set of mutating prey 

that is being predated upon by a single predator. Results were presented and discussed using 

both the logistic and Ricker models as the discrete time maps to model the prey’s dynamics. 

 

Initially the area of survival within the (c,p) space was presented for both the logistic and 

Ricker model with various values of α with the use of a single predator. Distinct regions of 

behaviour were noted in both models, with a focus being placed on the region of co-survival. 

In both the logistic and Ricker models little reliance on the mutation rate was seen for this 

region. In both models the simplest strategies (α=0 and α=1) allowed co-survival for the 



greatest range of parameter choices. It was noted that increasing the value of α generally 

decreased the maximum value of c for which co-survival is seen. Concerning the prey, a 

single predator will never successfully suppress the prey species survival rate below total 

prey species survival within the area of co-survival. In the space either total prey survival is 

seen or in some cases when the logistic model is used the predator manages to hunt the prey 

to complete extinction, causing full ecosystem collapse. 

 

Bifurcation diagrams showing the underlying behaviour within the space were then shown 

with a varying mutation rate. Across all the values of α, and with both models, a vast range of 

dynamic behaviour arises in such a complex system. The system itself includes prey species 

that in their uncoupled form would behave chaotically, but with coupling and mutation, 

instances of periodic behaviour in the predator and prey species were identified. It was shown 

that varying either the mutation rate or the predator’s value of α can greatly change the 

dynamics of the ecosystem. In both the logistic and Ricker models, instances were identified 

where the mutation rate could have a stabilising effect on the ecosystem, although in 

markedly different ways between the two models. Within the area of co-survival, increasing 

the value of c increased the predator’s population size, and in turn caused a decrease in the 

population sizes of the prey. 

4. Conclusions 

This paper has reviewed a predator-prey model where a single predator hunts a set of 

mutating prey. At the heart of the multiple species predator-prey model is an ecosystem with 

heterogeneity amongst the prey, with different prey species that each have different 

population growth rates. The focus here was placed on both the underlying dynamics of the 

predators and how the assignment of the various ecosystem parameters affected the species 

survival rate of the predators and the prey- with two separate unimodal maps being used to 

govern the dynamics of the prey. 

 

Various observations where made using this model. It was noted that the area of co-survival 

had little dependence on the mutation rate, although when investigating the underlying 

behaviour of the species there was a clear reliance, with the species able to display a wide 

range of dynamics as the mutation rate varied. Increasing the value of α was noted to 

generally decrease the maximum predation rate for which co-survival was possible. It was 

also observed that within the area of co-survival total prey species survival was guaranteed, 



the single predator was never able to suppress the prey populations due to repopulation from 

mutation. It was noted that within the co-survival area, increasing the predation rate of the 

predator increased the predator’s population size while decreasing the population size of the 

prey species. A further study will be carried out expanding on this research, with a model that 

allows for a set of multiple predators that mutate on the set of mutating prey, where each of 

the predators have a separate value of α to allow heterogeneity amongst both the predators 

and the prey species.  
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Figure 1. Survival rates showing the proportion of surviving species in a single predator, 10 prey, ecosystem 

with the use of the logistic map and scaled control parameter values. Results for different values of the focus 

strength, α, are presented as follows: (a) α = 0, (b) α = 1, (c) α = 2, (d) α = 4, (e) α = 7 and (f) α = ∞. 
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Figure 2. Predator survival rates for a single predator, 10 prey, ecosystem with the use of the Ricker map and 

scaled control parameter values. Results for different values of the focus strength, α, are presented as follows: 

(a) α = 0, (b) α = 1, (c) α = 2, (d) α = 4, (e) α = 7 and (f) α = ∞. 
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Figure 3. Bifurcation diagrams showing predator behaviour in the logistic map based predator-prey model. The 

plots show different c values, with the mutation rate being varied.  Results for different values of the focus 

strength, α, are presented as follows: (a) α = 0, (b) α = 1, (c) α = 2, (d) α = 4, (e) α = 7 and (f) α = ∞.  
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Figure 4. Bifurcation diagrams showing the behaviour of the 1
st
 prey species (N1, with r1 = 0.3) in the logistic 

map based predator-prey model. The plots show different c values, with the mutation rate being varied. Results 

for different values of the focus strength, α, are presented as follows: (a) α = 0, (b) α = 1, (c) α = 2, (d) α = 4, (e) 

α = 7 and (f) α = ∞.  
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Figure 5. Averages for the predator and 1
st
 prey species ( N1, with r1 = 0.3)  with an increasing value of c and α 

= 0 in the logistic map based predator-prey model, (a) shows the average population value of the predator 

species and (b) shows the average population value for the N1 prey species. 
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Figure 6. The dynamics in the logistic map based predator-prey ecosystem between the predator and the fifth 

prey species (N5, with r5 = 1.5) with α = 1, c = 3.5 and p=0.355296. (a) shows the full strange attractor, with 

5 × 106 points displayed following 107 transients, and (b) illustrates the structure with a zoom on the corner of 

the part of the attractor which has the lowest value of  N5 in (a).  
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Figure 7. Average population density diagrams for the predator and each of the prey with the logistic map based 

predator-prey model with c = 2. Results for different values of the focus strength, α, are presented as follows: (a) 

α = 0, (b) α = 1, (c) α = 2, (d) α = 4, (e) α = 7 and (f) α = ∞.  
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Figure 8. Bifurcation diagrams showing behaviour at fixed values of c for varying α between 0 and 10 with a 

fixed mutation rate of p = 0.41 for the logistic map based predator-prey model, (a) shows the predator’s 

behaviour and (b) shows the 1
st
 prey species ( N1, with r1 = 0.3) behaviour.  
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Figure 9. Average population survival of the species with p = 0.41 and α varying between 0 and 10 for the 

logistic map based predator-prey model,  (a) shows the species average behaviour with c = 1.5 and  (b) shows 

the average behaviour with c = 2. 
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Figure 10. Bifurcation diagrams showing predator behaviour in the Ricker map based predator-prey model. The 

plots show different c values, with the mutation rate being varied. Results for different values of the focus 

strength, α, are presented as follows: (a) α = 0, (b) α = 1, (c) α = 2, (d) α = 4, (e) α = 7 and (f) α = ∞.    
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Figure 11. Bifurcation diagrams showing the 1
st
 prey species ( N1, with r1 = 0.3)  behaviour in the Ricker map 

based predator-prey model. The plots show different c values, with the mutation rate being varied. Results for 

different values of the focus strength, α, are presented as follows: (a) α = 0, (b) α = 1, (c) α = 2, (d) α = 4, (e) α = 

7 and (f) α = ∞.    
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Figure 12. Average population density diagrams showing the average of the predator and each of the prey with 

the Ricker map  based predator-prey model with c = 1.5. The plots show different species, with the mutation rate 

being varied. Results for different values of the focus strength, α, are presented as follows: (a) α = 0, (b) α = 1, 

(c) α = 2, (d) α = 4, (e) α = 7 and (f) α = ∞.    
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Figure 13. Bifurcation diagrams showing behaviour at fixed values of c for varying α  between 0 and 10 with a 

fixed mutation rate of p = 0.49 and the use of the Ricker map based predator-prey model, (a) shows the predator 

behaviour and (b) shows the 1
st
 prey species ( N1, with r1 = 0.3) behaviour. 
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