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Abstract 

 

 

Unavailability of tissue and poor engraftment remain significant obstacles to clinical islet 

transplantation. Here, the therapeutic potential of pseudoislets generated from the insulin and 

GLP-1 releasing cell-lines MIN6 and GLUTag was investigated. Glucose and other 

secretagogues evoked 1.3–5.7 fold increases in insulin secretion from both pseudoislet types. 

Secretion expressed in relation to basal values did not greatly differ between configurations. 

Exposure of both types of pseudoislets to ninhydrin, H2O2, streptozotocin or cytokine 

cocktails decreased viability and increased apoptosis. However, combined pseudoislets 

exhibited enhanced resistance (1.2–1.7 fold increased LD50, 1.2–1.4 fold decreased 

apoptosis). Implantation of pseudoislets into streptozotocin-diabetic SCID mice precipitated 

cell masses containing immunoreactive insulin and GLP-1. Implantation of both pseudoislet 

types was associated with significant reductions in blood glucose, increased plasma insulin, 

greater bodyweight, decreased polydipsia and improved glucose tolerance. These changes 

greatly exaggerated in MIN6 pseudoislet recipients, with mice becoming severely 

hypoglycaemic. In contract, combined pseudoislet recipients achieved tempered restoration 

of normoglycaemia and exhibited increased plasma GLP-1, decreased plasma and pancreatic 

glucagon, increased pancreatic insulin and enhancements in islet β:α cells and the ratio of 

Ki67:TUNEL positive β-cells. MIN6 pseudoislet implantation increased islet β:α cell ratio 

but did not affect β-cell proliferation or hormone content. Our observations highlight the 

potential of combining insulin and GLP-1 cell therapy using heterotypic pseudoislets. 
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Introduction 

 

Islet transplantation (ITx) is attractive for the treatment of T1DM patients with poor 

glycaemic management but the limited availability of donor pancreata, poor graft function 

and survival remain significant barriers (Onaca et al. 2007, Barton et al. 2012, McCall & 

Shapiro, 2012). Consequently, there is significant motivation to find a more practically 

sustainable alternative for the replacement of lost β-cell mass in T1DM (Onaca et al. 2007, 

Barton et al. 2012, McCall & Shapiro 2012). The use of genetically engineered insulin-

releasing β-cells is a possible alternative to the use of primary islets as it would allow for a 

theoretically unlimited quantity of insulin releasing cells to be generated in vitro for 

transplantation.  Some studies implanting human β-cell lines in experimental animal models 

have already shown promising results (McCluskey et al. 2011, Scharfmann et al. 2014). 

 

A number of strategies have been employed to improve the viability, function and survival of 

implanted islets, including exposure to GLP-1 (Buss et al. 2012, Wang et al. 2013). This 

potent incretin hormone has a wide range of beneficial actions on islet cells, such as 

regulation of glucose-induced insulin release, induction of insulin biosynthesis, inhibition of 

glucagon secretion, enhancement of β-cell proliferation and inhibition of β-cell apoptosis (Xu 

et al. 1999, Baggio et al. 2000, Skoglund et al. 2000, Stoffers et al. 2000, Campbell & 

Drucker, 2013). Injectable GLP-1 mimetics such as exenatide and liraglutide are widely used 

in the treatment of T2DM and their use has been investigated as a potential means of boosting 

islet function and survival post-transplantation in T1DM or preserving β-cell function in 

poorly controlled T2DM (Ghofaili et al. 2007, Faradji et al. 2008, Buss et al. 2012, Wang et 

al. 2013). Significant improvements in islet engraftment following treatments of T1DM 

recipients, or pre-transplant co-culture of islets with GLP-1 agonists have been reported by 

others (Ghofaili et al. 2007, Faradji et al. 2008, Gangemi et al. 2008, Merani et al. 2008, 
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Toso et al. 2010, McCall & Shapiro 2012). 

 

Unfortunately, while GLP-1 mimetics can improve the outcomes of islet transplantation, 

chronic administration is required, and these agents are associated with a range of unpleasant 

side effects, particularly nausea and vomiting (Butler et al. 2013). Additionally, while 

improvements in the outcomes of islet transplantation following GLP-1R agonist based 

therapies have been shown in some studies, others have reported few beneficial effects, 

possibly reflecting relatively low circulating concentrations reaching the islets (King et al. 

2005, Crutchlow et al. 2008). Consequently, more direct exposure of islets to GLP-1 agonists 

has been considered as a potentially more suitable approach. Implantation of islets 

encapsulated within various type of biological scaffolding impregnated with GLP-1 has been 

shown to considerably improve engraftment of implanted islets (Lin & Anseth 2009, Kizilel 

et al. 2010). Transfection of pancreatic α-cells with PC1/3 increased GLP-1 secretion has 

been shown to augment islet insulin secretion and cytoprotective mechanisms in vitro as well 

as improve the outcomes of islet transplants in insulin-deficient T1DM mice (Wideman et al. 

2006).   

 

Pancreatic islet cells (both primary and transformed) possess the capacity to reaggregate in 

suspension culture to form islet-like spheroids termed pseudoislets, which exhibit a 

remarkable enhancement in function compared to the combined responses of their individual 

constituent cells (Hauge-Evans et al. 1999, Kelly et al. 2011). This trait of islet cells also 

allows for the combination of more than one cell type to form heterotypic pseudoislets with 

various functional capabilities. To date such experimentation has primarily involved the use 

of combinations of β-cell lines, α-cell lines and/or δ-cell lines (Brereton et al. 2006, Brereton 

et al. 2007, Kelly et al. 2010b, Kelly et al. 2011). Considering the beneficial effects of 
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incorporating GLP-1 administration into islet transplantation procedures, the limited 

availability of primary human islets for transplantation, and the potential versatility of 

heterotypic pseudoislets, the creation of heterotypic pseudoislets incorporating both insulin-

releasing cell lines and GLP-1 secreting cell lines represents an interesting line of 

investigation. 

 

In the present study, the therapeutic potential of heterotypic mouse pseudoislets generated 

from MIN6 β-cells and the GLP-1 secreting enteroendocrine cell-line GLUTag were 

investigated. Specifically this involved comparing the function and cytoprotective 

mechanisms of heterotypic MIN6 and GLUTag pseudoislets and homotypic MIN6 

pseudoislets in vitro; and a comparison of the anti-diabetic effects of both types of 

pseudoislets in vivo by implantation into streptozotocin diabetic SCID mice. 

 

Materials and Methods 

Cell culture and pseudoislet formation: The creation and characteristics of MIN6 and 

GLUTag cells have been described previously (Miyazaki et al. 1990, Lee et al. 1992, Drucker 

et al. 1992). MIN6 cells were routinely cultured in Dulbecco’s Modified Eagle Medium 

(DMEM) containing 25 mM glucose and 2 mM L-glutamine supplemented with 10 % (v/v) 

FCS and antibiotics (100 U/ml penicillin and 0.1 g/l streptomycin). GLUTag cells were 

routinely cultured in DMEM containing 5.5 mM glucose and with the same supplements. 

MIN6 cells were used in experiments to a maximum passage number of 35, while GLUTag 

cells were used up to a passage number of 25. To form pseudoislets, MIN6 cells or a 1:1 

combination of MIN6 and GLUTag cells were seeded at a density of 1 x 10
5
 cells per well 

into 6 well ultra-low attachment, flat bottomed tissue culture plated (Corning Inc., NY, USA).  

Pseudoislets were maintained in the same culture medium as GLUTag cells. 
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Acute insulin release assays: Insulin release from pseudoislets was determined as described 

previously (McCluskey et al. 2011, Guo-Parke et al. 2012). For acute tests, groups of 5 

pseudoislets were first preincubated for 40 mins at 37 °C in Krebs-Ringer bicarbonate buffer 

(KRBB) (115 mmol/l NaCl, 4.7 mmol/l KCl, 1.28 mmol/l CaCl2, 1.2 mmol/l MgSO4 10 

mmol/l
 
NaHCO3, 20 mmol/l Hepes) containing 1.1 mmol/l glucose supplemented with 0.1% 

w/v bovine serum albumin (BSA) (Gibco® Invitrogen, Paisley, UK), before being incubated 

for a further 60 min in KRBB supplemented with (v/v) 0.1% BSA and a range of 

concentrations of glucose and modulators of insulin secretion as described in the Figures. 

Following acute tests, supernatants were stored at -20 °C until insulin analysis by 

radioimmunoassay (Flatt & Bailey, 1981). Cells were extracted using acid ethanol overnight 

to determine hormone content (Vasu et al. 2013a). 

 

Cytotoxin treatments: To investigate the relative cytoprotective capabilities of MIN6 cell 

pseudoislets and pseudoislets formed from MIN6 cells and GLUTag cells, pseudoislets were 

dispersed using enzyme free cell-dissociation buffer and cells were incubated for 2 h at 37 °C 

with cytotoxins at the concentrations indicated in the Figures. The cytotoxic agents studied 

were ninhydrin, H2O2, streptozotocin (STZ), and cocktails of the proinflammatory cytokines 

containing IL1-β, IFNγ and TNFα.  

 

Assessment of cell metabolic viability: Metabolic competency of cell suspensions derived 

from pseudoislets was determined following incubation with a range of cytotoxic agents 

usingy the colorimetric 3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyltetrazolium bromide 

(MTT) assay (Mossman 1983). 

 

Measurement of cellular apoptosis: Apoptosis was assessed by staining with acridine orange 
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and ethidium bromide. Pseudoislets were dispersed, exposed to cytotoxins, harvested and 

then resuspended in phosphate buffered saline (PBS) at a density of 5 x 10
5
 cells/ml. The cell 

suspension was then stained with solutions of acridine orange and ethidium bromide (20 

μg/ml each) for 5 min at room temperature. Cells were mounted with antifade mounting 

medium and viewed under 488- and 594-nm filters using a fluorescent microscope (Olympus 

System microscope, BX51) and photographed using the DP70 camera adapter system. The 

apoptotic state of cells was categorized as follows: bright green nuclei—healthy cells; dense 

green nuclei (evidence of chromatin condensation)—early apoptosis; bright yellow nuclei and 

yellow cytoplasm—late apoptosis; and orange/red nuclei, orange cytoplasm—late apoptosis/ 

necrosis. Membrane blebs and apoptotic bodies were also taken into account for analysis. 

Approximately 100 cells per replicate (n=4) were analyzed using ImageJ software. 

 

Animal and surgical procedures: Adult female SCID mice (15 – 20 weeks) were bred and 

maintained under specific pathogen-free conditions in the Biomedical and Behavioral 

Research Unit (BBRU) at University of Ulster, Coleraine. Food and water were provided ad 

libatum unless specified otherwise. Animals were rendered diabetic by intraperitoneal 

administration of streptozotocin (165 mg/kg) after an 8 h fast.  Animals were provided with 

5 % sucrose water to prevent overnight hypoglycaemia. Prior to implantation procedures 

mice were anaesthetized by intraperitoneal injection with 10 mg/kg fluanisone, 0.3 mg/kg 

fentanyl citrate (Hypnorm) (VetaPharma Ltd, Leeds, UK) and midazolam 5 mg/kg 

(Hypnovel) (Roche, Welwyn, UK). For pseudoislet implantation, harvested pseudoislets were 

resuspended at a density of 1000 pseudoislets per ml and 500 µl were injected into the 

subscapular region using an 18-G needle. Food intake, water intake and body weight were 

monitored daily while blood glucose was measured once every 3 days using Ascensia contour 

glucose strips (Bayar, Uxbridge, UK).  Glucose tolerance tests were carried out at the end of 
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each study.  Animals were fasted for 8 h blood and plasma samples were collected in heparin 

coated tubes immediately before (time 0) and 15, 30, 60, 90 and 120 min after intraperitoneal 

injection of 18 mmol/kg glucose. On day 28, terminal blood, implants and pancreatic tissues 

were collected for further analyses. For measurement of hormone contents tissues were 

extracted overnight at 4
o
C using acid ethanol (Moffett et al. 2014). All animal procedures 

were performed in adherence to the UK home office regulations (UK Animal Scientific 

Procedures Act 1986) and ‘Principles of laboratory animal care’ (NIH Publication no 86-23, 

revised 1985). 

 

Glucose and hormone determination: Insulin was determined by radioimmunoassay (Flatt & 

Bailey, 1981). Total GLP-1 was determined using specific enzyme linked immunoassay, 

(GLP-1 Total ELISA, EZGLP-1T-36K, Millipore, MA, USA) and glucagon was determined 

using specific glucagon chemiluminescent assay (EZGLU-30K, Millipore, MA, USA). 

Glucose in plasma samples was determined using an Analox GM9 glucose analyser (Analox, 

London, UK). Protein contents were determined by Bradford assay. 

 

Immunohistochemistry: Tissues were fixed in 4% paraformaldehyde and processed using an 

automated tissue processor (Leica TP1020, Leica Microsystems, Nussloch, Germany).  After 

embedding, tissues were sectioned (Shandon Finesse 325, Thermo Scientific, UK) at a 

thickness of 7 μm at intervals of ten sections. Sections were dewaxed using Histoclear II 

(National Diagnostics, UK) and rehydrated with a gradient of ethanol concentrations. For 

haematoxylin and eosin staining, dewaxed and rehydrated sections of implants were 

processed as described previously (Vasu et al. 2013c). Slides were viewed using an Olympus 

IX51 inverted microscope and images were captured using a SPOT RT-Ke camera 

(Diagnostic Instruments Inc, Sterling Heights, MI).  



9 

 

For peroxidase immunostaining, dewaxed and rehydrated sections were blocked in 0.3 % 

(v/v) H2O2 in 50 % (v/v) methanol to quench endogenous peroxidase activity, before 

incubation at 90 °C in citrate buffer (pH 6.0) for antigen retrieval. After cooling, sections 

were incubated at 4 °C with primary antibodies overnight (Mouse monoclonal anti-insulin 

antibody, ab6995, 1:1000, Abcam, UK; rabbit anti-GLP-1 antibody (XJIC8, 1:200; raised in-

house, specific for total GLP-1), before the addition of the corresponding ImmPRESS 

peroxidase reagent and 3, 30-Diaminobenzidine substrate. Lastly, sections were 

counterstained with haematoxylin at 60 °C, and slides were cleared with Histo-clear II and 

mounted with Histomount mounting medium. Slides were viewed and images captured as 

described above.  

 

For immunofluorescence staining, following dewaxing, rehydration, antigen retrieval with 

citrate buffer and blocking with BSA solution, sections with incubated at 4 °C overnight with 

primary antibodies (Mouse anti-insulin antibody, ab6995, 1:1000, Abcam; guineapig anti-

glucagon antibody, PCA2/4, 1:200, raised in-house; Rabbit anti-Ki67 antibody, 1:200, 

ab15580, Abcam, UK) prior to incubation at 37 °C for 45 min with secondary antibody 

(Alexa Fluor 488 or 594, Invitrogen, UK). For TUNEL staining, slides were incubated with 

working TUNEL reagent (In situ cell death detection kit, Fluorescein, Roche, UK). Finally, 

slides were mounted with anti-fade mounting medium and viewed under green FITC filter 

(488 nm) or red TRITC filter (594 nm) using a fluorescent microscope (Olympus, model 

BX51) and photographed using a connected DP70 camera adapter system.  

 

Image analysis: Cell F image analysis software (Olympus Soft Imaging Solutions, GmbH) 

was used to analyze islet parameters including islet area, alpha cell area and beta cell area 

using closed polygon tool. All islets were analyzed regardless of insulin staining. Pancreatic 
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area was also calculated from 10 x images and used to calculate the number of islets per mm
2
 

of pancreas in a blinded fashion. For analysis of islet size distribution, islets smaller than 

10000 µm
2
 were considered small, those larger than 10000 µm

2
 but smaller than 25000 µm

2
 

were considered medium and those larger than 25000 µm
2
 were considered large. In order to 

assess islet cell proliferation and apoptosis, pancreatic sections were double stained for 

insulin and either Ki67 (proliferation) or TUNEL (apoptosis). Beta cell proliferation or 

apoptosis frequencies were expressed as a percentage of the total number of insulin positive 

cells observed. Approximately 1000 β-cells were analyzed per replicate. 

 

Statistics: Results are expressed as mean ± S.E.M. Groups of data were compared using 

Student’s unpaired t-test with two-tailed p-values. Groups were considered significant where 

p<0.05. 

 

Results 

Morphology of homotypic and heterotypic pseudoislets: Both MIN6 cells and a combination 

of MIN6 and GLUTag cells grew into islet-like spheroids within 4-7 days of seeding in ultra-

low attachment plates. Both types of pseudoislets had a mean diameter of around 150 µm and 

comprised approximately 4500 cells per pseudoislet. The insulin content of MIN6 and 

heterotypic pseudoislets was 2164 ± 289 and 292 ± 35 ng/mg protein (p<0.001). The latter 

also contained GLP-1 (61 ± 4 pg/mg protein). 

 

Insulin secretion from homotypic and heterotypic pseudoislets: Glucose, amino acids, 

elevated K
+
 and Ca

2+
, IBMX and forskolin all evoked significant increases in insulin 

secretion from both MIN6 pseudoislets (1.3–4.8 fold increases, p<0.05, p<0.01, Figure 1A) 

and heterotypic pseudoislets (1.3–5.7 fold increases, p<0.05, p<0.01, Figure 1B). When 
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values were presented as stimulation index relative to corresponding glucose controls, the 

secretory responses were similar in (Figure 1C). However, in terms of absolute secretion as a 

percentage of insulin content however, responses were largely augmented in heterotypic 

pseudoislets compared to MIN6 cell pseudoislets. 

 

Responses of homotypic and heterotypic pseudoislets to cytotoxicity: Both homotypic and 

heterotypic pseudoislets showed dose-dependent step-wise decreases in cell metabolic 

viability in response to increasing doses of cytotoxic agents. Combined cell pseudoislets 

exhibited significantly enhanced cytoprotective mechanisms against ninhydrin, H2O2, STZ 

and pro-inflammatory cytokines (1.4 – 1.8 fold increases in metabolic viability, p<0.05, 

p<0.01, p<0.001, Figure 2) compared to pseudoislets formed from MIN6 cells alone (Figure 

2). This change in viability was accompanied by alterations of acridine orange/ ethidium 

bromide staining (Figure 3). Exposure to all agents tested evoke significant (p<0.05, p<0.01, 

p<0.001, Figure 3) increases in apoptosis in both homotypic and heterotypic pseudoislets 

compared to untreated controls. The frequency of apoptosis was significantly decreased in 

MIN6 and GLUTag pseudoislets compared to homotypic pseudoislets following exposure to 

ninhydrin, H2O2 and STZ (1.2 – 1.4 fold decreases, p<0.05, p<0.001).  Apoptotic responses to 

a cocktail of proinflammatory cytokines did not differ significantly between the two test 

groups.  

 

Effects of pseudoislet implantation on food and fluid intake, body weight and blood glucose 

in STZ diabetic SCID mice: Implantation of MIN6 pseudoislets and combined cell 

pseudoislets had small inhibitory effects on daily food intake during the study (Figure 4A).  

MIN6 and particularly MIN6 plus GLUTag pseudoislet implant recipients exhibited 

significantly (p<0.05, p<0.001, Figure 4B) decreased fluid intake compared to diabetic 
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controls from day 9 of the study. As shown in Figure 4C, both MIN6 pseudoislet and 

combined cell pseudoislet recipients displayed significantly (p<0.05, p<0.01, p<0.001, Figure 

5C) greater body weights compared to diabetic controls. While body weight began to rise 

within 3 days of implantation in MIN6 pseudoislet recipients, this was delayed to around 12 

days for combined cell pseudoislet recipients. Body weights were significantly lower in 

combined cell pseudoislet recipients than MIN6 pseudoislet recipients from 3 – 12 days after 

implantation (p<0.05, Figure 4C).  

 

STZ caused an increase in mean blood glucose from <5 mmol/l
 
to >20 mmol/l within 6 days 

of administration (Figure 4D). Mice receiving homotypic MIN6 pseudoislets reverted to 

normoglycaemic levels within 3 days of implantation, but began to exhibit hypoglycaemia 

after 6 days and were culled on day 21 of the study due to very low blood glucose 

concentrations. Implantation of heterotypic MIN6 and GLUTag pseudoislets evoked a 

gradual restoration of normoglycaemia, with blood glucose gradually decreasing from 9 days 

onwards (p<0.001, Figure 4D) compared to diabetic controls. Homotypic and heterotypic 

pseudoislet recipients both showed significant decreases (1.6–5.8 fold decreases, p<0.001, 

Figure 4E) in area under the curve values compared to diabetic controls, and MIN6 

pseudoislets values were 3.5 fold lower than those of MIN6 and GLUTag pseudoislet 

recipients (p<0.001, Figure 4E).   

 

Effects of pseudoislet implantation on glucose tolerance in STZ diabetic SCID mice: 

Following an 8 h fast and intraperitoneal glucose administration, plasma glucose levels of 

both MIN6 pseudoislet and combined cell pseudoislet recipients were significantly (p<0.001, 

Figure 5F) lower than those of diabetic control animals at all the time points observed.  

Additionally, MIN6 pseudoislet recipients exhibited significantly lower plasma glucose than 
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control mice or combined cell implantees throughout (p<0.05, Figure 4F). Implantation of 

heterotypic pseudoisletes resulted in normalization of glucose tolerance (Figure 4F).  

 

Effects of pseudoislet implantation on terminal plasma and pancreatic hormone content in 

STZ diabetic SCID mice: Compared with diabetic controls, terminal plasma insulin was 

significantly (p<0.01, Figure 5A) raised in mice implanted with combined cell or particularly 

MIN6 pseudoislets, with levels in MIN6 pseudoislet recipients compared to combined cell 

pseudoislet recipients (p<0.05, Figure 5A).  Plasma glucagon levels were significantly 

decreased (25 % decrease, p<0.05, Figure 5B) compared to diabetic controls in mice 

receiving combined cell pseudoislets but not in those receiving homotypic MIN6 pseudoislet 

implants (Figure 5B). Plasma GLP-1 levels were increased (p<0.05, Figure 5C) with 

combined cell pseudoislets and decreased (p<0.01, Figure 5C) with homotypic MIN6 

pseudoislets compared to diabetic controls. MIN6 pseudoislets had no significant effect on 

pancreatic insulin or glucagon content (Figure 5D, E). Combined cell pseudoislets 

significantly (p<0.05, Figure 5D, E) increased pancreatic insulin content while decreasing 

pancreatic glucagon content. 

 

Characteristics of excised implants: MIN6 and combined cell pseudoislets grew into very 

small masses over the course of the study.  These masses were not visible from examinations 

prior to autopsy. MIN6 pseudoislet derived masses showed particularly intense peroxidase 

staining for insulin (Figure 6A). Combined cell pseudoislet derived cell masses stained 

positively for both insulin and GLP-1 (Figure 6B). For heterotypic growths, whole sections 

exhibited greater hormone staining than the negative controls. Haematoxylin and eosin 

staining showed that the cell masses were vascularized and encapsulated (Figure 6 A, B). The 

insulin contents of MIN6 and combined cell masses were 3706 ± 423 and 510 ± 19 ng/mg 
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protein (p<0.001). The latter also contained GLP-1 (111 ± 4 pg/mg protein).  

Effects of pseudoislet implantation on pancreatic islets of STZ diabetic SCID mice: Induction 

of diabetes by administration of STZ was associated with significant decreases in islet area, 

beta cell area, β to α cell ratio and number of islets (Figure 7A – E). Both MIN6 pseudoislet 

implantation and combined cell pseudoislet implantation were associated with an increase 

(p<0.05) in islet β-cell to α-cell ratio, though this effect was significantly (p<0.05) greater for 

combined cell pseudoislet implants (Figure 7E). Pseudoislet implants did not significantly 

affect islet number but combined cell pseudoislets significantly (p<0.05) increased islet 

number compared to diabetic controls due to greater proportion of medium sized islets 

(Figure 7E, F). Administration of streptozotocin was associated with a significantly decreased 

frequency of β-cell proliferation and increased frequency of β-cell apoptosis (Figure 7G, H).  

MIN6 pseudoislet implantation did not significantly affect the proliferative or apoptotic status 

of pancreatic β-cells. However, combined cell pseudoislet implantation was associated with a 

significant (p<0.01, Figure 7G) increase in β-cell proliferation and a decrease in β-cell 

apoptosis compared to diabetic controls. Ki67/TUNEL ratio was significantly higher in 

combined cell pseudoislet implant group, thus favoring beta cell proliferation (Figure 7I).  

 

Discussion 

 

The therapeutic utility of combined insulin and GLP-1 treatment delivered by cell therapy 

using heterotypic pseudoislets was investigated using pseudoislets formed from the widely 

adopted mouse model insulin and GLP-1 secreting cell lines, MIN6 and GLUTag (Ishihara et 

al. 1993, Brubaker et al. 1998). Agents tested that work through diverse β-cell signaling 

pathways evoked significant increases in insulin secretion in a pattern similar to previous 

studies (Ishihara et al. 1993, Landa Jr. et al. 2005, Kelly et al. 2010b). Pseudoislets formed 
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from MIN6 and GLUTag cells did not exhibit enhanced insulin responses compared to 

homotypic cells, but absolute amounts released were considerably enhanced. This supports an 

important effect of GLP-1 on insulin biosynthesis but indicates that intra-islet production of 

GLP-1 as recently observed in alpha cells under conditions of islet stress (Thyssen et al. 

2006, Ellingsgaard et al. 2011, Hansen et al. 2011, Whalley et al. 2011, Moffett et al. 2014, 

Vasu et al. 2014), might not markedly affect insulin secretion. The difference in cellular 

insulin content between the two types of pseudoislets was not due simply to dilution of beta 

cells. Thus although we estimate that implanted heterotypic pseudoislets most likely 

contained 2:1 ratio of GLUTag:MIN6 cells, due to faster growth rate of former cell type, this 

difference is small compared to the difference in cellular insulin content. 

 

Ninhydrin, H2O2, STZ and pro-inflammatory cytokines are used frequently to evaluate 

cytoprotective mechanisms related to pancreatic β-cells in T1DM (Liu et al. 2008, Prause et 

al. 2014, Vasu et al. 2014). These agents decreased mitochondrial viability and increased the 

frequency of cellular apoptosis in both homotypic and heterotypic pseudoislets, mirroring 

previous findings in clonal β-cells (Liu et al. 2008, Prause et al. 2014, Vasu et al. 2014). 

Consistent with the cytoprotective effects of GLP-1 on pancreatic β-cells (Cornu et al. 2009, 

Garber et al. 2011, Vasu et al. 2013c), MIN6 and GLUTag pseudoislets showed significantly 

enhanced cytoprotective responses (significantly increased LD50) to ninhydrin, H2O2, STZ 

and higher concentrations of cytokines. These results are supported by significant protection 

against apoptosis and by other findings showing the enhancement of cytoprotective effects of 

GLP-1 (Wideman et al. 2006, Faradji et al. 2008, Cornu et al. 2009, Toso et al. 2010). The 

frequency of apoptotic cells was not altered by the cytokine cocktail, perhaps due to a lower 

strength of cocktail being used for this experiment. However, the overall contrast between 

positive effects of heterotypic pseudoislet formation on β-cell protection versus lack of effect 
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on insulin secretory responses is interesting and may reflect divergence between the signal-

transduction pathways governing the effects of GLP-1 on these processes in pancreatic β-

cells (Holst 2007, Campbell & Drucker, 2013).  

 

Implantation of homotypic MIN6 pseudoislets rapidly reversed hyperglycaemia and restored 

glucose tolerance in STZ treated SCID mice. This effect was not associated with significant 

alterations in protection against depletion of pancreatic insulin, increase of cellular glucagon 

or disruption of islet morphology, but a small increase in islet β-cell to α-cell ratio was 

observed. Since this was not associated with any alterations in pancreatic β-cell proliferation 

or apoptosis, it might reflect changes in pancreatic α-cells but further work is needed to 

clarify this possibility. Although MIN6 pseudoislets quickly rescued diabetes by provision of 

bioactive insulin, their prolonged actions lead to hyperinsulinaemia without correction of 

hyperglucagonaemia and the consequent hypoglycaemia necessitated termination of the mice. 

This presumably reflects the high insulin content of MIN6 cell transplants, combined with 

loss of the normal tight mechanisms which regulate insulin secretion. In contrast, reversal of 

hyperglycaemia in STZ diabetic SCID mice by heterotypic pseudoislets incorporating 

GLUTag cells was progressive and considerably better controlled. Blood glucose levels 

normalized much more gradually and mice exhibited normal plasma glucagon concentrations 

and did not become hypoglycaemic during the study. Such differences may also be due to 

differences in insulin contents between homotypic and heterotypic pseudoislets. Nevertheless 

combined implantation enhances functionality in addition to cytoprotection together with 

significant restorative effects on the endocrine pancreas, specifically, increased insulin and 

decreased glucagon plus increases in islet area and β to α cell ratio, stimulation of β-cell 

proliferation, and inhibition of β-cell apoptosis. This is consistent with restorative effects of 

GLP-1 and its agonists on pancreatic islets and implantation of GLUTag cells into insulin-
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treated STZ diabetic SCID mice (Cornu et al. 2009, Garber et al. 2011, Vasu et al. 2013c). 

 

Both homotypic and heterotypic pseudoislets grew into small cell masses with no signs of 

metastatsis in either group. In vitro studies have previously shown limited proliferation rates 

in pseudoislets formed from various β-cell-lines compared with corresponding monolayers 

(Lock et al. 2011, Reers et al. 2011, Guo-Parke et al. 2012, Spelios et al. 2013). Indeed, our 

present and previous in vitro work with MIN6 pseudoislets indicates that they tend to reach a 

maximum size at which point their growth ceases (Kelly et al. 2010a, Kelly et al. 2010b). 

This observed arrest in MIN6 pseudoislet growth size has previously been attributed to the 

self-regulation of cluster size by the modulation of proliferation and apoptotic pathways via 

gap junction proteins (Kelly et al. 2011). However, it is also possible that an important 

contributor to size limiting factor of pseudoislets was central hypoxia (Lock et al. 2011).  

Indeed, our results indicate that pseudoislets reached a maximum size in vitro, but when 

implanted in vivo acquired a vasculature which permitted growth into small cell masses 

without evidence of central necrosis. 

   

The development of strategies to provide reversibly immortalized β-cell and GLP-1 secreting 

L-cell lines of human lineage would provide a potential means of exploiting the observed 

beneficial effects of combined insulin and GLP-1 delivery by cell therapy in a sustainable 

manner. Some studies have shown promising results generating large numbers of human 

insulin releasing β-cells by incorporating a selectively activated oncogene which can be 

turned off by addition of cre-recombinase, or by the generating large numbers of insulin-

releasing cells by differentiation of human pluripotent stem cells (Ravassard et al. 2011, 

Scharfmann et al. 2014, Pagliuca et al. 2014). As yet data is sparse regarding the potential for 

generating large numbers of non-tumorigenic intestinal L-cells, but it is possible that some of 
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the techniques described for the generation of β-cells could be transferrable to such efforts. In 

addition, much progress is being made currently regarding development of small implantation 

devices that contain, nurture and protect transplanted cells in potentially hostile in vivo 

environment (Kirk et al. 2014, An et al. 2015, Fotino et al. 2015). 

 

To conclude, addition of GLP-1 releasing GLUTag cells to MIN6 pseudoislets conferred 

significant enhancements in functionality and cytoprotective mechanisms to the pseudoislets 

in vitro, and offered restorative effects on pancreatic islets and better regulated reversal of 

hyperglycaemia when implanted in diabetic mice compared to homotypic MIN6 pseudoislets. 

Further research will be necessary to elucidate the potential of using pseudoislets formed 

from mixed human cell-lines, and to circumvent the potential problems associated with 

implanting immortalized cell-lines. This work however, provided proof of concept that 

combined insulin and GLP-1 cell therapy using pseudoislets holds therapeutic potential, 

contributing important new knowledge to the fields of islet transplantation and β-cell 

replacement therapy. 
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Figure Legends 

Figure 1 Insulin secretory responses of the pseudoislets A Secretory responses of MIN6 

pseudoislets. B Secretory responses of MIN6 + GLUTag pseudoislets. C shows comparison 

of responses from the two types of pseudoislets with results expressed as a ratio of stimulated 

insulin secretion to that of cells incubated in corresponding glucose containing buffer alone. 

Values are mean ± S.E.M. (n=4). *p<0.05, **p<0.01 compared with 5.6 mM glucose alone. 

Δ
p<0.05 and 

ΔΔ
p<0.01 compared with 16.7 mM glucose alone.  

 

Figure 2 Viability of cells derived from MIN6 and GLUTag pseudoislets following 2 h 

exposure to cytotoxins. The viability of MIN6 / MIN6 + GLUTag psedoislets was assessed 

by MTT assay following 2 h incubation with a range of doses of various cytotoxic agents.  

Cytokine cocktail compositions were as follows: A - 100 U.ml
-1

 IL1β, 20 U.ml
-1

 IFNγ, 200 

U.ml
-1

 TNFα; B -200 U.ml
-1

 IL1β, 30 U.ml
-1

 IFNγ, 250 U.ml
-1

 TNFα; C. 300 U.ml
-1

 IL1β, 40 

U.ml
-1

 IFNγ, 300 U.ml
-1

 TNFα; D. 400 U.ml
-1

 IL1β, 50 U.ml
-1

 IFNγ, 350 U.ml
-1

 TNFα; E 

500 U.ml
-1

 IL1β, 60 U.ml
-1

 IFNγ, 400 U.ml
-1

 TNFα. Values are mean ± S.E.M. (n=4) 

*p<0.05, **p<0.01 and ***p<0.001 compared with untreated controls. 
Δ
p<0.05 and 

ΔΔ
p<0.01 

compared with corresponding results in MIN6 pseudoislets. 

 

Figure 3 Assessment of apoptosis in cells derived from MIN6 and GLUTag pseudoislets 

following 2 h exposure to a range of cytotoxins. Percentages of apoptotic cells counted are 

shown. Values are mean ± SEM. (n=4) **p<0.01 and ***p<0.001 compared to appropriate 

untreated controls. 
Δ
p<0.05 and 

ΔΔΔ
p<0.001 compared with corresponding results in MIN6 

pseudoislets. Cytokine cocktail composition was 300 U.ml-1 IL1β, 40 U.ml-1 IFNγ and 300 

U.ml-1 TNFα. 
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Figure 4 Metabolic effects of implanting pseudoislets formed from MIN6 and GLUTag 

cells into streptozotocin diabetic SCID mice. SCID mice were rendered diabetic by a single 

intraperitoneal injection of streptozotocin on day 0. On day 3, pseudoislets or blank injection 

vehicles were administered subcutaneously to the subscapular region. Food intake (A), fluid 

intake (B), body weights (C) and blood glucose (D) and were measured every 3 days. E Area 

under the curve, expressed as mmol/l/day. At the end of the study, terminal intraperitoneal 

glucose tolerance was also measured (F). Values are mean ± S.E.M (n=5). *p<0.05, **p<0.01 

and ***p<0.001 compared to diabetic controls.  
Δ
p<0.05, 

ΔΔ
p<0.01 and 

ΔΔΔ
p<0.001 compared 

to mice implanted with homotypic MIN6 pseudoislets. 

 

Figure 5 Effects of pseudoislet implantation on hormone contents of plasma and 

pancreatic tissue. Terminal plasma insulin (A), glucagon (B) and GLP-1 (C), as well as 

pancreatic insulin (D) and glucagon (E) contents of mice receiving pseudoislet implants were 

assessed at the end of the study. Values are mean ± S.E.M. (n=5). *p<0.05, **p<0.01 and 

***p<0.001 compared to diabetic controls. 
Δ
p<0.05 compared to mice implanted with 

homotypic MIN6 pseudoislets. 

 

Figure 6 Histological examination of excised implants. Representative images of tissue 

sections of cell masses formed from MIN6 pseudoislets (A) and combined MIN6 and 

GLUTag cell pseudoislets (B) immunostained for hormones with methyl green 

counterstaining or stained with haematoxylin and eosin. BV = blood vessel.  EN = 

encapsulated edges. Scale bars represent 100 µm.  

 

Figure 7 Effects of pseudoislet implantation on pancreatic islet morphology. Islet area 

(A), β-cell area (B), α-cell area (C), β to α cell ratio (D), number of islets (E), islet size 
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distribution (F) were determined by quantitative histological analysis using cell^F software. 

Frequency of β-cell proliferation (G) and apoptosis (H) and ratio of Ki67 to TUNEL positive 

β-cells (I) were determined by quantitative histological analysis. Values are mean ± S.E.M. 

(n=5). *p<0.05, **p<0.01 compared to diabetic control. 
Δ
p<0.05, 

ΔΔ
p<0.01  compared to 

MIN6 pseudoislet group.  
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