
Muñoz, K., Noguez, J., Neri, L., Kevitt, P. M., & Lunney, T. (2016). A Computational Model of Learners Achievement Emotions 

Using Control-Value Theory. Educational Technology & Society, 19 (2), 42–56.  

42 
ISSN 1436-4522 (online) and 1176-3647 (print). This article of the Journal of Educational Technology & Society is available under Creative Commons CC-BY-ND-NC 

3.0 license (https://creativecommons.org/licenses/by-nc-nd/3.0/). For further queries, please contact Journal Editors at ets-editors@ifets.info. 

A Computational Model of  Learners Achievement Emotions Using Control-
Value Theory 

 

Karla Muñoz1*, Julieta Noguez2, Luis Neri2, Paul Mc Kevitt1 and Tom Lunney1 
1Ulster University, Magee campus, North Ireland // 2Tecnologico de Monterrey, Mexico City campus, Mexico //  

munoz_esquivel-k@email.ulster.ac.uk // jnoguez@itesm.mx // neri@itesm.mx // p.mckevitt@ulster.ac.uk // 

tf.lunney@ulster.ac.uk 
*Corresponding author 

 

ABSTRACT 
Game-based Learning (GBL) environments make instruction flexible and interactive. Positive experiences 

depend on personalization. Student modelling has focused on affect. Three methods are used: (1) recognizing 

the physiological effects of emotion, (2) reasoning about emotion from its origin and (3) an approach combining 

1 and 2. These have proven successful only in labs, or use theories of emotion not associated with an 

educational setting. The Control-value theory of achievement emotions holds that appraisals of control and value 

are most meaningful when determining emotion. This paper focuses on the design and evaluation of an 

emotional student model of Control-value theory applied to online GBL environments using Approach 2. This 

model is implemented using a dynamic sequence of Bayesian Networks (BNs). PlayPhysics - an emotional GBL 

environment for teaching Physics - was designed, implemented and evaluated with 118 students at ITESM-

CCM. To evaluate our model, we employed cross-validation and Cohen’s Kappa. Our model achieved a fair to 

moderate accuracy of classification, but the results are promising. Future work will focus on identifying other 

variables that can improve classification. 
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Introduction  
 

Formal instruction is transforming into a more flexible and interactive process, focusing on student preferences for 

learning and engagement (Moore, Dickson-Deane, & Galyen, 2011). As a result, Virtual Learning (VL) and Game-

Based Learning (GBL) environments have gained popularity and acceptance. GBL environments typically comprise 

features, such as storytelling, sound effects and feedback, which facilitate an emotional connection with the learner 

(Sykes, 2013). The key to attaining positive and successful experiences in VL and GBL environments is to achieve 

personalization (Janssen, van den Broek, & Westerink, 2011). 

 

Emotion has shown to be important in many contexts including Evolution and Neuroscience. Here we focus on 

Educational Psychology and Computing contexts, where student modeling has recently focused on affect, because it 

has been shown to influence student understanding, performance and motivation. However, to date, the methods 

employed to reason about emotion in ITSs have shown highly promising in laboratories, but not in the classroom 

(Arroyo et al., 2009). For reasoning about emotion, the majority of the models use theories that have not originated 

from an educational setting (Conati & Maclaren, 2009; Jaques, Vicari, Pesty, & Martin, 2011; Landowska, 2013). 

Therefore, it may be possible that the targeted emotions do not actually occur during the teaching/learning 

experience. Also, the classification accuracy of these models is presented mainly using only percentages, so it is 

unclear that the effects are not random. On the other hand, the Control-value theory of achievement emotions by 

Pekrun, Frenzel, Goetz and Perry (2007), assumes that control and value appraisals are the most essential to 

determine emotion in an educational context. Achievement emotions are derived from performing activities and the 

pursuit of goals. Performance and achievement are judged against previously defined standards of quality. It was 

observed that this theory has not previously been utilized to create a computational model of student emotion. 

Therefore, here we focus on this objective. 

 

For reasoning about student emotion, we employ a Cognitive-based Affective User Modeling approach, which allows 

applying what is known, in this case in the psychological educational field, to predict emotion (Martinho, Machado, 

& Paiva, 2000). Our model predominantly uses answers during in game dialogues and contextual variables, e.g., 

mouse location and the number of times help is asked, because it is mainly targeted at on-line GBL environments. 

Our model is implemented using a dynamic sequence of Bayesian Networks (BNs), since they can effectively 

manage the uncertainty of the domain and appropriately represent the temporal interdependencies. A preliminary 
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version of our model was discussed in Muñoz, Mc Kevitt, Lunney, Noguez and Neri (2013), the model presented 

here is the final result of performing further tests and employing more formal tools to conduct our analysis. 

 

 

Related work 

 
GBL environments, i.e., Edutainment, enhance learning by providing immediate feedback to student actions in 

simulated contexts. They have proven to attain student attention and engagement more easily than VL environments 

(Muñoz et al., 2009). Their success depends on the composition of diverse elements that gives them an emotional 

character (Sykes, 2013), such as penalizing errors and rewarding learning, e.g., through sounds, colors, narrative, and 

scoring. These elements combine to create a unique game-experience known as gameplay. Lazzaro (2004) argues 

that this emotional experience is the source of the appeal of playing games. GBL environments can also be combined 

with ITSs to achieve adaptable and personalized instruction (Conati & Maclaren, 2009). 

 

The new generation of ITSs aims to recognize and respond appropriately to student affect (Alexander, Sarrafzadeh & 

Hill, 2008; Conati & Maclaren, 2009; D’Mello, Craig, Witherspoon, McDaniel, & Graesser, 2008; D’Mello, Olneyc, 

Williams, & Hays, 2012; Jaques et al., 2011; Landowska, 2013; Porayska-Pomsta, Mavrikis, & Pain, 2008; Sabourin, 

Mott, & Lester, 2011). The main motivation for modeling emotions and moods arises from the field of Affective 

Computing (Picard, 1995). It has been noted that GUIs that do not consider student affect may impede and limit 

performance (Brave & Nass, 2008).Three main approaches are employed by the new generation of ITSs for 

recognizing or reasoning about student affect: (1) identifying physical and physiological effects of emotion, (2) 

reasoning about observable behavior from its origin, i.e., Cognitive-Based Affective User Modeling and (3) a hybrid 

approach combining both. Identifying the physical and physiological effects involves acquiring data related to 

student behavior using hardware, e.g., cameras, sensors and microphones. This data is processed and relevant 

features are selected and mapped to emotional states using opinions of judges or self-reports (D’Mello et al., 2008; 

Landowska, 2013; Sarrafzadeh, Alexander, Dadgostar, Fan , & Bigdeli, 2008). Processing this kind of data requires 

high bandwidth, which may deteriorate performance. The facial coding system by Ekman and Friesen (1978) is often 

used as a reference to map facial gestures to emotional states. 

 

Reasoning about emotion from its origin, i.e., Cognitive-Based Affective User Modeling (Martinho et al., 2000), 

involves using cognitive psychology theories as a reference to reason about the elements that determine emotion. The 

most common theory employed using this approach is the OCC model (Ortony, Clore, & Collins, 1990). This the 

theory has been adapted to be applied to the learning experience, because it was originally created to explain emotion 

in personal diaries. Therefore, it is possible that some of the emotions do not happen or do not occur in the described 

manner in educational settings. This approach can employ contextual variables related to student behavior, which are 

considered low bandwidth variables; as a result, it can be applied to diagnosis of emotion during on-line learning. 

This approach has shown promising (Jaques & Vicari, 2007; Sabourin et al., 2011), but has not been as successful as 

the previous approach. A hybrid approach that combines both approaches is expected to be more successful than its 

constituent parts. However, it also inherits the weakness of its composite approaches (Conati & Maclaren, 2009). The 

hybrid approach involves acquiring data related to the student interaction (context), physical changes and 

physiological signals, and then it uses all this information in conjunction to a cognitive theory to determine student 

emotion. 

  

Contextual variables have been successfully employed to determine student motivation (Del Soldato, 1993), self-

efficacy (McQuiggan, Mott, & Lester, 2008) and goals and attitudes (Arroyo & Woolf, 2005). After reviewing 

Control-value theory (Pekrun et al., 2007), we noticed that these variables are also related to determining student 

emotion. Del Soldato (1993) uses variables, such as the number times the student asked for help, performance and 

the number of times the student quit, to determine student motivation. McQuiggan et al. (2008) employs intentional 

(e.g., number of problems solved), locational (e.g., current learning goal), physiological (e.g., heart rate) and 

temporal (e.g., time in current location) variables to classify student self-efficacy in the GBL environment Crystal 

Island. Arroyo and Woolf (2005) employed variables like the time invested per problem and the average number of 

hints given per problem to effectively determine student goals and attitudes. Also, it is observed that student gaze can 

be used to infer student attention (D’Mello et al., 2008; D’Mello et al., 2012). Rust (2010) show that the mouse 

position is also an alternative to infer a person’s concentration or attention. 
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Theoretical framework 
 

Dynamic sequence of Bayesian networks for Affect modeling 

 
For defining the structure of Bayesian models, it is necessary to know the conditional independent or dependent 

relations (CIDRs), which can be defined with assistance of a domain expert or obtained through statistical tests of 

historical domain data using a learning algorithm such as Peter-Clark (PC) or Necessary Path Condition (NPC). The 

chosen algorithm depends on the available amount of data to derive, train and evaluate the model. For defining the 

parameters of the Bayesian model, a learning algorithm such as Expectation Maximization (EM) can be applied to 

discrete chance nodes from observed data (Jensen & Nielsen, 2007). The selection of the evaluation method also 

depends on the quantity of data available. With a large quantity of data available for training and testing, a hold-out 

procedure (Bouckaert et al., 2012) can be employed. However, when data is scarce, a cross-validation approach is 

employed, i.e., the dataset is divided into n sub-samples and one of these is held for testing the model and the n-1 

sub-samples are employed for training. Probabilistic Relational Models (PRMs) can be used also to facilitate the 

derivation of Bayesian models. They are object representations of the domain (Sucar & Noguez, 2008). As a result, 

the domain is characterized as series of entities with properties and relationships between them (Koller, 1999). 

 

 
Pekrun theory 

 
Pekrun et al. (2007) proposes the Control-value theory to explain how emotion arises in educational settings. 

Control-value theory focuses on achievement emotions, which arise from activities and outcomes that are judged 

against standards of quality. This theory focuses on understanding when students feel in and out of control of 

relevant activities and outcomes. Control and value appraisals are the key cognitive elements employed to define 

achievement emotions. Control refers to student beliefs about their abilities, e.g., skills and strategies, to perform an 

activity and attain its goal. Value relates to the assigned value of the activity or the outcome from the student 

perspective, which can be focused on achieving success or avoiding failure, where success and failure have positive 

and negative connotations respectively. 

 

Pekrun et al. (2007) argues that if one of the appraisals is lacking, there is no emotion. There are three kinds of 

achievement emotions: prospective-outcome, activity and retrospective-outcome emotions. Two dimensions are 

considered to define the type of emotion that a person is feeling: the object in focus (activity/outcome) and the time 

frame (during an activity or before/after an outcome). Table 1 shows the definition corresponding to activity 

emotions in terms of control and value appraisals. It was observed that this theory has not previously been used to 

create a computational model of student emotion.  

 
Table 1. Activity outcome emotions 

Object Focus Value Control Emotion 

Activity (during) Positive/Negative High Enjoyment 

Positive/Negative High Anger 

None Low Frustration 

 High/Low Boredom 

 

 

Experimental design 
 

Goal 

 
In this work, the proposed computational model of student achievement emotions considers the Control-value theory 

(Pekrun et al., 2007) as a reference.  
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Hypothesis 

 

The hypothesis of this work is that an emotional student model, based in Control-value theory and using answers to 

questions in game-dialogues and contextual variables, will reason about student emotion non-randomly and 

accurately. 

 

We decided to focus on diagnosing student emotion in on-line GBL environments, since we would have access to a 

larger student population. For reasoning about student emotion, we employ a Cognitive-Based Affective User 

Modeling approach, since it employs low bandwidth variables. 

 

 

Recognition variables employed for reasoning about emotion 

 

To select the recognition variables, we examined the Achievement Emotions Questionnaire (AEQ) by Pekrun, Goetz 

and Perry (2005) corresponding to emotions that arise before/during/after a lecture, which comprises motivational, 

cognitive, affective and physiological factors. After identifying the factors employed by Pekrun et al. (2005), which 

we summarized in Table 2, we decided to focus on the cognitive and motivational factors while diagnosing emotion 

in on-line GBL environments, because these can be inferred from the interaction and the context of the learning 

activity. The affective factors signaled by Control-value theory are considered as student self-report of emotion 

during game interaction.  

 

Table 2. Summary of cognitive and motivational factors 

Before During After 

 Attitude towards subject/activity 

 Confidence beliefs towards 

probable outcome (self-efficacy) 

 Attitude towards investing effort  

 Prospective level of difficulty 

(subject/activity) 

 Internal/ external motivation to 

perform & achieve an activity 

 

 Current attitude towards 

subject/activity 

 Current level of confidence  

 Current effort invested 

 Perceived level of difficulty 

(subject/activity) 

 Student Level of concentration 

 Status of progress on fulfilling 

the activity goals 

 Avoiding requesting or asking 

for help 

 Past outcome/outcomes 

 Willingness to keep 

performing/mastering the 

activity (investing effort) 

 Eagerness to make the outcome 

public 

 Resultant attitudes towards 

subject/activity 

 Internal/external attribution of 

the obtained outcome 

 Resultant confidence on own 

capacity/skills 

 

For the prospective outcome emotions, corresponding to the time frame before performing the learning activity, we 

observed that student attitudes and beliefs related to the future performance, i.e., outcomes are key to determining 

these emotions. Therefore, we decided to enquire about this by using game-dialogues, while introducing the task and 

the game story. For the activity emotions, regarding the time frame while the student is interacting with the GBL 

environment, we decided to employ contextual variables that have proven to be significantly related to variables such 

as confidence, effort and self-efficacy in related work to diagnose student motivation (Del Soldato, 1993), self-

efficacy (McQuiggan et al., 2008) and goals and attitudes (Arroyo & Woolf, 2005). We also decided to use as a basis 

the classification of variables, e.g., temporal, intentional, locational and physiological, proposed by McQuiggan et al. 

(2008) to define our contextual variables. However, our locational variables correspond to where student attention 

resides. 

 

To diagnose retrospective-outcome emotions, we use the latest state of the variables presented in Table 3, in specific 

the latest outcome, independence (attribution of the final result), and the type of outcome (the willingness to keep 

interacting). We also include a new variable, publishing outcome, that is a variable related to the student intention to 

make the outcome public. 
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Table 3. Contextual variables for recognizing activity emotions 

Type of 

variable 
Variable Description 

Associated factors to control or value 

Effort Confidence Perceived 

level of 

difficulty 

Attitude 

towards 

the 

activity 

Concentration 

Temporal 

Interval of 

Interaction 

The total time that the 

student has interacted, 

since the game 

challenge is started 

     

Time to achieve 

learning 

goal(s) 

The time that the student 

invested in achieving 

the learning goal the 

first time 

     

Intentional 

Outcome 

The result that is most 

likely to be achieved 

and directly 

associated to student 

performance 

     

Times asked help 

The number of times 

that the student asked 

for help 

     

Attempts alone 

The number of attempts 

by the student to solve 

the challenge alone 

(without help) 

     

Estimated 

independence 

Results from the 

difference between 

the number of 

attempts alone and the 

number of times that 

the student asked for 

help 

     

Overall attempts 

The total number of 

student attempts with 

and without help 

     

Average quality 

of tutoring 

feedback 

The average value 

calculated from the 

student qualitative 

evaluation related to 

how useful, he/she 

finds the help or 

instruction provided 

     

Type of outcome 

Indicates whether the 

student obtained a 

successful outcome, 

committed a 

misconception or quit 

the game challenge 

     

Locational 
Focus coarse 

value 

The average value of the 

mouse position on the 

screen associated to 

student location 
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Proposal for representing students achievement emotions 

 
Through examining control-value theory (Pekrun et al., 2007), it was observed that there is mutual causation between 

antecedents and effects of achievement emotions over time. Also, control and value are defined as categorical 

variables in the Control-value theory. BNs and Binary and Multinomial Logistic Regression (BLR/MLR) can handle 

categorical variables appropriately. As a result, we decided to implement a dynamic sequence of BNs to represent 

student achievement emotions.  

 

To define the dynamic sequence of BNs, we employed the methodology shown in Figure 1. We focused mainly on 

defining the BNs structure and learning their parameters. Once the design of game challenges is known and their 

elements are described in a class diagram, we employed Probabilistic Relational Models (PRMs) to define a 

preliminary and generic structure of our emotional student model.  

 

 
Figure 1. Methodology to define dynamic sequence of BNs 

 

Figure 2 shows the generic PRM derived and corresponding to control-value theory. However, in this structure 

relationships between causes and effects are not completely defined, see the activity emotions PRM in Figure 3, 

where all the relations are indicated as dotted lines, meaning they are uncertain.  

 

 
Figure 2. PRM of Control-value theory 

 

Therefore, we will have to acquire data corresponding to the student interaction with the GBL environment, which 

we can analyze by employing Pearson correlations and BLR/MLR (gaining more insight about the variables that 

enhance the classification). Then, all the information acquired through Pearson correlations and BLR/MLR is used to 

solve uncertain relations and complete the definition of BN structures applying the necessary Path Condition (NPC) 

algorithm. Finally to define the BN parameters, we apply the Expectation Maximization (EM) learning algorithm 

using the collected data. 

 
Figure 4 illustrates the concept of time frame t-1 in the context of our emotional student model. The interaction with 

the GBL environment may be visualized as a film tape, but its execution is not necessarily in sequence, since 

students’ actions define the order in which the elements of the GBL environment are accessed. Concurrently, each 

achievement emotions network serves a purpose in time. For example, the prospective-outcome emotions network is 

employed for reasoning about emotion in PlayPhysics’ game dialogues. The activity emotions network is employed 

for reasoning about emotions while students interact with the challenges in the GBL environment. Finally, the 

Structured 

Learning

Parametric 

Learning

Dynamic 

sequence of 

BNs

PRMs
NPC 

Algorithm

Pearson 

correlations + 

Binary/MLR
EM Learning Algorithm

Student

Student exploration/interaction
(game dialogs or game challenges)

Focus of emotion
(prospective outcome, activity 

ongoing progress/performance 

or previous outcome

Game challenge 1 … N

Activity

Time frame
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retrospective-outcome emotions network is used to reason about emotion in the instant of time that the outcome of 

the game challenge is presented to the student. 

 

 
Figure 3. Activity emotions PRM 

 

At the beginning, the student is presented with a game dialogue that introduces the game’s plot, the next game 

challenge and enquires about student beliefs/attitudes. At the end of each game dialogue students self-report their 

emotions and the prospective outcome emotions network can be employed at this moment to reason about emotion 

(see Figure 4(1)). Then students may proceed to interact with the game challenge, if students self report their emotion 

before completing the challenge or evaluate the feedback provided by the learning companion, the activity emotions 

network can be used at that instant of time for reasoning about emotion (Figure 4(3)). If the latest entry corresponds 

to the ongoing interaction with a game challenge immediately after the game dialogue, value t-1 and control t-1, the 

state of the contextual variables is evaluated using the activity-outcome emotions network (Figure 4(2)). It is also 

possible that the latest interaction corresponds to the event of notifying students of their outcome. However, since 

students can retry game challenges as many times as desired after receiving their result, value t-1 and control t-1 can 

may also come from the retrospective-outcome emotions network (Figure 4(4)). Finally, when students have been 

presented with their game outcome, they must self-report their emotion towards it and may decide to proceed with 

another challenge, thereby starting another game dialogue. In this case, value t-1 and control t-1 come from the 

retrospective-outcome emotions network (Figure 4(5)). 

 

 
Figure 4. Time t-1 in our student model 
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Experiment design 

 
PlayPhysics 

 
To acquire data related to student interaction with a GBL environment and enable students to communicate their 

emotion over time, we created PlayPhysics, an emotional GBL environment for teaching Physics. PlayPhysics 

includes our emotional student model and will enable testing of the hypothesis of this work. However, PlayPhysics 

also has to assist students in learning Physics. This section discusses key aspects of PlayPhysics’ design. For looking 

at more detail see Muñoz et al. (2013). 

 

 
Figure 5. Game challenge and GUI of PlayPhysics 

 

PlayPhysics functional and non-functional requirements were defined by conducting an on-line-survey of a course in 

introductory physics from the Tecnologico de Monterrey, Mexico City campus (ITESM-CCM) and Trinity College, 

Dublin. As a result, PlayPhysics is focused on teaching the topics of Newton’s laws for particles and rigid bodies, 

Dynamics and Kinematics and vectors in 3D, which were judged as the most challenging topics.  

 

PlayPhysics is a Role-Playing Game (RPG) and space adventure comprising challenges that must be overcome using 

knowledge of physics. The student is an astronaut with the mission of saving Captain Foster, who is trapped in space 

station Athena. The mission begins when the student is going to be launched from Earth to travel to Athena, which is 

located between Mars and Jupiter, and which is rotating with a constant acceleration. Each challenge is associated 

with one game level. Here, we focus on the first challenge. 

 

An expert in Astrophysics from the ITESM-CCM assisted us in defining the game- scenarios. The first game-

challenge comprises the Alpha Centauri spaceship, which has been launched from the Earth, and the Athena station. 

Alpha Centauri is heading at constant speed towards Athena, see Figure 5. The main goal is that the student sets 

suitable values for physics variables of Alpha Centauri to stop along Athena’s rotational axis. However, to make this 

goal challenging, the student has to fulfill conditions such as defining a position that facilitates docking and entering 

to Athena before the fuel is exhausted. 

 

 

Subjects  

 

For our investigation, we invited students enrolled in a related Engineering undergraduate degree at ITESM-CCM, 

and in an age range between 18 and 23 years old. We acquired the data from 118 participants that interacted with 

PlayPhysics. 
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Objects 

 

The first challenge is related to the topic of one-dimensional rectilinear motion. To achieve a successful outcome, 

constant deceleration has to be applied. Two constraint variables in this challenge are: (1) the initial distance (D) 

from Alpha Centauri to Athena and (2) the time remaining until fuel is exhausted (T). As a result, both variables are 

assigned randomly within specific value ranges: D ∈ [17, 50] m and T ∈ [80, 120] s, to make the solution of the 

challenge non- trivial. Students must concentrate on setting the values of the exploration variables.  

 

The factors that must be considered to solve PlayPhysics’ first challenge appropriately are: 

 Choosing the correct direction for the acceleration a of Alpha Centauri spaceship. 

 Setting the magnitude of the acceleration of Alpha Centauri considering that humans black-out if a > 4g, where 

g is the gravity acceleration at sea level (g = 9.81 m/s2) 

 Not going beyond the fuel exhausting time, ts ≤ T, and achieving the lowest relative error, ed ≤ 2%, in the 

breaking distance (ds ). 

                                                                                                         
 Defining the lowest value for the breaking time (ts ). 

 

These factors were implemented in PlayPhysics as rules to diagnose student knowledge. The simulation model is 

concerned with the representation of the physics domain. 

 

 

Instrumentation 

 

Students solved a pre-test, and afterwards interacted with the first challenge of PlayPhysics, and finally solved a 

post-test and qualitative questionnaire. Students self-reported their emotional state before, during and after 

performing the game activity.  

 

During the interaction with the game challenge, the student’s emotion can be reported at any time, using the 

EmoReport wheel (Figure 6 (a)). The emotion relating to the outcome at the end of the challenge is always enquired 

(Figure 6 (b)), whether the challenge finishes due to an error or misunderstanding or due to a successful end. 

Learning companion M8- robot provides an emotional response every time the student reports his or her emotional 

state (See Figure 6). 

 

 
Figure 6. (a) EmoReport wheel and (b) Learning companion M8- robot 

 

 

Data collection, cleaning and analysis 
 

We collected the data from 118 students at ITESM-CCM from the Faculty of Computing and Engineering, who 

interacted freely with PlayPhysics during one week. Through applying to the collected data NPC - in combination 

with the information obtained from applying BLR/MLR and Pearson correlations using SPSS - and EM algorithms 

using Hugin Lite, we obtained the dynamic sequence of BNs, comprised of the prospective-outcome, activity and 
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retrospective-outcome networks. The resultant activity emotions network is shown in Figure 7. We used 708 cases 

related to student game interaction to derive this BN, where 136, 122, 262 and 188 cases corresponded to anger, 

boredom, enjoyment and frustration. WEKA was employed to perform stratified random sampling in order to obtain 

499 cases from the original 708 cases that we had, since we used the free version of Hugin Lite, which is limited to 

50 states and 500 cases. Also, we employed WEKA to convert continuous to categorical variables using equal 

frequency binning to divide the variables into two or three categories, bearing in mind that control and value are also 

divided into three and two categories respectively. 

 

 
Figure 7. Activity emotions network 

 

We employed 10-fold cross-validation using the available data to determine the performance of each network over 

fresh data. The objective was to compare the performance of each network, and we obtained sensitivity, specificity, 

precision and accuracy measures of the networks (Han & Kamber, 2006).  

 

True positives (tpos) are positive tuples that were correctly labelled by the classifier. True negatives (tneg) are negative 

tuples that were labelled by the classifier. False positives (fpos) are negative tuples that were negatively labelled by 

the classifier. False negatives (fneg) are positive tuples that were incorrectly labelled by the classifier. 

 

Considering these definitions; it is possible to define sensitivity, specificity and precision from them. Sensitivity (ss) 

is the true positive (tpos) recognition rate. Specificity (sp) is the true negative (tneg ) rate. Precision (prec.) is the 

percentage of tuples that actually belong to each labelled category. Accuracy (acc.) is a function of sensitivity and 

specificity. Results corresponding to the classification of the different types of achievement emotions are presented in 

Table 4 - 6.  
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From the prospective- outcome emotions, anxiety and hope are classified with 80% and 67.5% accuracy (see under 

ss). This is owed to classifying more appropriately control in the “Medium” category rather than the “High” category 

using answers to questions in game-dialogues. 

 

Table 4. Performance of the prospective-outcome emotions network 

Prospective outcome emotions 

Observed Predicted 

Anticipatory joy Anticipatory relief Anxiety Hope sp ss prec. acc. 

Anticipatory joy 6 3 1 10 0.857 0.300 0.375 0.567 

 Anticipatory relief 2 10 2 6 0.914 0.500 0.625 

Anxiety 0 1 8 1 0.925 0.800 0.571 

Hope 8 2 3 27 0.660 0.675 0.613 

Note. sp = specificity; ss = sensitivity; prec. = precision; acc. = accuracy. 

 

From the activity emotions (Table 5), enjoyment and frustration are classified with accuracies (see under ss) of 

67.8% and 60.0%, respectively. However, anger and boredom are classified with accuracies of 48% and 20%. This is 

due to being unable to recognize value appropriately in its category “None,” also the precision of frustration, is not 

very high, as a result, there is a high probability of classifying the other emotions as frustration.  

 

Table 5. Performance of the activity emotions network 

Activity emotions 

Observed Predicted 

Anger Boredom Enjoyment Frustration sp ss prec. acc. 

Anger 48 2 27 23 0.848 0.480 0.440 0.532 

 Boredom 15 18 31 26 0.954 0.200 0.486 

Enjoyment 30 6 122 22 0.740 0.678 0.595 

Frustration 16 11 25 78 0.808 0.600 0.523 

Note. sp = specificity; ss = sensitivity; prec. = precision; acc. = accuracy. 

 

Table 6. Performance of the retrospective-outcome emotions network 

Retrospective outcome emotions 

Observed Predicted 

Anger Gratitude Joy Pride Sadness Shame sp ss prec. acc. 

Anger 77 3 1 1 10 8 0.613 0.770 0.554 0.504 

 Gratitude 5 0 0 1 3 1 0.932 0.000 0.000 

Joy 11 1 2 3 3 0 0.992 0.100 0.500 

Pride 11 8 1 9 0 1 0.974 0.300 0.600 

Sadness 22 3 0 0 27 8 0.880 0.450 0.529 

Shame 13 2 0 1 8 16 0.918 0.400 0.471 

Note. sp = specificity; ss = sensitivity; prec. = precision; acc. = accuracy. 

 

On the other hand, from the retrospective-outcome emotions (Table 6), anger is classified with an accuracy of 77%. 

However, its precision it is not very high. Gratitude is not classified accurately at all.  

 

Table 7. Cohen’s Kappa for the achievement emotions networks 

Dependent 

variable 

Prospective-outcome 

emotions BN 

Activity emotions BN Retrospective outcome-emotions 

BN 

 Significance  Significance  Significance 

Emotion 0.369 7.732E-9 0.348 5.108E-39 0.310 4.377E-21 

Value 0.550 1.811E-7 0.381 2.726E-29 0.437 1.881E-13 

Control 0.311 0.003 0.429 2.433E-22 0.306 1.127E-12 

  

Cohen’s Kappa (), an intra-class correlation coefficient, is employed as a measure of agreement that adjusts the 

observed proportional agreement by considering the amount of agreement expected by chance. Kappa can take 

values in a range [−1, 1], but only values in a range [0, 1] are meaningful, where the value of zero corresponds to 



53 

random classification. For hypothesis testing, if Kappa lies on the range: 0.2 <  ≤ 0.4, it corresponds to a fair 

agreement between the observed and the predicted values. If Kappa lies on the range: 0.4 <  ≤ 0.6, it corresponds to 

a moderate agreement. If Kappa lies on the range: 0.6 <  ≤ 0.8, it corresponds to a substantial agreement. The 

values of Cohen’s Kappa calculated for the achievement emotions networks are presented in Table 7. Control, value 

and emotion achieve fair-moderate classification accuracy and results are not random. This gives enough evidence to 

accept our alternative hypothesis. 

 

 

Evaluation and discussion 

 
PlayPhysics teaches physics and was created with the intention of providing instruction to students in an 

introductory course of physics. Therefore, PlayPhysics targets students in the last year of High school and first 

years of undergraduate education. In this work, we focused principally on assessing a student model of emotion for 

the target population using a Cognitive-Based approach. In this case, the Control-value theory by Pekrun et al. 

(2007) is the cognitive psychological theory used to derive the model. 

 

Conati and Maclaren (2009) used the cognitive psychological theory of the OCC model (Ortony et al., 1990) as a 

reference for their model. However, this theory was not originally created to explain emotion in an educational 

context, but instead was created for reasoning about emotion in personal diaries. So, it is not clear if the emotions 

chosen are relevant to, or will arise in the same manner during the teaching-learning experience. Conati and 

Maclaren (2009) employed an Embodied Pedagogical Agent (EPA) to remind students to self-report their emotion. In 

a similar manner, PlayPhysics employs the learning companion M8- robot. Students can also use a pop-up window to 

report their emotion in Prime-Climb, and in similar manner, students using PlayPhysics can employ the EmoReport 

wheel. However, this is always present in PlayPhysics’ game challenges screen. Joy, distress, admiration and reproach 

are the emotions identified by PrimeClimb. Conati and Maclaren (2009), as other researchers, present the results 

corresponding to their emotional model using percentages of agreement between student self-reports and the 

predictions of the emotional model (69.59%, 62.30%, 67.42%, and 38.66% accuracy for joy, distress, admiration 

and reproach respectively), which makes it difficult to appreciate its reliability.  

 

Sabourin et al. (2011) also focuses on recognising student achievement emotions using CRYSTAL ISLAND as does 

PlayPhysics. But, CRYSTAL ISLAND uses the appraisal based theory of learning emotions by Elliot and Pekrun 

(2007) as a reference. It differs from Control-value theory in that it relates the attainment of performance or mastery 

of goals and its valence with the experience of achievement emotions. In similar way, Sabourin et al. (2011) do not 

consider the category of “no-emotion” in their model, as in our investigation, since it is not defined by either theory. 

Their results are also reported as percentages of agreement, so it cannot be known whether the agreement is or is not 

random. Sabourin et al. (2011) focused on identifying student confusion, curiosity, excitement, focus, anxiety, 

boredom and frustration. The latter two were identified with accuracies of 18% and 28% respectively, whilst 

PlayPhysics identifies these two emotions using Control-value theory with accuracies of 20% and 60% respectively 

employing only contextual variables. Our emotional student model is the first and only model to date that was 

implemented using Control-value theory.  

 

Another theory, adapted and employed to identify emotions in education using facial expressions is the theory by 

Ekman (1999), which has been successfully employed by Autotutor (D’Mello et al., 2008) in laboratories. 

However, this approach has still not proven effective in classrooms or on-line environments. Autotutor uses artificial 

neural networks to classify features of emotion. As a result, the emotional model is more like a black box and does 

not result in an intelligible model of emotion, i.e., does not provide further information about the participants or the 

affective domain. PlayPhysics’ emotional student model is intelligible and assists us in identifying factors that are 

considered actual predictors of control and value and the manner in which these are associated. The model also 

assists us in achieving an enhanced understanding of the student population.  

 

We employed PRMs to achieve an enhanced understanding of the variables that may be considered while creating 

our emotional student model. Therefore, they facilitate defining Bayesian student models. This approach has been 

employed previously by Sucar and Noguez (2008), but for the purpose of defining a student model capable of 

identifying the level of a student knowledge or understanding. The application of the NPC algorithm for structural 

learning has been successfully employed in the area of telecommunications (Bashar, Parr, McClean, Scotney, & 
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Nauck, 2010) when scarce data is available. Here, we employ the same approach in combination with information 

acquired through applying BLR/MLR and Pearson correlations to solve uncertain relations. Pearson Correlations 

have been successfully employed as criteria for defining the structure of a Bayesian student model of attitudes 

(Arroyo & Woolf, 2005). We use the results of applying BLR/MLR as criteria for creating the network structure, 

since Bayesian models are a kind of Logistic Regression (Roos, Wettig, Grϋnwald, Myllymӓki, & Tirri, 2005) and 

we can know the contribution of each selected variable to the prediction. We are not aware of any other research that 

employs BLR or MLR for this same purpose. 

 

 

Conclusion and future work 

 
We presented here an investigation about whether the creation of a computational model of student emotions using 

Control-value theory (Pekrun et al., 2007) can achieve a reasonable accuracy recognising student emotions in online 

GBL environments. PlayPhysics was implemented to test whether our emotional student model can be applied to 

GBL environments. Results showed that our model attains fair-moderate accuracy with results that are not random 

using answers in game dialogues and contextual variables. But, the resulting model is not highly accurate (Values 

of Cohen’s Kappa where  ≥ 0.75). Therefore, future work will focus on utilising other observable variables such as 

facial expressions, sentiment and speech to identify other features to enhance the classification of control and value. 

Also, the approach that we employed to derive the dynamic sequence of BBNs proved effective in creating an 

intelligible emotional student model and may be employed to derive other dynamic and intelligible data models to 

attain an enhanced understanding in areas other than education, e.g., e-Commerce and Genetics, in addition to the 

prospective areas of Affective Student Modelling and Adaptable Computer Tutoring. 
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