
Autonomic Cooperation Strategies for Robot Swarms
Catherine Saunders

Supervised by: Roy Sterritt, George Wilkie
School of Computing and Mathematics

Ulster University
 Northern Ireland, UK

E-mail: saunders-c2@email.ulster.ac.uk, r.sterritt@ulster.ac.uk, fg.wilkie@ulster.ac.uk

Abstract— In this paper, we describe two strategies that allow
a swarm of simulated robots to cooperate. For a swarm of
robots to function cooperatively, self-management and
autonomy are essential. Direct communication is used to
enable swarm entities to communicate. The research aim is to
evaluate various architectures and protocols for cooperation
strategies that enable swarm robots to ask for, and respond to
requests for assistance. The work is in two phases. Only phase
1 is described in this paper. The first phase involves the
creation of simulation environments of robot swarms. This
phase enables us to develop, evaluate and refine suitable
architectures and protocols for swarm cooperation. Using
simulation, it is possible to assess swarm cooperation in the
large (essentially hundreds or thousands of robots per swarm).
In the second phase, the cooperation protocols developed from
phase 1 will be trialed on a small number of physical robots, to
evaluate the complexity introduced from the real world. The 1st
architecture simulated features a hierarchy with Ruler robots
communicating with a swarm; the Ruler robots can request the
help of the swarm. The swarm is only able to respond to the
Rulers, intra-swarm communication is not possible. In the 2nd
architecture simulated, a non-hierarchical homogenous swarm
is able to communicate by posting help messages to a
centralized Message Board entity. In future experiments,
architectures involving the incorporation of a Message Board
role within each swarm robot, thus removing the
disadvantages associated with having a centralized component,
will be explored.

Keywords- Robot; Autonomic Computing; Swarm;
Simulation; Cooperation;

I. INTRODUCTION
The purpose of this research is to investigate cooperation

strategies that will enable a swarm of robots to collaborate
and perform a task without human involvement. The aim is
to show how direct communication could work within a
swarm scenario. Most swarm research tends to focus on
indirect communication, this normally involves changing the
environment to influence other swarm members, or
responding to other swarm members in order to maintain
distance and mimic flocking. In future, we want to compare
the performance of different approaches and determine the
optimal cooperation strategy for swarm collaboration. We
are interested in direct communication in the form of
messages sent via a central controller or by direct
communication from robot to robot. We are working on
creating simulations to test various cooperation strategies;

this paper will focus on our current research and conclude
with future research ideas.

Autonomic Computing [1] takes its name from the
Autonomic Nervous system, which can maintain bodily
functions independent of conscious thought [2]. The aim of
Autonomic Computing is to improve the self-management of
autonomous software systems. This paper is part of a
research project that seeks to design a model, which will
allow swarm entities to communicate information in order to
collaborate as a whole. In order to do this, each entity in
addition to being self-managing, must be capable of
receiving and reacting to communications from other swarm
members. Within Autonomic Computing, there is the
concept of an Autonomic Element (AE), which consists of
an Autonomic Manager (AM) and a Managed Component
(MC). Having an AM that uses a feedback loop to constantly
check on the state of a system is particularly applicable to a
robot swarm [1]. The hardware of each swarm robot
represents the MC, the AM is the software that must monitor
the battery life, component state, and direct the local
behavior of the robot. Robot AM’s must be able to cooperate
with each other in order for the autonomic swarm to function
efficiently. To be truly autonomic, a system must be Self-
Aware, Environment-Aware, Self-Adjusting and Self-
Monitoring [3].

Space exploration is an area that could benefit from
incorporating Autonomic Computing ideas. Future space
missions will seek to go beyond the monolithic rover
concept and instead feature multiple autonomous rovers or
spacecraft. It is important that Autonomic self-management
techniques are incorporated into future missions that feature
multiple entities. It would not be feasible for humans to
manage the actions of every member of a swarm, especially
in an emergency situation. NASA’s concept missions
demonstrate their interest in more ambitious fully
autonomous swarm exploration.

The NASA Autonomous Nano Technology Swarm
(ANTS) project features a concept mission known as the
Prospecting Asteroid Mission (PAM). This mission would
involve sending 1000 spacecraft to explore an asteroid belt.
The reason for sending a large number of spacecraft is to
counter the expected large-scale decimation of the swarm
[4]. The mission would include 10 scientific instruments,
with each spacecraft carrying only 1 instrument; we are
using this example as inspiration for our research scenario.
The swarm would feature different roles, such as Ruler,
Messenger and Worker. Autonomic computing ideas are
essential in order to ensure that swarm entities are self-

managing and able to cooperate effectively with each other
[5][6].

In this paper, we describe two simulations that feature a
swarm of robots using direct communication in order to
cooperate. Section II gives an overview of related work and
the different approaches within swarm research. Section III
describes the two different approaches and the C#
simulations. Future work is discussed in Section IV; this
will involve further simulation work in order to decrease the
number of unanswered help requests, and also testing on
mobile robots

II. RELATED WORK
Within swarm research there are 3 general types of

systems that have been explored; centralized, decentralized
and hybrid approaches. A centralized system consists of a
central controller that collates data from swarm members;
this enables it to intelligently co-ordinate how each swarm
member should behave [7]. The disadvantages of this type
of system are that it does not scale well, the larger the
swarm, the less efficient the controller will be at processing
information and coordinating the actions of the swarm. As
there is a central controller, any damage incurred can
negatively affect the behavior and performance of the
swarm and may also jeopardize the overall mission [7].

In contrast to this, a decentralized system operates in a
Peer-to-Peer manner with communication occurring
between swarm members. A Peer-to-Peer approach helps to
avoid the bottleneck that can occur when there is a central
controller processing all swarm communication traffic.
Another advantage of Peer-to-Peer approaches is that if
swarm members are damaged, the swarm can still function,
as no member is indispensable. In a centralized system, if
the central controller becomes damaged, the swarm would
no longer be able to function cohesively [7].

A hybrid system results from the combination of
centralized and decentralized strategies to varying degrees.
A hybrid system can take the form of a decentralized swarm
were the communication takes place locally but also
includes another supervisory element that analyzes global
data and provides overall mission direction [7]. The NASA
PAM swarm fits the definition of a hybrid model as it
features a hierarchy of Rulers, Messengers and Workers.
The Rulers would be able to coordinate the behavior of the
Workers by organizing them into teams and choosing
exploration targets [4].

A decentralized Peer-to-Peer model is presented in [8],
where a navigation system is proposed with each robot
within a swarm maintaining a table of location information
of every other robot within the swarm. The robots broadcast
messages with location information to their neighbors; this
is then distributed throughout the swarm. To test the
messaging protocol, a robot declares itself to be a target,
other robots must move towards this robot using the
location information they have received and stored in their
table. The authors were able to test their research on
physical foot-bot robots [8]. This is something we would
like to do in future. Another example of broadcasting within
a swarm is explored in [9], the authors created a Global

Coordination System, where information is exchanged by
agents within a decentralized swarm by using a wireless
sensor network. Each robot starts from the same position
within an indoor environment, they are able to keep track of
their position by checking how far they have moved from
their start position. To help the swarm search for targets,
robots use the location information being broadcast by other
swarm members.

There is not as much research dedicated to decentralized
direct communication between members of a robot swarm.
Most swarm research tends to focus on implementing a
system that is either centralized or one that is decentralized
and uses indirect communication techniques, such as
pheromones. Indirect communication can be achieved by
changing the environment in a way that influences the
others that are operating in that environment. This is known
as Stigmergy; it is seen in nature and is the basis of much
bio-inspired research. A virtual pheromone approach has
been explored in [10], robots are placed at random positions
within an arena and given the task of sweeping the
perimeter. A pheromone trail is left by each robot to notify
others that an area has already been mapped.

For the NASA PAM mission and other future missions
that involve multiple robots carrying out complex tasks, it
may be necessary to equip robots with more intelligence
than is present in a purely reaction based system. In [11] an
interesting hybrid approach is discussed, a cluster of 3
robots begin their mission as a swarm but can change to a
master/slave configuration when cooperation is required.
The robots are set the task of finding an object; if a robot
finds the object it assumes the role of Leader and sends the
location to the other 2 robots. The slave robots cannot
communicate with each other, only with the Leader, the
Leader then broadcasts the data collected from both slaves.

Role switching is also featured in the SWITCH project
[12], which was developed for the RoboCup competition
[13]. The RoboCup is held annually and has robots
competing in teams to play soccer; the aim of the
competition is to improve many areas of computer science
including cooperation between robots. The SWITCH robots
are able to change their role from Striker to Defender in
response to how the game is progressing; each role has its
own goals and strategies. This idea of being able to change
roles depending on the situation could prove useful, as there
are benefits to both the centralized and decentralized
approaches. Being able to switch between the two is a useful
adaptive technique that would allow a swarm to operate
under centralized control but without the disadvantages this
brings.

We have not implemented roles in our current simulation
research but may consider it in future as a useful failsafe
mechanism. Specifically, if a swarm is routing messages via
a centralized communication element, which becomes
damaged, the swarm may no longer be able to cooperate. By
using roles, any member of the swarm can self-nominate and
become a central controller, thus the limitations of a
centralized system are avoided. The self-nominated robot
would cease their exploration task and change their ‘role’ to
that of a centralized communication element.

III. CURRENT WORK
This section describes two simulations that we have

designed and implemented in C#. The systems are a mixture
of both decentralized and centralized approaches, in both,
each swarm robot is autonomous. We use a central Message
Coordinator in the 2nd simulation, which could fall prey to
the dangers of a centralized system. In future we would like
to incorporate the coordinator as a role into each swarm
robot. A simulation is useful as it enables us to create
numerous robots without being constrained by the
limitations of physical hardware. To ensure rigor, it is also
necessary to perform real life experiments, since unexpected
results can arise from the complexity posed in the real
world. The final stage of our experiments will involve
testing our cooperation models using a small cluster of four
Dr Robot X80-H robots [14].

In Section III-A, we describe a system that features a
Ruler AE, which can communicate with every member of
the swarm. Sending a message to every swarm robot AM
each time help is required is not very efficient. It is simple
to accomplish in a simulation but could prove more
challenging with actual robots. As a result of this, we
created another design with a dedicated centralized Message
Board. The simulation described in Section III-B features a
homogenous swarm as opposed to the hierarchical system
described in section III-A. Swarm robots still cannot
communicate with each other and must use a central
Message Board to post Help requests. When a robot finishes
its task it checks the Message Board for help requests that it
could fulfill.

A. Implementation 1 – Rulers and Workers Hierarchy

Most swarm research seeks to mimic natural systems
e.g., flocking, shoals, foraging; however, we are interested
in direct communication and instilling more intelligence in
each individual swarm robot. In this simulation, our
scenario involves a robot finding an interesting feature that
requires other members of the swarm to move towards its
location and assist. This version was inspired by the NASA
PAM project; it features 3 Ruler robots that communicate
directly with a swarm. The scenario involves Ruler robots
requesting help from members of a swarm when they
encounter interesting terrain that the Ruler cannot traverse.
Swarm robots only respond if they have not reached their
target destination and begun their own experiments. When
the Rulers discover an interesting feature situated within
terrain that they cannot traverse, they send a message to the
swarm asking for help. The Rulers can communicate with
every member of the swarm but the swarm can only
communicate with the Ruler robots and not with each other.
The swarm only replies to help requests and cannot initiate
contact with the Ruler.

The map in Figure 1 includes orange and black tiles,
which represent interesting terrain features that the 3 Ruler
robots encounter during the course of the simulation. The
user specifies the number of robots in the purple swarm.

Each robot runs in its own thread, its start position, terrain
capability and mission priority are all randomly generated.
The help request that is sent includes the Ruler’s mission
priority, location and terrain encountered (i.e., Terrain
capability required). This is then used by each swarm robot
to decide whether or not to respond. If a swarm robot’s
mission priority is higher than that of the Ruler, they ignore
the help request. There are two conditions that must be met
in order for a swarm robot to respond to a Ruler’s help
request, they must be able to cross that type of terrain
specified and have a lower mission priority than the Ruler.
Those that respond to the Ruler’s help request are placed on
a ‘Helpers List’, provided they are within a certain distance
of the Ruler robot. In Figure 1, the green and blue Rulers are
flashing a proximity beacon; only responding robots within
this beacon area are added to the ‘Final Helpers List’. The
Rulers then send a confirmation message to each robot on
the ‘Final Helper List’. The swarm robots that receive the
confirmation message only move towards the Ruler robots
location if they have not reached their destination and begun
experiments.

Figure 1. Ruler robots communicating with a swarm, a tile map was used
with the orange and black sections representing areas that the Ruler robots

could not traverse.

The flow diagrams in Figure 2 and Figure 3 show the
processes (or protocols) of a Ruler robot and a swarm robot.
The Ruler robot AM differs from the swarm robot AM, yet
each is similar in that they both contain a continuous self-
checking loop. In Figure 2, the Ruler robot creates a Helper
List with the information of each swarm robot that
responded to the help request. It then iterates through this
list and places robots that are located within the beacon area
on to the ‘Final Helper List’.

Figure 2. Ruler robot protocol

The swarm robots have an internal self-managing loop
that checks for messages and formulates responses based on
mission data. If the message that is received from a Ruler
states a mission priority that is less important than the
swarm robot’s own mission priority, it will choose to ignore
the message. In this respect, the swarm robots do possess
some personal autonomy within the system. They may
determine that their task is more important and that by
refusing to help they will ultimately be benefitting the
swarm mission objectives.

In Figure 3, the flow diagram (protocol) shows the loop
used by each swarm robot, they only respond to messages,
which have a higher mission priority than their own. If they
respond to a message and do not receive confirmation from
the Ruler, they continue to move to their original target
destination.

Figure 3. Swarm robot flow protocol

The system as a whole is self-optimizing, it can adapt
and change its behaviour based on the terrain encountered.
Rulers act as Autonomic Managers of the swarm
component, they can utilize this component when necessary.
The Ruler robot has the capability to reconfigure the swarm
component by drawing their resources when an interesting
feature is discovered. Ruler robots can reconfigure the
swarm behaviour by sending a help message and choosing
helpers, the system is therefore capable of self-optimizing
when certain situations arise. The Ruler robots only act as
Rulers in certain situations as having a swarm explore
autonomously improves the chances of finding interesting
features. We are using impassable terrain as a problem that
necessitates help from the swarm, but this is merely a
scenario to facilitate collaboration. Future work may look at
using a foraging task instead where help is needed from
other swarm robots to successfully forage an interesting
item.

In this implementation there are 3 designated Rulers.
However, in future we would like to design the swarm so
that anyone can self-configure and become a Ruler when
they find interesting terrain or features. Being able to
change and enhance one’s capability dynamically would be
more autonomic and fulfill the self-configuring aspect of the
Self-CHOP paradigm.

B. Implementation 2 – Message Board and Swarm

In this version, there are no Ruler robots, the swarm
entities co-operate by posting their help requests to a
Message Board AE. The Message Board is not a centralized
controller; it is a passive tool that is used by the swarm to
coordinate tasks, it does not provide global task direction.
The Message Board is a different type of AE in comparison
to the Robot AE. Within the simulation it does not exist as a
visible entity, the AM is tasked with storing help requests.

In a real life experiment, the Message Board may exist
as a satellite that can communicate with all robots. The
Message Board could also be a swarm robot that is static
and dedicates all of its power and resources to enabling
communication within the swarm. The assumption being
that it would be less taxing for a swarm robot to send a
message to a designated static swarm robot than every other
robot in the swarm. A failsafe mechanism would be to allow
any swarm robot to take on the role of the Message Board.
If the static Message Board swarm robot was damaged or
destroyed, another robot could then nominate itself and
change its ‘role’ from ‘Explorer’ to ‘Message Board’. This
would be more autonomic and allow the system to suffer
significant losses yet still function.

The Map in Figure 4 mostly consists of green tiles that
represent normal traversable terrain. The blue water tiles are
used to represent an interesting feature that needs to be
explored by the swarm. The simulation shown in Figure 6
features a swarm of red and yellow robots, each running in
their own Thread and with randomly generated capabilities.
Each swarm robot is given either a Red or Yellow color to
represent a different scientific instrument; this is inspired by

the NASA PAM mission, which features up to 10
instruments. In future we would like to add more
instruments/colors to enrich the scenario. The start and
target coordinates are also randomized, as is the speed at
which each robot moves. The speed is used to work out how
much battery power the robot has used; each robot starts the
simulation with 100% battery.

If a robot reaches the water tiles, it sends a help message
to the Message Board with details of its location, the battery
life required to complete exploration, and the type of
scientific instrument required. There are two instruments,
red and yellow; if the robot sending the help request is a red
robot, then it would need the help of a yellow robot. In the
simulation, a yellow robot will always request help from a
robot with a red instrument, and vice versa. The message
includes the Requesting robot’s ID, Instrument required, and
Battery Life needed to complete the exploration task. The
Message Board entity receives and stores all help messages
from the swarm.

Figure 4. Swarm and Message Board simulation with terrain map. Red and
yellow robots represent different instruments. Blue robots are those that are

responding to help requests.

When a robot reaches its target location and finishes its
task, it enters an idle state; it then asks the Message Board
for a tailored list of all unfulfilled help requests. With this
request, it includes its current location and instrument type.
The Message Board checks the location coordinates
provided by the idle robot and filters out help requests from
robots outside a certain distance. It also removes any
requests that do not require the idle robot’s instrument type,
the tailored list is then sent to the idle robot. The idle robot
then chooses the help request that requires the least amount
of battery power. This has led to a number of help requests
not being fulfilled due to the battery life required being
higher than the battery capacity of any available idle robot.

Future research will look at choosing a request with the
shortest time to completion window as this will help avoid a
selfish swarm scenario.

When an idle robot chooses a help request, it sends a
message to the Message Board and waits for confirmation.
The Message Board checks that the help request is still
available and unanswered, if it is, then it marks the help
request as ‘Completed’ and sends a confirmation message to
the idle robot. The idle robot then changes its color to blue
and moves to the location in the help request. Unlike
Version 1 of the simulation, where many robots could fulfill
a help request, in this version, only one robot can respond to
a help request. This is a feature that could be changed so
that the requesting robot specifies in the help request how
many helpers it needs for a given task.

The flow diagram in Figure 5 shows the decision-
making processes performed by an idle robot. When a robot
becomes idle, it asks the Message Board entity for a list of
current unfulfilled help requests. The idle robot pauses until
it receives a response from the Message Board, the response
is nearly immediate and the wait time does not negatively
impact the swarm behaviour. However if a swarm is very
large, a single Message Board element might experience lag
when trying to process list requests from the swarm. A
bottleneck could occur and result in a large number of idle
robots waiting for responses from an overtaxed Message
Board. Future work will address whether it is necessary to
have multiple Message Board nodes if the swarm is very
large. The Message Board flow diagram in Figure 6 shows
the processes followed when a Help Request is received,
and also when an idle robot requests a tailored Help Request
list.

The simulation requires further work in order to reduce
the number of help requests that go unanswered. Currently,
robots are able to choose the help request that requires the
least amount of effort. Future work will incorporate a time
to completion window and instruct swarm robots to respond
to the request with the least time remaining.

Figure 5. Robot decision-making flow diagram

Figure 6. Message Board responding to a help request

IV. FUTURE WORK
Section IV-A describes features that could be added to

the simulation in order to improve the cooperation between
swarm entities. Section IV-B discusses the final stage of our
research, which will involve testing the cooperation
strategies on physical mobile robots.

A. Simulation Experiments

Our current approach involves a swarm of robots and a
Message Board entity, however if the Message Board is
damaged, the swarm has no way of communicating. Another
approach would be to design a Message Board coordinator
role that any robot can switch to. The system would then
benefit from the advantages of a centralized and
decentralized design.

In order to quantify the performance of the different
strategies, future work will look at using repeatable
randomized data that can be uploaded into the simulation.
We would like to see whether having the central Message
Board tailor the list or letting the idle robot do this locally
makes a difference to the performance, i.e., the number of
help requests that are left unanswered. We also plan to enrich
the map terrain and add more scientific instruments/colors
(capabilities) to the swarm mix.

Another feature we are interested in implementing
involves stopping a robot that is in the process of responding
to a help request. This would happen if a robot that is closer
to the help request location becomes idle and available. If a
robot becomes idle and is closer to a help request location
than a robot that is currently en route, the idle robot could
take over the task. This would involve sending the idle robot
a list that includes help requests that are currently being
answered as well as those that are unanswered.

To make the simulation more realistic, we plan to modify
the Help Request format to include a time to completion
value. This is an estimate created by a robot that has
encountered an object or feature that needs to be investigated
within a certain time frame due to suspected perishability. In
addition, it may be useful to equip the Message Board AM
with the ability to detect help requests that have not been
answered and where their time to completion is running out.

This paper describes a work in progress, future
publications will detail the results of the strategies and
compare performance. The goal of the research is to
determine if certain collaboration strategies are more
suitable to certain situations. We want to measure efficiency
of each strategy, metrics will therefore be recorded, these
may include: number of steps taken by each swarm robot,
number of help requests made, number of help requests that
go unanswered. The time taken by each strategy is also
important if a foraging scenario is adopted, the time taken to
find all items can be compared.

We are currently working on implementing both
collaboration strategies into a new simulation where the
terrain is identical; this will help us gather statistics on how
well they perform in relation to each other. In addition to
these strategies we are also implementing a local
broadcasting collaboration strategy, which uses nearest
neighbour message passing. In a real life scenario this
would help solve any signal range communication
problems.

Another aspect of our research is to include an
Autonomic Overseer Element that can monitor the
simulation as it is running, assess the metrics being recorded
and then instruct the swarm to change the collaboration
strategy it is currently using to one that the Overseer deems
more suitable to the terrain or situation. A terrain that is
hazardous could result in more swarm casualties, in this sort
of situation using a decentralized communication technique
that requires a message to be passed via close neighbours
(local broadcasting) may be unsuitable. If the swarm is
spread too thin then the messages may never reach a sizeable
number of robots. The Autonomic Overseer would conclude
that the swarm is operating inefficiently and change their
mode of communication to a centralized communication
strategy. It may choose the Message Board strategy, as this
would have the power to send a message to all.

B. Experiments with Physical Hardware

In future we plan to test the cooperation ideas on a small
cluster of mobile robots. The simulation approach is
enabling us to create swarms with more than one thousand
robots; however it would be interesting to compare the
simulation results against real life data. For the research we
will be using 4 Dr Robot X80-H differential drive style
mobile robots. The scenario will mirror the simulations in
that the robots will be sent to explore at random. However,
for practical purposes, the ‘interesting feature’ or item that
they will be searching for will not be as detailed as those
used in the simulations. An object or textual sign may be

used to represent the item or terrain feature, necessitating
the need to use computer vision algorithms for object
detection or OCR in the case of a textual sign.

The system will require some additional features such as
the use of wheel odometry information so that each robot
can accurately localize itself within the environment. This
will allow it to work out where it is and move to another
robot’s position. The robots will start adjacent to each other
in a line; the Message Board will receive movement data
from each robot and store this in a global system map. The
Message Board’s map will enable robots to determine where
they are in relation to the rest of the swarm. A similar idea
was explored in [15], where a central system stored a map
that relied on transmitted robot odometry information. The
robot would update cells of the map with positive integers to
represent a virtual pheromone trail.

For our experiments, each robot will store a local map
and use wheel odometry to work out how far they’ve moved
and if they’ve changed direction. Actual movements such as
‘moved 30cm’ will need to be translated into pixel
movements and coordinates. If the robot moves 30cm, the
simulated version on the local map should also move a set
number of pixels. This simulated co-ordinate can then be
sent to the Message Board when sending or responding to a
help request. The location information within a help request
will not be more detailed than the simulated versions. The
Message Board will filter the help request list based on
proximity; the idle robot will only receive the help requests
from robots within a certain distance. The idle robot will
need to make navigation decisions locally when deciding
how to move to the help request co-ordinates.

Figure 7. Message Board Autonomic Element and Robot Autonomic

Managers running on a PC.

In Figure 7, the system setup is shown, the Message

Board Autonomic Element and robot Autonomic Managers
all run on the same PC. We may choose to have each running
as a separate program and use TCP/IP for interprocess
communication; this separation would more accurately
mimic a real life scenario. The Message Board AE consists
of a Managed Component, which stores all help requests.
The MC would also have a virtual Map that could be used to
check coordinates and determine proximity when creating a
tailored list for an idle robot. Using wheel odometry for
localization is flawed and tends to accumulate errors over

time. If an idle robot reaches a Help Request location and an
odometry error has occurred, it may be necessary to have the
robot search the surrounding area for the object.

V. CONCLUSION
This research project aims to apply autonomic

computing to the area of swarm collaboration. Instead of
replicating the behavior of a natural system, we will create a
system were decisions are informed and not reaction based.
We believe this type of system would be useful to future
space exploration missions where multiple autonomous
rovers are sent instead of one all-important rover.

The goal is to simulate multiple direct communication
strategies and analyze metrics to determine which strategies
perform best in certain situations; a model will then be
created from this data. Future work will focus on developing
a situational-aware Autonomic Overseer Element that can
compare real time data to this model and enable switching
between the strategies.

REFERENCES

[1] IBM, “An Architectural Blueprint for Autonomic Computing,” IBM, 2003.
[2] R. Sterritt, M. Parashar, H. Tianfield, and R. Unland, “A Concise

Introduction to Autonomic Computing,” in Advanced Engineering Informatics,
2005, vol. 19, no. 3, pp. 181–187.

[3] W. F. Truszkowski, M. G. Hinchey, J. L. Rash, and C. A. Rouff, “Autonomous
and Autonomic Systems : A Paradigm for Future Space Exploration Missions,”
IEEE Transactions on Systems, Man and Cybernetics, Part C: Applications and
Reviews, 2006, vol. 36, no. 3, pp. 279–291.

[4] W. Truszkowski, H. Lou Hallock, J. Karlin, J. L. Rash, and M. G. Hinchey,
Autonomous and Autonomic Systems with Applications to NASA Intelligent
Spacecraft Operations and Exploration Systems. London: Springer, 2009.

[5] R. Sterritt, C. Rouff, J. Rash, W. Truszkowski, and M. Hinchey, “Self- *
Properties in NASA Missions,” in 4th International Workshop on
System/Software Architectures (IWSSA’05) in Proc. 2005 International
Conference on Software Engineering Research and Practice (SERP'05), 2005,
pp. 66–72.

[6] W. Truszkowski, M. Hinchey, J. Rash, and C. Rouff, “NASA’s Swarm
Missions: The challenge of Building Autonomous Software,” IEEE IT Pro,
2004, vol. 6, no. 5, pp. 47–52.

[7] J. C. Barca and Y. A. Sekercioglu, “Swarm robotics reviewed,” Robotica, 2012,
vol. 31, no. 3, pp. 1–15.

[8] F. Ducatelle, G. A. Di Caro, C. Pinciroli, F. Mondada, and L. Gambardella,
“Communication assisted navigation in robotic swarms: Self-organization and
cooperation,” 2011 IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2011, pp. 4981–4988.

[9] C. Christodoulopoulos, C. Kyriakopoulos, and A. Kanatas, “A realistic
approach to source localization using a wireless robotic network,” The
Proceedings of First International Conference on Robot Communication and
Coordination, 2007, pp. 1–4.

[10] N. Capodieci and G. Cabri, “Collaboration in Swarm Robotics : a Visual
Communication Approach,” in 2013 International Conference on Collaboration
Technologies and Systems (CTS), 2013, pp. 195–202.

[11] A. Anand, M. Nithya, and T. Sudarshan, “Coordination of mobile robots with
master-slave architecture for a service application,” in 2014 International
Conference on Contemporary Computing and Informatics (IC3I), 2014, pp.
539–543.

[12] C. E. Aguero, V. Matellan, J. M. Canas, and V. M. Gomez, “SWITCH !
Dynamic Roles Exchange Among Cooperative Robots,” in Proceedings of the
2nd International Workshop on Multi-Agent Robotic Systems - MARS 2006
INSTICC, 2006, pp. 99–105.

[13] M. Veloso and P. Stone, “Video: RoboCup Robot Soccer History 1997 - 2011,”
in IEEE International Conference on Intelligent Robots and Systems, 2012, pp.
5452–5453.

[14] “Dr Robot X80-H.” [Online].
Available: http://www.drrobot.com/products_item.asp?itemNumber=X80-H.
[Accessed: 04-January-2016].

[15] I. Susnea, A. Filipescu, V. Minzu, and G. Vasiliu, “Virtual Pheromones and
Neural Networks Based Wheeled Mobile Robot Control,” in 13th WSEAS
International Conference on Systems, 2009, pp. 511–516.

