
Autonomic Self-Adaptive Robot Wheel Alignment 

Martin Doran, Roy Sterritt, George Wilkie 

Faculty of Mathematics and Computing  

University of Ulster  

Jordanstown, N.Ireland 

doran-M18@email.ulster.ac.uk, r.sterritt@ulster.ac.uk, fg.wilkie@ulster.ac.uk 

 

 
Abstract—Organizations like NASA have explored the 

possibilities of an autonomic system along with the biologically 

inspired Swarm and Agents approaches. These Systems are 

unfolding circumstances rather than preconceived scenarios. 

This paper focuses on the aspect of the Autonomic System, 

were, adaptive self-optimization are explored using an 

intelligent machine model layers such as Reaction, Routine and 

Reflection. In the experimentation, a Pioneer P3-DX Robot is 

used to simulate a Planetary Rover. The Pioneer Robot has 

been the subject of hardware faulting – in the case Wheel 

Integrity. Using the Microsoft Robotics Developer Studio 

(MRDS) and Microsoft SQL Server, a framework has been 

developed, that records the Pioneer Robot’s sensor data before 

and after hardware faulting. The Autonomic system elements, 

such as self-adaptive and self-optimizing are used to process 

the data. The Reaction, Routine and Reflection responses are 

determined at the appropriate response rates from the 

evaluation of these and form part of the self-healing, self-

configuring, self-optimizing and self-protecting strategy to 

enable the Robot to continue to function, even with hardware 

issues such as a faulty wheel.               

Keywords—autonomic, self-adaptive, self-optimizing  

I.  INTRODUCTION 

The future of space exploration will most certainly 
involve the deployment of vehicles such as planetary Rovers. 
Although Rovers like Curiosity and Opportunity have been 
successful, they have a limit in mobility and surface 
coverage. NASA in the past had researched the idea of 
Swarm Agents, such as multiple Rover deployments [1]. 
Recently, NASA have begun testing with “Swarmies” [2], 
were multiple Rovers can be deployed to gather resources on 
Moons or on Planets.  Other scientific research has put 
forward the idea of “honeybee search strategy” [3], were 
large quantities of robots can been deployed to gather 
important data in special areas of interest. Fundamentally, 
the design of each individual Rover would be relatively basic 
to keep costs at a minimum. If each Rover is functioning 
under an Autonomic Management System, then the faults 
that occurred would be managed to the extent that the Rover 
could still function in its mission goals. Current NASA 
missions have reported hardware faults. The Curiosity 
Mission reported faults on all six wheels on the Rover; were 
the rubber casing on each wheel had been punctured through 
by sharp rock material [4]. Consequently, Mission Control 
was forced to plan alternate routes to avoid certain types of 
rocky outcrops. This ultimately has an impact on mission 
time and mission objectives.  Could the wheel issue with 

Curiosity been identified earlier if the Rover had an 
Autonomic Self-protecting System [5] onboard? This paper 
investigates the implementation an Autonomic System and 
how it can deal with hardware failures. 

Using a mobile robot to simulate planetary Rovers, we 
exposed the robot to hardware failure such as a wheel fault. 
At first, the robot is tested using two wheels in perfect order. 
The robot is given a task to travel a given distance, from a 
start point and then onto an end point. Each journey is 
recorded in a SQL database, using the robot sensor data. The 
robot is then fitted with one slightly damaged wheel. The 
robot is then given the same task as previous explained, with 
the results recorded in a SQL database. This paper focuses 
on implementing an Autonomic System to monitor and 
analyze the data, plan any necessary changes and execute 
those changes [6]. 

The structure of this paper is as follows. Section II 
documents related work in autonomic detection of sensor 
faults. Section III documents the autonomic system 
architecture. Section IV documents the autonomic 
management system and framework architecture. Section V 
documents the robotic hardware used in the research. Section 
VI documents wheel damage scenarios. Section VII 
documents autonomic failure detection in robotic mobile 
hardware. Section VIII documents the software framework 
and state machine used to create tasks including robot 
motion, laser readings and database recording. Section IX 
documents processing of the data collected from the tasks 
performed by the robot. Section X documents the equation 
used to compensate for the robot wheel alignment error. 
Section XI concludes the paper and outlines future work.          

II. RELATED WORK 

Since the introduction of autonomic computing [6], there 
have been a number of approaches on the subject of 
hardware fault-detection in mobile robots. Loss of sensor 
data is a typical example. The software framework in a 
mobile robot can be setup to ask for sensor information 
regardless of the sensor device that supplies it. If an interface 
program requires an object-detection service, then the 
“distance” value can be acquired from say, a laser range-
finding sensor; however, if the laser sensor would fail, then 
the service can switch to an ultra-sonar sensor to obtain the 
same “distance value” [20].  

The study of the types of failure that occur in mobile 
robots, libraries or classes of autonomic properties could be 
developed that address each type of failure. Services can be 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ulster University's Research Portal

https://core.ac.uk/display/287020815?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


provided that correspond to the type of failure found, such as 
service oriented architecture or a multi-agent system [21].  

Further work can be seen in the use of Distributed 
Integrated Affect Reflection Cognition Architecture 
(DIARC). DIARC is knowledge-based architecture that can 
employ human-robot interactions without any structural 
modifications. DIARC employs MAS (multiple agent 
systems), which allows the distribution of components over 
multiple hosts and thus providing support for the autonomic 
detection of component faults and for subsequent error 
recovery [22]. 

Other fields of work such as those found in Organic 
Computing (OC), have experimented with similar attributes 
found in autonomic computing such as self-adapting and 
self-healing. Experiments using hexapod robots show that 
even with the amputation of one of the legs, the robot can 
still function by re-configuring the neighboring legs to 
compensate for the missing leg. [14]. 

The Related Work contributions all involve the detection 
of hardware failure using autonomic principles. However, 
they make no argument for trying to compensate for the error 
detected by employing specialized algorithms that will make 
use of the affected hardware, even if the sensor or effector 
operational ability is greatly reduced.                  

III. AUTONOMIC SYSTEM 

The autonomic system can be summarised by four 
objectives: self-configuring, self-healing, self-optimizing and 
self-protecting; additionally, with four attributes: self-
awareness, self-situated, self-monitoring and self-adjusting 
[7]. Self-configuring has the ability to automatically make 
adjustments when faced with changing circumstances. Self-
healing is concerned with dealing with unexpected faults. It 
can recover from these faults and where possible, repair the 
faults. Self-optimizing has the knowledge of expected 
performance values. It can use policies to maintain optimum 
performance but also flexible to employ new policies to 
enhance performance. Self-protecting can deal with external 
attacks. It can establish what could potentially be a threat and 
how to deal with those threats.  The autonomic manager 
describes the Monitor Analyse Plan Execute (MAPE) loop. 
This ‘loop’ is connected to a knowledge block [6]. This 
connection indicates that knowledge is used throughout the 
autonomic manager.  
 

               

Figure 1.  IMD Architecture. 

The Intelligent Machine Design (IMD) architecture 
provides the distinct layers (see Figure 1): Reaction, Routine 
and Reflection [8].  

The Reaction Layer is connected to effectors and sensors. 
This is the lowest level were no learning occurs. The Routine 
Layer will handle know situations. Input is received from 
both the Reaction and Reflection layers. The Reflection 
Layer makes decisions based on knowledge collected over a 
period of time. Operations at this level are executed based on 
experiences, current behavior and current environment. The 
lowest intelligence is found in the Reaction Layer, whereas 
important decision making (higher intelligence), is found in 
the Reflection Layer.  

IV. AUTONOMIC ANALYSIS 

In this section, we look at how the combination of the 
MAPE-K Loop [6] and the IMD Reflection [8], can be used 
to design an Autonomic Management System (see Figure 2). 
 

 

Figure 2.  Autonomic Management System. 

 
Figure 2 shows how the Pioneer P3-DX robot is 

controlled using the MRDS interface [15] (detailed in 
Section VIII).   To emulate a robot mission, the P3-DX robot 
is set a number of tasks. The data relating to these tasks is 
recorded into a Database Management System. The tasks are 
closely monitored by the MAPE-k Monitor component; 
monitoring information can then be passed onto the Analyze 
function. The MAPE-k Analyze component can then use the 
data supplied by the Reflection Layer to evaluate if there is 
any anomalous behavior in the P3-DX task data. The MAPE-
k Plan component will then use the data supplied by the 
Reflection Layer, to decide what algorithmic policy is 
required to compensate for the anomaly discovered. The 
MAPE-k Execute component will initiate the policy into the 
program loop - these adjustment values are then passed onto 
the MRDS to instruct the P3-DX robot command functions.  

 
The knowledge contained into the database system, forms 

an integral part of the autonomic management system. The 
Reflection System maintains a model of self-representation. 
Reflection enables inspection and adjustment of a system at 



run-time [19].  The P3-DX robot tasks history is recorded 
into database tables; analyzing this history, allows the 
autonomic management system to make self-adjustments 
based on hardware sensor performance of the robot.    

 
Solutions for traditional fault tolerance systems are 

usually designed and configured at design time. The 
Developer is tasked with identifying in advance the most 
critical components and then, decides what strategies to use 
to overcome possible faults [18]. Autonomic Systems are 
designed to look for subtle changes in behavior or 
inconsistent performance data. The autonomic element has 
its own manager system. The managed system looks after the 
controller. The controller consists of two loops – the local 
loop and the global loop [17]. The global loop will run 
constantly, gathering data from sensors and storing this data 
in the database system. The global loop manages the 
behavior of the whole system.  The local loop is blind to the 
overall system loop. The local loop will focus on analyzing 
data in the database and look for discrepancies. 
Discrepancies can be identified by comparing the data with 
known tolerance values. If the tolerances are above the limits 
that the local loop can maintain, then this can affect the 
performance of the overall system. This change in 
performance will trigger the global loop. The global loop 
will then implement a policy to deal, in this case, with the 
wheel alignment issue.  

V. PIONEER P3-DX MOBILE ROBOT 

The Pioneer P3-DX is a mobile robot with two 
independent drive wheels, plus an additional caster for 
stability (see Figure 3). The internal drive uses Proportional-
Integrated Derivative (PID) system with a wheel encoder 
feedback to adjust a pulse-width-modulation (PWD) at the 
motor drivers to control the power of the motors [9]. The P3-
DX is also fitted with a LMS 200 Laser. The LMS 200 is 
capable of measuring out to 80m over 180° arc. The sensor 
operates by shinning a laser of a rotating mirror. As the 
mirror spins, the laser scans 180°, effectively creating a fan 
of laser light (see Figure 4). Any object that breaks this fan 
reflects laser light back to the sensor. The distance is 
calculated based on how long the laser takes to bounce back 
to the sensor [10].  

 

 
 

Figure 3.  Pioneer P3DX mobile robot fitted with LMS 200 laser. 

   
Figure 4.  (a) The LMS 200 laser has a 0° to 180° field of view. (b) The 

laser creates a fan of laser light that scans from right to left. (c) Objects are 

detected by breaking the laser fan projection. The distance is detected by 

the time it takes for the laser to bounce back to the sensor.  

The Pioneer P3-DX robot is used to simulate a planetary 
rover. The robot has an on-board PC and a WIFI connection. 
The software framework used to control the robot is MRDS. 

VI. WHEEL DAMAGE 

One of the most important aspects of a planetary rover 
mission is its ability of movement on the surface. The rover 
is reliant on optimal wheel performance, in-order to reach 
locations according to the mission goals. Possible wheel 
damage to a rover on a mission is very difficult to anticipate. 
In our own everyday lives, wheel damage can occur in with 
our cars, motorbikes and pedal bikes – hitting objects on the 
road or potholes, causes the most damage.  The possibility of 
damage to a wheel on a rover mission is very high, as we 
have witness with the Curiosity Mission (see Figure 5) [13].  

 

 
 

Figure 5.  Curiosity wheel damage – many cracks like this have been 

found on all six wheels of the rover [13]. 

NASA engineers are looking to provide a software update 
to Curiosity rover; the software could provide the ability to 



match electrical current with wheel drive [14]. This type of 
damage can lead to issues such as wheel alignment. If the 
wheel can’t drive in a straight line as expected, then there 
would need to be a self-adjusting process employed to allow 
the mission to continue. 

VII. AUTONOMIC FAILURE DETECTION 

Physical failures in a planetary rover can affect systems, 
such as effectors, sensors, power and communication [11]. In 
this paper, we investigated the failure in the effector systems 
centering on wheel degradation.  The investigation was 
begun by fitting two wheels in perfect working order, onto 
the Pioneer P3-DX Robot.  The robot is then given a series 
of tasks where it is required to travel from known start-point 
and then move to a known end-point. For tests purposes, the 
route that the robot is traveling along is parallel to the 
laboratory wall. The test consisted of the robot being 
positioned at the start-point exactly parallel to the wall at a 
given distance. The onboard LMS 200 laser is used to 
accurately record the distance from the robot to the wall. The 
robot is then given a command to move a given distance. 
When the robot arrived at the destination, the LMS 200 laser 
is used to record the distance from the robot to the wall. The 
results of the laser data were recorded into an SQL Server 
database. These tests were repeated multiple times to give us 
an accurate evaluation of the robot performance with two 
perfectly operational wheels. Standard Deviation equation is 
applied to the test results to give an indication of the 
accuracy of the robot’s movement from a start-point to an 
end-point.  The Standard Deviation results were then 
evaluated using an algorithm to represent the Autonomic 
Intelligent Machine model Reflection layer. This reflection 
algorithm processed the data to establish if the robot wheel 
alignment was accurate against expected tolerance values. 
This self-monitoring of the robot over a given period of time, 
confirms that the robot is operating as expected. The Pioneer 
Robot is then fitted with a slightly damaged wheel. The robot 
is then evaluated using the same test process. The purpose of 
this action was to process the data within the reflection 
algorithm, and initiate the Autonomic self-monitoring to 
cause the system to identify there was a problem and 
consequently put in motion, policies that could repair the 
issue or at least compensate for the error. The evaluation 
done in the Reflection layer would subsequently initiate a 
policy within the Routine layer, which in turn would cause a 
physical implementation in the Reaction layer.  

VIII.    SOFTWARE FRAMEWORK 

Software Development for this paper is carried using the 
MRDS framework. MRDS is a service-oriented 
programming model that allows the creation of asynchronous 
and state-driven applications [15] and [16]. Code 
development is carried out using C# language. Database 
work was completed using Microsoft SQL Server and User 
defined stored procedures. 

To create robot tasks (explained in Section VII), it 
required implementation of an event driven and state-based 
behavior processing, using a state machine as shown in 
Figure 6. Between each state, transitions are added. These 

transitions are triggered by notifications received from 
partner services [12]. 
 

 
Figure 6.  Shows the state machine used to create the robot tasks, process 

database information and make necessary adjustments if an error is 

detected.  

The System Processing state is executed after the robot 
has completed a task; this self-monitoring attribute can then 
initiate a self-adjusting process if an error is detected.  

IX. DATA EVALUATION 

The graphs in Figure 7 shows the readings taken from the 
robot tasks (see Section VII). Graph (a) shows how the robot 
performs with both wheels fully functional. The robot stays 
within the limits of the expected path. Graph (b) shows how 
a damaged wheel causes the robot to veer off to the right.    

 

 
Figure 7.  Graph (a) shows the path of the robot with both wheels at 

optimal performance. Graph (b) shows the path of the robot with one wheel 

in a damaged state.   



Using Standard Deviation equation (non-grouped data), 
the results from two types of tests (explained in Section VII) 
were calculated. 

𝜎 =  √
∑(𝑥−𝑥̅)2

𝑛
 

The first sets of tests are conducted using the Pioneer 
P3DX robot with two wheels in perfect condition – Test 
Scenario A. The second sets of tests are conducted using one 
wheel with slight damage – Test Scenario B.  Table I shows 
the standard deviation value for Test Scenario A and how 
adding the results of Test Scenario B affect the standard 
deviation value.  

TABLE I.  TEST VALUES FOR WHEEL ALIGNMENT CALCULATIONS   

 

Pioneer P3DX wheel alignment testing - the numbers represent the 

amount in millimeters (mm) that the robot was from its required 

destination point, after each task. 

 

Test Scenario A: for a Robot with two wheels in optimal condition SD 

2 9 -9 4 -5 -7 -22 -7 -6 -5 

8.63 

-8 -13 -13 11 -14 -4 -13 -2 -6 -6 

3 -21 -12 -10 4 -10 9 -11 -4 -21 

-5 10 -8 2 -7 -12 3 -5 -14 10 

6 -2 -7 4 -13 5 8 3 -4 7 

 

Adding another one test result to Scenario A, does not affect the SD 

value significantly 

 

SD 

         -5 8.54 

 

Test Scenario B: for a Robot with one slightly damaged wheel, the 

overall SD changes significantly and thus would be flagged as a 

fault 

 

SD 

        35 49 12.02 

 
Significant changes to the standard deviation (SD) value 

shown in Table I indicated that there was a problem with 
wheel alignment in the Pioneer P3-DX robot.  The state 
machine System Processing discussed in section VIII was 
implemented to identify changes in SD values. Identifying 
the error is achieved by comparing the SD value to the set 
tolerance value. If the SD is within the tolerance value range, 
then no action is needed; if the SD is above the tolerance 
value, then an error task was executed.  This then resulted in 
the robot initiating a self-adjustment, were an algorithm is 
used to determine the degree of the error and calculate the 
values needed to compensate for that error.  

X. WHEEL ALIGNMENT ERROR EVALUATION 

To compensate for the wheel alignment fault, an 
algorithm is required to work out the compensation value 
needed to correct the robot trajectory. The aim of this 
process is to keep the robot functioning even with a damaged 
wheel. As the robot moves, the damaged wheel is constantly 
pulling it away from its expected path. To correct the wheel 
alignment error, the robot needs to adjust its heading at 

calculated intervals during its journey. To achieve this, the 
robot would travel a certain distance, stop, then, turn itself 
back toward its expected path, then, move again. The 
downside of this particular strategy is that it will add 
significant distance and time to the robot mission. However, 
this is justified, in that the robot will arrive at its expected 
destination point rather than being significantly off-course. 

Using the values from Test Scenario B, an average 
distance from which the robot was from its expected 
destination is calculated. Using Right-Angled Triangle 
equation, the angle between the Hypotenuse side and the 
Opposite is calculated, see Figure 8.  

 

 
Figure 8.  The Pioneer P3DX robot with a damaged wheel: this caused to 

the robot to slew to the right. A1 to A2 represents the expected distance the 

robot should be from the wall. B1 to B2 represents the average distance the 
robot was offset from the expected destination point.  

𝛼 = 𝑠𝑖𝑛−1(𝑎

𝑐
) 

The equation (2) is used to calculate the angle of the 
initial error-offset discovered from results in Figure 7 (b). 
This angle error value is then used to establish the angle of 
turn needed for the robot to make its heading adjustment; see 
Figure 9.  

 
    

   
Figure 9.  Represents how the angle of turn is calculated. 

The angle of turn calculation is formulated using the 
values represented in Figure 9. The ‘R’, represents the robot 
position. When the robot reaches the ‘I’ position (interval), 
the robot is stopped. The robot heading angle is then 
adjusted and the robot continues its journey. The ‘AE’ 
represents the angle of the wheel alignment error calculated 
using equation (2). The ‘AE’ angle value is then doubled. 
The reasoning behind this is that two ‘AE’ values are 
required to bring the robot back to the expected path. The 
two ‘AE’ values are then divided by the number of intervals 
the robot is required to stop. The ‘AA’ represents the angle 



of turn needed to allow the robot to re-establish the expected 
journey path marked as ‘P’.  

𝐴𝐴 =  
2𝐴𝐸

𝐼
 

From the values represented in Figure 9, we can derive 
the equation (3). The interval ‘I’ represents the number of 
times the robot with stop and adjust its heading angle. The 
more intervals the robot uses, the more accurate the robot 
will be in terms of keeping to the original journey path.  In 
equation (4), interval distance is represented by ‘ID’ and 
total distance is represented by ‘TD’. The interval distance is 
calculated as follows: 

𝐼𝐷 =  
𝑇𝐷

𝐼
 

Figure 10 shows how the number of intervals used 
decreases the error-offset value. Table II shows a robot with 
wheel damage, driven over a fixed distance. The robot is 
stopped and adjusted according to the number of intervals 
applied. The offset value is the maximum distance the robot 
is from the expected path. 

TABLE II.   COMPARE OFFSET VALUES USING A GIVEN INTERVAL # 

 

Pioneer P3-DX wheel alignment testing. Error offset decreases as the 

number of intervals increases. The maximum offset is measured from 

the expected path value.  

 
Distance of 

Journey 

Number of 

Intervals 

Angle of 

adjustment  

Maximum offset 

error value 
2000 mm 1 12° 44 mm 
2000 mm 2 6° 26 mm 

   
The graphs in Figure 10 show the comparison of the 

robot path when used with different interval values.  
 

 
Figure 10.   Using the compensation algorithum, the robot journey accuracy 

is increased when the number of intervals is also increased. (a) Robot 

journey uses one interval. (b) Robot journey uses two intervals. 

This compensation method reflects the ability of the 
robot to self-adjust itself to arrive at the expected destination 
point even with a damaged wheel. Figure 11 shows how the 
robots journey is divided into intervals. This process is 
repeated until the robot reaches its destination point.  

 

 
Figure 11.  Shows the path of the Pioneer P3-DX robot when it implements 

the compensation algorithm. (a) Wheel damage causes the robot to ‘slew’ 

away from the expected path. (b) When the robot reaches an interval point, 

the robot is stopped and then turned on its axis at the required angle for 

adjustment.. 

The severity of the alignment error will have an effect on 
the ‘actual’ distance and journey time of the robot; as the 
angle of compensation increases, the journey time also 
increases. On a shorter journey, this may not be a factor but 
if the robot needs to travel for long distances, then could 
have an impact on resources like power consumption.      
 

 
Figure 12.  Shows pesudo code for the Robot Wheel Alignment 

compensation. 

Figure 12 shows a representation in pseudo code for the 
Robot wheel alignment data processing and compensation 
functions. The initial SQL data from the robot tasks is 
processed and checked against know tolerance values. If the 
tolerance values are exceeded, then the compensation 
algorithm is employed to re-establish the robot to its 
expected journey path. 

 
 
 

 



TABLE III.  TEST VALUES WITH WHEEL COMENSATION ALGORITHM 

 

Pioneer P3-DX wheel alignment testing - the numbers represent the 

amount in millimeters (mm) that the robot is from its required 

destination point, after each task. 

 

Test Scenario C: for a Robot with damaged wheel and using 

compensation algorithm 
SD 

2 9 -9 4 -5 -7 -22 -7 -6 -5 8.63 

 
Table III shows how the compensation algorithm 

restored the robots wheel alignment measurement (SD), 
within the expected tolerance values.  

XI. CONCLUSION AND FUTURE WORK 

The purpose of this research paper is to identify how the 
autonomic model can be applied to dealing with robot 
hardware issues, such as wheel alignment. If NASA decides 
to deploy swarm planetary rovers in the future, then 
autonomic systems will need to be seriously considered, to 
deal with possible hardware degradation and software system 
failures.  

The Intelligent Machine Design theory proves that 
responses such as Reflection can over time, analyze data and 
predict possible issues at an earlier stage. This can be put to 
the test by carrying out more extensive testing in the future 
and building up a knowledge database. The compensation 
algorithm we applied in these test cases is only one of many 
ways which the robot wheel alignment issues could have 
been solved. In the future, we would like to investigate the 
use of wheel velocity variation for dealing with wheel 
alignment issues; were small increments of power can be 
applied to a damaged wheel. Unfortunately at present, such 
robots like the Pioneer P3-DX do not possess the fine 
granularity in wheel velocity, which is required for such an 
experiment.  

REFERENCES 

[1] R. Luna, A. Oyama, and K. Bekris, “Network-Guilded Multi-Robot 
Path Planning for Resource-Constrained Planetary Rovers,” 
IEEE/RSJ International Conference on Intelligent Robots and 
Systems (IROS’10) on, September 2010, pp. 776-783. 

[2] National Aeronautics and Space Administration. NASA: Meet The 
Swarmies-Robotics Answer To Bugs. [Online]. Available from: 
https://www.nasa.gov/content/meet-the-swarmies-robotics-answer-to-
bugs/2016.02.02 

[3] Á. Kisdi and A. R. L. Tatnall., “Future robotic exploration using 
honeybee search strategy: Example search for caves on Mars,” Acta 
Astronautical , vol 68, issues 11-12, pp. 1790-1799, June-July 2011. 

[4] National Aeronautics and Space Administration. NASA: How Wheel 
Damage Affects Mars Rover Curiosity's Mission. [Online]. Available 
from: http://www.space.com/26472-mars-rover-curiosity-wheel-
damage.html/2016.02.02 

[5] R. Sterritt and M. G. Hinchey, “Engineering ultimate self-protection 
in autonomic agents for space exploration missions, “Engineering of 
Computer-Based Systems,” 2005. ECBS '05. 12th IEEE International 
Conference and Workshops on, April 2005,  pp. 506-511. 

[6] D. M. Chess, A. Segal, I. Whalley, and S. R. White, “An architectural 
blueprint for autonomic computing,” IBM Corporation, 2004.   

[7] R. Sterritt and M. G. Hinchey, “Biologically-inspired concepts for 
self-management of complexity,” Engineering of Complex Computer 

Systems, 2006. ICECCS 2006. 11th IEEE International Conference 
on , August 2016,  pp. 65-70. 

[8] H. Shualib, R. J. Anthony, and  M. Pelc, “Framework for Certifying 
Autonomic Computing Systems,” The Seventh international 
Conference on Autonomic and Autonomous Systems on,  January 
2011, pp. 122-127.   

[9] Adept Mobile Robots. Pioneer 3 Operations Manual, Version 6, 2010. 

[10] J. Bedkowski, M. Kretkiewicz, and P. Maslowski, “3D Laser Range 
Finder based on rotated LMS SICK 200,” unpublished. 

[11] E. Matson and S. Deloach,  “Integrating Robotic Sensor and Effector 
Capabilities with Multi-agent Organizations,” Proceedings of the 
2004 International Conference of Artifical Intelligence (IC-AI-04) on, 
June 2004, pp. 481-488 

[12] J. S. Cepeda, L. Chaimowicz, and R. Soto, “Exploring Microsoft 
Robotics Studio as a Mechanism for Service-Oriented Robotics,”  
(LARS) on, October 2010,  pp. 7-12. 

[13] NASA/JPL-Caltech/MSSS; Sol 962, April 21, 2015. 

[14] National Aeronautics and Space Administration. NASA: Mars Rover 
Curiosity Dealing With Damage. [Online]. Available from: 
http://www.space.com/29844-mars-rover-curiosity-wheel-
damage.html/ 2016/02/04 

[15] Microsoft. Microsoft Robotics Developer Studio. [Online]. Available 
from:  http://www.microsoft.com/robotics/2016/02/04 

[16] K. Johns and T. Taylor, Professional Microsoft Developer Studio, 
Wiley Publishing Inc., 2008. 

[17] M. Parashar and S. Hariri, “Autonomic Computing: An Overview,” 
International Workshop UPP on, September 2004, pp. 257-269. 

[18] R. Almeida, J. Briot, S. Aknine, Z. Guessoum, and O. Marin, 
“Towards Autonomic Fault-Tolerance Multi-Agent Systems,” The 2nd 
Latin American Autonomic Computing Symposium (LAACS’2007), 
Petropolis, Rio De Jeniro, Brazil, September, 2007. 

[19] P. Maes, “Computational Reflection,” The Knowledge Engineering 
Review on, November 1988, pp.1-19. 

[20] N. A. Melchior and W. D. Smart, “Autonomic systems for mobile 
robots,” in Autonomic Computing, 2004. Proceedings. International 
Conference on, May 2004, pp. 280-281. 

[21] C. Rouff, J. Rash, and W. Truszkowski, “Overcoming Robotic 
Failures through Autonomicity,” in Engineering of Autonomic and 
Autonomous Systems, 2007. EASe '07. Fourth IEEE International 
Workshop on, March 2007, pp. 154-162. 

[22] M. Scheutz and J. Kramer, “Reflection and Reasoning Mechanisms 
for Failure Detection and Recovery in a Distributed Robotic 
Architecture for Complex Robots,” in Robotics and Automation, 
2007 IEEE International Conference on, April 2007,  pp. 3699-3704. 


