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With the availability of large amounts of documents and multimedia content to be classified, the cre-

ation of new databases with labeled examples is an expensive task. Efficient supervised classifiers often

require large training databases that are not always immediately available. Active learning approaches

solve this issue by querying an expert to set a label to particular instances. In this paper, we present a

novel active learning strategy for the classification of handwritten digits. The proposed method is based

on a k-nearest neighbor graph obtained with an image deformation model, which takes into account lo-

cal deformations. During the active learning procedure, the user is first asked to label the vertices with

the highest number of neighbors. Thus, the expert sets the label to the examples that are more likely

to propagate their labels to a high number of close neighbors. Then, a label propagation function is per-

formed to automatically label the examples. The procedure is repeated until all the images are labeled.

We evaluate the performance of the method on four databases corresponding to different scripts (Latin,

Bangla, Devnagari, and Oriya). We show that it is possible to label only 332 images in the MNIST training

database to obtain an accuracy of 98.54% on this same database (60000 images). The robustness of the

method is highlighted by the performance of handwritten digit recognition in different scripts.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

The fast increase of new documents and multimedia content

to be classified is a source of new challenges in pattern recogni-

tion and machine learning [13]. Documents and multimedia data

are exponentially growing thanks to the internet and the develop-

ment of portable devices that can acquire images. In addition, cul-

tural heritage collections are being digitized, and made available

through online tools. New automatic methods must be provided to

both automatically index and search through the documents be-

cause not enough manpower is available to provide useful anno-

tations on the large volume of digitized documents [32]. With the

emergence of the Big data paradigm and the creation of new clas-

sification problems, pure supervised techniques may not be able

to cope with the fast increase of classification tasks, which possess

only few labeled examples. Because the requirement of a classifica-

tion task can evolve rapidly over time, it is essential to propose a

fast evaluation of the potential performance. This diagnostic may

infer a different type of approach in a later stage. In multiclass
✩ This paper has been recommended for acceptance by Ajay Kumar.
∗ Tel.: +44 2871675276.
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lassification tasks, several approaches are possible depending on

he type of data. First, the training data is well identified, and a

round truth is available, therefore classical supervised classifica-

ion techniques can be used. In such a passive supervised learning,

he goal of a learner is to infer an accurate predictor from labeled

raining data. The expert is passive as the system uses only exist-

ng labeled training examples. The labeled training data are input-

utput pairs (x, y): the feature set x describing the example, and

ts corresponding label y. Second, image retrieval methods can be

sed when the number of examples is too small, and when there is

large variability across examples [1,16]. Third, the images belong

o a new type of classification problem, and an efficient technique

as to be provided to facilitate data labeling, i.e., the creation of

he ground truth. The creation of a ground truth is in fact an im-

ortant aspect because providing accurate labels can be a challeng-

ng task that requires the full attention of the users. This task can

equire several users to validate the results. In the case of med-

cal images, the ground truth can only be created by an expert.

herefore, the ground truth estimation, as a major component of a

attern recognition system, can be time consuming and costly.

In active learning, each example of the training database is

nitially unlabeled. However, the active learner is allowed to re-

uest the ground truth, the label y, of any particular example x

n the training database [35]. The requests can be made after a
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on-supervised learning technique (e.g. examples are clustered,

nd the centroids are then labeled by an expert), or online (se-

uentially) in order to adapt the classifier to previous label re-

uests. The objective of these methods is to discover the labels of

xamples while minimizing the number of manually labeled exam-

les [43]. This solution is particularly adapted in large data collec-

ions where there exists a strong disparity between the availability

f labeled and unlabeled data. In such a case, a challenging task is

o provide semi-automatic, high accuracy labeling mechanisms. To

ome extent, active learning is an easier task than semi-supervised

earning (SSL), because in SSL the labeled examples are predefined.

he existing labeled examples may be outliers, and/or they may

ot provide good seeds for label propagation. In active learning,

e can distinguish two strategies that require the use of an expert.

irst, the expert is needed because a potential confusion between

wo examples is detected, and this ambiguity should be raised by

n expert. Second, the expert is needed to label the examples that

ave the highest potential to be beneficial in the learning proce-

ure. The latter approach is considered in the proposed method:

he expert sets the best seeds that can reliably propagate their la-

els to other unlabeled examples.

In this paper, we propose a new active learning method that

ombines an efficient distance measure based on Image Distor-

ion Model Distance (IDMD) [20], a greedy SSL approach, and ac-

ive learning. The efficient distance measure allows us to obtain

robust graph that respects the manifold assumption: if two ex-

mples are similar then their corresponding vertices in the graph

re connected. The SSL part is dedicated to the label propagation

o local neighborhoods. Finally, the active learning step guides the

ethod to the most relevant examples to label. To show the rele-

ance of the method, we use four databases of single handwritten

igits. For the Latin script, the performance of single handwritten

haracter recognition is typically sufficiently high when the num-

er of images to train a classifier is high. The supervised learning

ethods include deep learning architecture such as convolutional

eural networks [10], Support Vector Machines (SVM) [12], and

heir combination [22,29]. However, the accuracy of single hand-

ritten character recognition remains below 100% in some scripts

ecause documents are not properly conserved, and are there-

ore noisy once they are digitized. Furthermore, a large variability

cross writers, with several styles and different glyphs for a same

igit or character, can become an obstacle. For all these reasons,

t is essential to propose new methods to maximize the accuracy

hile minimizing the number of labeled training examples. More-

ver, the recognition of some characters can be impossible without

ny contextual information and may only be achieved by a person.

he remainder of the paper is organized as follows: First, we give

n overview of image matching techniques in character recognition

nd active learning methods in Section 2. Then, we describe the

ew method in Section 3. In Section 4, we present the four hand-

ritten databases. The active learning strategy is then evaluated

n Section 5. Finally, the performance of the proposed approach is

iscussed in Section 6.

. Related work

.1. Image matching

Image matching techniques in large databases are usually not

sed due to the high processing time that is involved, e.g. the com-

utation of distances between the test image and the prototypes.

lastic matching techniques can be classified into two categories:

arametric and non-parametric [39]. It is typically seen as an op-

imization problem of two-dimensional warping (2DW). This prob-

em is directly related to point matching, which has to deal with

he existence of outliers and geometric transformations that may
equire high dimensional non-rigid mappings [14]. Deformations

n handwritten characters can be of two types: first, the global

r large deformations such as rotation (with limited angles), scal-

ng, translation; and second, the local deformations that include

hanges of stroke direction, curvature, and length of the lines. The

ocal deformations that are involved by the thickness of the char-

cter depend on the pen/pencil that is used. Due to the different

ypes of deformations that can occur within the same character, it

s difficult to determine generic models of deformations. An effi-

ient distance for image classification that takes into account lo-

al deformations was proposed by Keysers et al. [20]. They deter-

ined that more complex models (e.g. 2-dimensional warping) do

ot necessarily represent better models compared to the simple

mage distortion model. We define the distance Lp between two

mages A and B of size Ns × Ns by:

p =
(

Ns∑
i=1

Ns∑
j=1

|A(i, j) − B(i, j)|p

)1/p

(1)

hen p = 2, it corresponds to the Euclidean distance. The image

istortion model distance (IDMD) takes as input two images A and

of size Ns × Ns that can have w2 multiple channels. In this study,

ach channel corresponds to the graylevel image processed with a

onvolution filter. The distance is then computed through a range

f pixels from Nmin to Nmax. For each pixel (i1, j1) of A, a square

mage patch, centered at the pixel, is compared to a square patch

f same size at the same region in the image B (channel wise, if

here are multiple channels). To cope with local variations, the po-

ition of the square patches in the image B is allowed to be slightly

hifted (within distance w0). Thus, each patch in A is compared to

ultiple patches in B around the same pixel location, and the min-

mum computed distance is taken.

DMD(A,B) =
Nmax∑

i1=Nmin

Nmax∑
j1=Nmin

d1(i1, j1) (2)

here

1(i1, j1) = min
(i2, j2)∈{−w0;w0}2

d2(i1, j1, i2, j2) (3)

2(i1, j1, i2, j2) =
w1∑

i3=−w1

w1∑
j3=−w1

w2∑
i4=1

|v1(i4) − v2(i4)|p (4)

here v1(i4) and v2(i4) are the pixel values at the following coor-

inates in the i4th channel of the image (1 ≤ i4 ≤ w2):

1(i4) = Ai4
(i1 + i3, j1 + j3) (5)

2(i4) = Bi4
(i1 + i2 + i3, j1 + j2 + j3) (6)

For each pixel (i1, j1), a displacement field of size w0 is used

n each direction (it corresponds to the elements of a square win-

ow of size 2w0 + 1), a square window for the consideration of the

eighborhood pixels of size 2w1 + 1, and the sum of w2 values,

hich corresponds to w2 filtered images. It is worth noting that

he min function aims at including a relative invariance to local

eformations. The image has to be placed in a larger image with

border of the background color to include the possible shifts in

he four directions, hence Nmin and Nmax are set to w0 + w1 and

min + Ns, to take into account the size of the filters and the dis-

lacement fields. Finally, the Euclidean distance (L2) between I1

nd I2 is similar to IDMD with the following parameters: w0 = 0,

1 = 0, w2 = 1, p = 2.

.2. Semi-supervised learning and active learning

In semi-supervised learning, several approaches have been pro-

osed [44]. Transductive SVMs optimize margins of both labeled
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W

Algorithm 1 GetLabel.

1: M ∈ N
n # 0 values

2: for i = 1 to n do

3: if (Xi,Yi) ∈ Xu then

4: for j = 2 to s + 1 do

5: M(Ek(i, j)) = M(Ek(i, j)) + 1

6: Msort ← sort(M) # sort descend
7: return arg(Msort (1)) # example to label

Algorithm 2 Semi-supervised learning with active learning.

1: Xu ← (X,Y ) , Xl ← ∅, Xm ← ∅
2: while |Xm| < Lmax and Xu �= ∅ do

3: (x, y) ← GetLabel # Active learning

4: Xl ← Xl + (x, y) , Xu ← Xu − (x, y) , Xm ← Xm + (x, y)

5: repeat

6: for all xi ∈ Xu do

7: a ← Ek(i, 2) # first neighbor

8: b ← Ek(i, 3) # second neighbor

9: if xa ∈ Xl then # ya �= −1

10: yi ← ya # AL1 condition

11: Xl ← Xl + (xi, yi) , Xu ← Xu − (xi, yi)

12: else if xb ∈ Xl then # yb �= −1

13: yi ← yb # AL1 and AL2 condition

14: Xl ← Xl + (xi, yi) , Xu ← Xu − (xi, yi)

15: until convergence

16: return Xl # labeled examples
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and unlabeled examples [18,37]. Some other approaches use the

cluster assumption. In this case, the classifier takes into account

decision boundaries through low-density regions in the input fea-

ture space. Most of the techniques in semi-supervised learning are

graph-based techniques [2,4,8]. They rely on two main assump-

tions. The first one is the cluster assumption. It assumes that ex-

amples associated to the same cluster, or the same group of clus-

ters, will share the same label. The second hypothesis is the man-

ifold assumption, which considers that examples that are close to

each other will have the same label. The label prediction of an ex-

ample x will depend on both the labeled and unlabeled examples

that are very close to x.

Systems based on active learning using graph matching and ag-

glomerative clustering have been developed for mathematical and

online handwritten digits recognition [15,24]. Unsupervised learn-

ing classifiers and their combinations have been efficiently used

for offline character recognition [40,41]. In Vajda et al., a combina-

tion of features (raw pixels, profiles, local binary patterns, Radon

transform and encoder network) were used with k-means, self-

organizing maps, and growing neural gas to increase the reliability

of the labeling decision. The active learning procedure was static,

as there was no retraining of the classifier after labeling a set of

examples, as opposed to dynamic approaches that retrain and up-

date the model after the addition of new examples. Furthermore,

an active learning is applied in conjunction with support vector

machines (SVMs) to recognize underwater zooplankton [26]. SVMs

have been used in a binary classification task where the active

learning strategy labels examples closest to the decision bound-

ary [38]. In [28,33], a probability model is used to label examples

which could maximize the posterior entropy on the unlabeled data

set.

3. System overview

A graph g = (V, E) is defined by the nodes V = {1, . . . , n}, which

represent all the n examples of a training database X = {x1, . . . , xn},
and edges E, which represent the similarities between examples.

The similarities are typically represented by a weight matrix W ∈
R

n×n
+ . A cell W(i, j) corresponds to the similarity between the ex-

ample xi and xj, i.e. the edge (i, j) in E. If xi and xj are close to each

other (they belong to the same neighborhood), then W(i, j) has a

non-zero value. W(i, j) is defined by the IDMD between the im-

ages xi and xj in the training database. For creating the graph, the

following parameters were used for IDMD: w0 = 2, w1 = 1, and

p = 2. We pre-process images with the Sobel operator in two di-

rections (vertical and horizontal, w2 = 2). IDMD has a high com-

putational cost when dealing with large databases in algorithms

such as k-nearest neighbor (k-nn) [11], i.e. when the number of

prototypes is large. To reduce the computational cost to process a

database, a strategy consists in limiting the number of prototypes

by using a less computational expensive distance. First, we obtain

the 500 closest examples with the distance L2, which will be used

as the prototypes that will be used in the next step. Then, the dis-

tances between images are obtained with IDMD, where the proto-

types of IDMD are the 500 best answers obtained with distance L2

at the previous stage. The creation of the graph is equivalent to the

selection of the k-nearest neighbor of each example in the training

database.

For each example, the distances to the 500 neighbors are sorted

by ascending order. We select a subset of k neighbors from the

500 neighbors. Hence, the graph is represented by two matrices

k ∈ R
n×k
+ and Ek ∈ N

n×k. Wk contains the sorted weights of the k

neighbor examples for each example xi. Ek contains for each ex-

ample xi, the associated list of the vertices corresponding to the

closest neighbors. We obtain Wk(i, 1) = 0 and Ek(i, 1) = i, because

each point is its closest neighbor in the graph. This representation
llows us to store the data in O(kn), which is significantly smaller

han a storage in O(n2). We define the associated ground truth Y,

here yi = m if xi belongs to the class m ∈ {1 . . . M}, and yi = −1 if

i is unlabeled (it is a default value); Xl and Xu represent the set of

abeled, and unlabeled examples, respectively.

The function GetLabel (Algorithm 1) is defined to return the

ost relevant example that should be labeled. It corresponds to

he active learning step where it is possible to directly access to

he ground truth of an example. First, the vertices of the graph are

orted based on the number of neighbors that they share, by con-

idering a neighborhood of size s, s ≤ k. The goal of this function is

o find the examples that are close to as many other examples as

ossible that could lead to wide and safe labeled examples through

greedy label propagation approach. If an example corresponds to

noisy image, it is assumed that not many examples will share

his example in their close neighborhoods. By labeling such an ex-

mple, a label propagation procedure has a higher chance to label

xamples with a wrong label. Furthermore, if an example does not

elong to any neighborhood, then it cannot be propagated, and it

as no impact on the label of other examples.

By selecting the labeled example xl with GetLabel, and querying

ts label yl that may lead to a safe label propagation, we consider

wo conditions: AL1 and AL2. For AL1, each unlabeled example that

as as a first neighbor xl will be assigned the label yl. For AL2, each

nlabeled example that has as a first or second neighbor xl will be

ssigned the label yl. The labels are then propagated in a greedy

anner to their neighborhood until convergence (i.e. there are no

ore examples that can be automatically labeled). The procedure

s repeated until a maximum number of manually labeled exam-

les (Xm) is reached (Lmax), or if there are no more examples to

abel in the database. The method is described in pseudo-code in

lgorithm 2. In the result section, we limit the maximum number

f manually labeled examples per class to 100, k = 10, and s = 2. In

ection 5, we assess the performance of the method in two ways.

irst, we determine to what extent the active learning approach al-

ows to correctly label the training database. Second, we evaluate
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Fig. 1. Representative handwritten digits for the different databases (from zero to

nine).

Table 1

Properties of the handwritten digit databases.

Database MNIST Bangla Devnagari Oriya

Training

# samples 60000 19392 18783 4970

# per class 6000 ± 339 360 1878 ± 15 497 ± 3

Size (x) 28 58 ± 16 65 ± 16 73 ± 25

Size (y) 28 54 ± 16 62 ± 19 73 ± 26

Test

# samples 1000 4000 3763 1000

# per class 1000 ± 62 400 376 ± 3 100

Size (x) 28 59 ± 17 66 ± 17 75 ± 25

Size (y) 28 54 ± 18 62 ± 20 74 ± 26
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s

he performance drop involved by the wrongly labeled examples

n the training database on the test database.

. Databases

Four databases of handwritten digits (10 classes) have been

hosen for the performance analysis. The databases contain images

f digits in four scripts: Latin, Bangla, Devnagari, and Oriya. Sam-

les of digits are presented in Fig. 1. All the images were normal-

zed with the same procedure. Because some databases have very

oisy images, images were first binarized with the Otsu method at

heir original size [30], then they were size normalized to fit in a

0 × 20 pixel box while preserving their aspect ratio. The result-

ng images contain 8 bit gray levels due to the bicubic interpola-

ion for resizing the images. All the images were centered in a 28

28 pixel box field by computing the center of mass of the pix-

ls. Finally, the gravity center of the image was translated to the

enter of the 28 × 28 field. Table 1 presents for each database the

umber of classes, the total number of images in the database, and

he number of images per class, for both training and the test.

The first database is MNIST. It contains Latin (Arabic) digits [23],

ith a training and test database of 60000 and 10000 images, re-

pectively. The error rate reaches quasi human performance level

f 0.23% with a combination of 35 convolutional neural networks

10]. With k-nn, the best error rate is 0.52% by using a Pseudo
Table 2

Accuracy (in %) on the four training databases with different

MNIST Bangla

Method AL1 AL2 AL1 AL2

# label 1170 332 1281 344

# label/class 117 ± 12 33 ± 13 128 ± 12 34 ±

0 99.65 99.71 99.95 100.0

1 98.43 97.30 98.82 96.40

2 99.04 99.45 99.02 97.74

3 99.15 99.46 98.82 78.58

4 98.82 97.43 99.74 99.85

5 98.65 98.78 99.33 98.60

6 99.22 99.27 96.89 97.72

7 97.86 96.92 99.64 99.90

8 98.51 98.44 99.59 99.64

9 98.66 98.79 95.12 94.45

all 98.79 98.54 98.69 96.26
D Hidden Markov Models [20], followed by Image Deformation

odel with an error rate of 0.54%, and 0.63% with shape match-

ng using shape contexts [3], without the addition of artificial ex-

mples in the training database. India is a multilingual country,

ith twenty-two official languages and twelve scripts. In Indian

anguage scripts, the concept of upper case and lower-case char-

cters is not present. The databases of Indian digits were created

t the Indian Statistical Institute, Kolkata, India [5,9,31]. The second

atabase contains Bangla digits, which is the fourth most popular

cript in the world, used by more than 200 million people [42].

he third database has Devnagari digits, which is part of the Brah-

ic family of scripts of India, Nepal, Tibet, and South-East Asia

34]. The fourth database contains Oriya (Utkala Lipi) digits [7]. An

ccuracy of 90.50% was obtained by using Hidden Markov Models

7]. A two-stage framework that combines modified quadratic dis-

riminant function (MQDF) [21] and MLPs was used for the recog-

ition of Bangla characters [6]. Other databases of the Bangla char-

cters (50 classes), Mandal et al. use features based on the com-

ination of gradient features and Haar wavelet coefficients at dif-

erent scales with a k-nn classifier to reach an accuracy of 88.95%

27].

. Results

The classifier accuracy for the four training databases is pre-

ented in Table 2. The impact of the method on the accuracy with

he test database is given in Table 3 by using a k-nn classifier with

he same distance that was used to build the graph (i.e. IDMD with

rototypes obtained with distance L2). The table shows to what

xtent the wrongly labeled images in the training database have

n impact on the classification performance in the test. By label-

ng only 0.55% of the training database of MNIST (332 images), it

s possible to automatically label the examples with an accuracy

f 98.54%, i.e. only 332 images can be labeled to obtain a ground

ruth of 60000 images, which is reliable at 98.54%. This estimated

round truth leads to an accuracy of 99.10% on the test database.

t corresponds to a performance drop of 0.22% compared to the

pproach that uses the correct ground truth of the whole training

atabase. As expected, more examples are labeled with the method

L1 than AL2, as AL1 is more restrictive. An unlabeled example can

btain a label only from its direct labeled first neighbor with AL1

hile it can obtain a label if its first or second neighbor is labeled

ith AL2. This increase of manually labeled examples provides a

etter performance (98.79% and 99.23% for training and the test,

espectively). The same pattern of performance is observed for the

hree Indian scripts. It is possible to achieve an accuracy of 96.73,

8.65, and 96.00% with AL2 for Bangla, Devnagari, and Oriya, re-

pectively. In the three Indian databases, the number of required
number of labeled examples on the training database.

Devnagari Oriya

AL1 AL2 AL1 AL2

1954 401 1686 388

15 195 ± 61 40 ± 28 169 ± 40 39 ± 24

99.95 99.95 100.0 100.0

99.95 99.95 100.0 98.39

97.94 89.05 100.0 100.0

99.79 99.73 100.0 99.20

99.95 99.79 100.0 99.60

99.84 99.74 100.0 99.59

99.89 99.52 99.80 99.40

98.98 99.73 100.0 88.76

99.47 99.58 100.0 98.39

98.94 99.47 97.76 96.34

99.46 98.64 99.76 97.97
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Table 3

Accuracy (in %) on the four test databases with k-nearest neighbor and IDMD.

MNIST Bangla Devnagari Oriya

Method all AL1 AL2 all AL1 AL2 all AL1 AL2 all AL1 AL2

Training (in %) 100 1.95 0.55 100 6.61 1.77 100 10.40 2.13 100 33.92 7.81

k = 1 99.27 98.86 98.81 98.55 97.45 95.25 99.12 98.67 98.06 98.00 98.00 96.90

k = 3 99.36 99.24 99.05 98.28 97.68 96.20 99.20 98.94 98.46 97.90 97.90 96.60

k = 5 99.32 99.23 99.10 98.23 97.80 96.73 99.20 99.04 98.65 97.50 97.50 96.70

k = 10 99.19 99.10 99.08 97.23 97.48 96.73 98.99 98.88 98.65 96.60 96.60 96.00

Fig. 2. AL1: First row: Accuracy (in %) in relation to the number of iterations (manually labeled images). Second row: Total number of labeled examples in relation to the

number of iterations. Third row: Number of new labeled examples at each iteration (each time a manually labeled image is added in the database).

t

b

t

t

e

M

a

a

T

w

b

t

t

c

b

l

t

i

t

a

c

m

C

labeled examples is significantly reduced: 1.77, 2.13, and 7.81% for

Bangla, Devnagari, and Oriya, respectively. It is worth noting that

the number of manually labeled examples is about 350 for the

four databases, suggesting that only 35 example-prototypes should

be used per class. The remaining examples can be labeled with a

transductive approach through label propagation. To evaluate the

impact of the active learning procedure with examples selected on

their number of neighbors, we compare the condition AL2 with the

case where a random unlabeled example is selected to be labeled

by the expert. Monte Carlo simulations are used to estimate the

performance of this condition (50 repetitions). We observe a drop

of performance in the accuracy of the labeling procedure on the

training database (97.54 ± 2.23, 96.03 ± 1.03, 96.86 ± 0.97, and

98.22 ± 0.14 for MNIST, Bangla, Devnagari, and Oriya). This drop in

the accuracy is also accompanied by an increase of the number of

examples to label manually (682 ± 58, 668 ± 36, 819 ± 29, and

577 ± 19 for MNIST, Bangla, Devnagari, and Oriya). These results

suggest that the selection of the examples to label during active

learning plays a crucial role.

The classification accuracy with the current number of labeled

images is depicted in the first row of Figs. 2 (AL1) and 3 (AL2).

These figures highlight the robustness of the method with the

addition of new examples. In each database, the accuracy stays

steady with the addition of new manually labeled examples and
heir propagated labels. The total number of examples that are la-

eled is presented in the second row of Figs. 2 and 3 as a func-

ion of the number of manually labeled images. The evolution of

he number of examples that are automatically labeled is not lin-

ar over time (i.e. across iterations) for AL2, contrary to AL1. For

NIST, the method reaches a plateau after 50 manually labeled im-

ges by using AL2. The same phenomenon is observed for Bangla

nd Devnagari where there exists a plateau after 100 iterations.

hese results indicate the presence of clusters with few examples,

hich cannot be reached through label propagation with a graph

ased on small neighborhoods. In the third row of Figs. 2 and 3,

he number of new images that are labeled thanks to the addi-

ion of a new manually labeled example is given for each iteration,

onfirming the previous observations: Most of the propagated la-

els are set during the first iterations, where examples belong to

arge clusters. With Oriya digits, we observe several high peaks af-

er 100 iterations, suggesting the presence of isolated clusters of

mages in the database.

For the computation of the distances between examples to ob-

ain the graph and for the k-nn implementation for the test, a par-

llel implementation has been used for IDMD (high performance

luster), and for the distance L2 (GPUs). The system was imple-

ented with Matlab R2013a, using three GPU cards (NVIDIA Tesla

1060), it takes about 450, 85, 83, and 10 s to obtain the distances
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Fig. 3. AL2: First row: Accuracy (in %) in relation to the number of iterations (manually labeled images). Second row: Total number of labeled examples in relation to the

number of iterations. Third row: Number of new labeled examples at each iteration (each time a manually labeled image is added in the database).
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ith the Euclidean distance and k = 500, for processing the MNIST,

angla, Devnagari, and Oriya training databases. With a parallel

mplementation on a cluster using 50 cores (Intel Xeon X5650

.66 Ghz), it takes about 4200, 750, 1350, and 345 s to obtain the

omplete graph for the MNIST, Bangla, Devnagari, and Oriya train-

ng databases with IDMD. Finally, the processing time for the active

earning part is about 7, 3, 3, and 1 s for the MNIST, Bangla, Dev-

agari, and Oriya, showing the relevance of the method once it has

o dynamically query the user for the best examples to label.

. Discussion

With the continuous development of new problems requiring

attern recognition systems, a fundamental challenge is the opti-

ization of the labeling procedure for creating ground truths. This

tep is required for two reasons: first, to have a training database

or classifiers based on supervised learning; and second, for the

reation of benchmarks. While a system can be created with a

on-supervised technique, the evaluation test will require in any

ase a ground truth to quantify the performance of the method.

ser friendly graphical user interface and semi-automatic proce-

ure should help the creation of ground truths. With a semi-

utomatic approach in a multiclass problem, the expert may only

onfirm the accuracy of the automatic process. In such a case, the

xpert only provides a binary response (confirmation or not of the

utomatic process) [19].

The main goal of the method was to propose an efficient and

omprehensive active learning strategy that can take advantage of

robust distance between single handwritten characters, and label

ropagation in graph-based semi-supervised learning, by includ-

ng an active learning approach. Because the labeling procedure

s semi-automatic, some errors may happen depending upon the
uality of the graph, i.e. if the manifold and cluster assumptions

re always verified, and how the vertices of the graph are con-

ected. A major issue in SSL techniques is the robustness to the

oise, i.e. outliers that are close to the decision boundaries. These

utliers can be used as bridges to propagate labels from a clus-

er of examples belonging to a single class to another cluster cor-

esponding to a different class. Contrary to fixed SSL approaches,

here the labeled examples are determined a priori, the active

earning paradigm selects interactively the best examples to la-

el. Furthermore, the proposed method outperforms recent strate-

ies for semi-automatic labeling through active learning. In [41],

n active learning technique combining clustering techniques and

voting system provided an accuracy of 96.77% on MNIST with

50 labeled examples. With the proposed method, a significant im-

rovement was obtained as it is possible to reach an accuracy of

9.10% with only 332 manually labeled images, which is relatively

lose to state-of-the art methods (e.g. 99.47% with a large convo-

utional neural network with unsupervised pre-training, and no ar-

ificial images in the training database [17]). Finally, the proposed

pproach dynamically selects the number of examples to label in

elation to the difficulty of the task (i.e. the size and connectivity

f the clusters).

With IDMD, only three main parameters have to be chosen:

he size of the possible shifts (w0), the size of the neighborhood

f each pixel (w1), and the number of pre-processed images (w2).

ince IDMD is computationally expensive, the recognition system

ust take advantage of parallel computing and computer clusters.

-nn can be easily transferred into a parallel implementation with

shared-nothing cluster on a number of commodity machines us-

ng MapReduce [25]. IDMD allows the invariance to local deforma-

ion, but it is still sensitive to large transformations, such as di-

atation, and large rotations. While efficient methods of character
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[

recognition exploit some knowledge of the domain by including

deformed images [36], this strategy may be difficult to follow

when the language of the script is unknown from the designer of

the pattern recognition system. If prior information of the script

is available, deformed patterns could be added in the databases

to increase the size of the training database. The parameters of

the deformations must be properly chosen based on some prior

knowledge about the script. For Indian scripts, this parameter is

difficult to determine because the variation across writers is im-

portant. This approach could provide more examples behaving as

bridges across examples belonging to different classes, if the de-

formations are not carefully chosen. Finally, the databases of Indian

digits are very noisy, and may require better denoising techniques.

7. Conclusion

A new active learning method using a graph based on the Im-

age Deformation Model Distance and a greedy semi-supervised

learning has been presented for handwritten character recognition.

We have shown that is it possible to reliably propagate labels with

a greedy procedure by using small neighborhoods. Moreover, the

active learning addition to the semi-supervised part has a signif-

icant impact, as it sets a label to the most useful examples. The

efficiency of the method was demonstrated by reaching state-of-

the art results across four databases of different scripts. The ac-

tive learning procedure should be performed online, hence further

work should include an adaptive graphical user interface that al-

lows the user to rapidly label the examples suggested by the sys-

tem. An appropriate graphical representation of the graph depict-

ing all the examples could provide a faster way to combine active

learning and semi-supervised learning.
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