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1. Introduction 

Despite the anticipated boom stemming from proteomic investigations, the rate at which 
novel protein biomarkers are introduced into clinical practice has remained static over the 
past 20 years. The reality is that approaches to both discover and validate protein 
biomarkers remain inadequate, and consequently, many areas of medicine, including the 
broad field of autoimmune disorders, remain deprived of the tools essential for the optimal 
management of patients. Most importantly, there is a huge backlog of candidate biomarkers 
that are yet to undergo thorough investigation and validation to assess their clinical utility. 
A recent assessment of the situation has estimated that although many tens of thousands of 
publications claim biomarker discoveries, there are roughly only 100 routinely used in 
clinical practice (Poste, 2011). 
This chapter reviews the potential applications of protein biomarkers to manage 
autoimmune diseases with a special focus on the transition from the biomarker discovery 
through to validation phases using proteomic strategies. We emphasize the importance of 
careful review of the discovery data, the critical roles of protein isoform verification, and the 
essential features of targeted and thorough validation. Ultimately, when these factors are 
appropriately considered and implemented, we are optimistic that autoimmune disorders 
can be transformed by omics technologies and personalized practice can become a reality. 

1.1 Biochemical markers and their potential role in autoimmune disease 

Biological markers are widely used in medicine and can provide an objective measure of 
normal and pathogenic processes or pharmacologic responses to a therapeutic intervention. 
By the term ‘biological markers’ (or biomarkers) we mean an objective molecular indicator or 
surrogate of pathological processes which possess diagnostic, prognostic or predictive 
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utility. These are distinct from ‘clinical markers’ which rely on physical variables or 
symptoms such as joint count, pain assessment or radiological findings. Biomarker 
examples include: cardiovascular risk assessment through cholesterol checks; pituitary and 
target gland hormone determinations to assess endocrine function and dysfunction; 
hemoglobin A1c (HbA1c) evaluations to monitor blood glucose levels in diabetic patients; 
liver function tests (LFT) in liver disease; and, prostate-specific antigen (PSA) 
determinations to assess prostate cancer risk. Not surprisingly, there is considerable interest 
in developing additional clinical biomarkers in medicine; however, the path from their 
discovery to routine adoption is painstakingly complex and slow. 

1.2 Why target protein biomarkers 

Although genomic and transcriptomic methods are powerful, they cannot predict 
downstream events. Specifically, they can’t predict what protein forms will be expressed in 
a particular tissue or biofluid, nor can they reliably estimate expressed protein levels. 
Because it is the gene products that contribute directly to physiological or pathological 
change, they alone provide the best clues to function in health and dysfunction in disease. 
Just as importantly, protein modifications including a plethora of post-translational changes 
are not evident upstream. As discussed later, proteins may require cleavage of a specific 
sequence to become biologically active, additional sidegroups may be added at specific 
amino acids including phosphorylation to propagate signal transduction or glycosylation to 
transport the molecule to a specific site. The analysis of hundreds if not thousands of 
proteins – proteomics – is therefore potentially the most illuminating of all multiplexed 
strategies. 
Proteomics, however, is an imperfect science, and although its methods are rapidly 

evolving, it is important to acknowledge that all existing approaches have serious 

limitations. Notably, the available discovery tools offer poor precision, sensitivity, specificity 

and low throughput. An example of a low throughput proteomic platform is classic liquid 

chromatography separation of a single complex biological sample, coupled with 

electrospray ionization to generate of mass spectra. These limitations place severe constrains 

on study design (e.g., small sample numbers) and they can lead investigators to place a 

disproportionate confidence in the data generated in a discovery setting. Regardless of these 

shortcomings, proteomic methods have been widely adopted and have generated many 

potential candidate markers. As we will illustrate, candidates identified using these 

techniques should be considered a set of ideas or leads from which the investigator can 

generate testable hypotheses. The study design and process of testing or validating these 

candidates is especially important if the test is to be applied in a clinical setting. 

This chapter focuses on several key areas of the biomarker development process and uses 
rheumatoid arthritis as a case model of autoimmune disease for discussion. We first discuss 
the issue of clinical need, i.e., how biomarkers are currently used in the practice of 
rheumatology what biomarkers might offer in the future in a clinical setting, then highlight 
some clinical scenarios describing considerations for study design. Because discovery 
methods have been reviewed elsewhere (Gibson & Rooney, 2007; Hu et al., 2006; Tilleman et 
al., 2005) our emphasis here is on describing and evaluating the targeted proteomic methods 
that are essential to candidate validation. It is the authors’ belief that the task of validation 
has not received adequate attention. We are overwhelmed with discovery studies and data 
arising from them; validation approaches are infrequently reviewed and relatively little 
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validation data have been reported. The significance of major barriers to their widespread 
clinical adoption is also briefly discussed. These challenges to new marker development and 
commercialization include factors such as study design, pre-analytical variables, data 
interpretation, bioinformatics, validation, ethics and commerce. While our focus is on 
protein biomarkers and proteomic methods in rheumatology, the principles we discuss are 
generally applicable to other analytes and areas. 

1.3 Biomarkers currently used in the practice of rheumatology 
The biomarkers currently used in the practice of rheumatology can be subdivided into three 
distinct molecular classes: nucleic acid, proteins, and metabolites. Some of these tests and 
their applications are included in Table 1. This is not an exhaustive list and while an 
invaluable armamentarium, it is limited in number, clinical utility and performance. With 
the exception of anti-CCP autoantibody and S100 proteins, the list has remained essentially 
static for the last 5-10 years. Additional potential biomarkers have been reported, but few, if 
any, have been adopted in routine practice. There is, however, no dispute that better tools 
are urgently required for both objective diagnosis and optimal management of rheumatoid 
arthritis.  

1.4 The future: additional markers & rheumatology practice 

Several areas of medicine lack objective, quantitative measures of a disease and its response 
to therapy and the inflammatory forms of arthritis are no exception. Below, we define three 
distinct stages in the clinical progression to chronic inflammatory disease exemplified by 
some autoimmune disorders and outline where and how biomarkers could aid in managing 
the RA patient. 
i. The pre-symptomatic stage: Here asymptomatic individuals, especially those who are 

genetically susceptible to rheumatoid arthritis (RA), need to be screened for early 
indications of disease onset. Biochemical markers could remove uncertainty in 
detecting the disease in its early stages and would allow early and appropriate 
intervention. Such early detection could help clinicians minimize or even halt disease 
progression, reduce morbidity and mortality, and markedly lower the costs of health 
care delivery in rheumatology. 

ii. The early clinical stage: In the early stages of rheumatic diseases patients may be 
symptomatic but there are insufficient clinical or laboratory findings to confirm the 
diagnosis. A few biomarkers exist which are helpful in predicting outcome at a 
population level, such as rheumatoid factor and, more recently, anti-cyclic citrullinated 
peptide antibodies (anti-CCP) for the diagnosis of rheumatoid arthritis (See Table 1). 
Clinicians believe that early diagnosis and treatment are essential for the best outcome. 
In the past, the presence of the biomarker, IgM rheumatoid factor (RF), has helped to 
identify patients likely to have more aggressive disease (Vocovsky et al., 2003). In the 
last decade, anti-CCP antibodies have been shown to predict a more aggressive disease 
course in very early disease (van Venrooij, et al., 2008). However, the relatively low 
sensitivity and specificity of their assay offers relatively low diagnostic sensitivity and 
this means that a significant minority of patients with aggressive disease cannot be 
identified (Kastbom et al., 2004; Lindqvist et al., 2005). Furthermore, neither RF nor anti-
CCP antibodies are of any use in the other inflammatory arthritides of adulthood, such 
as psoriatic arthritis and ankylosing spondylitis, or for the vast majority of children 
with juvenile idiopathic arthritis. 
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Marker Molecular Class Example Application

Creatinine Metabolite 
Creatinine is used together with liver enzyme determinations (AST 
and ATL) as an index of drug toxicity and kidney function (Anders 
et al., 2002).

C-reactive 
protein (CRP) 

Protein 

A plasma protein routinely measured as a non-specific index of acute 
inflammation. CRP levels are typically integrated into clinical 
response scores, such as DAS28, which help to titer drug dosage 
(Pepys & Hiirschfield, 2003). 

S100 proteins Protein 
Phagocyte derived proteins found in a variety of inflammatory 
diseases , with the ability to discriminate between diseases 
(Wittkowski et al., 2008).

Anti-nuclear 
antibody (ANA) 

Protein- Auto-
antibody 

Used along with other tests, ANA helps with the diagnosis of 
arthritides. ANA titers and nuclear stain patterns can vary between 
patients depending on the condition (≈ 95% of systemic lupus 
erythrematosis (SLE)) (Wilk, 2005). Specific subsets of ANA’s can be 
used to distinguish the type of autoimmune disease, e.g., Sjögren’s 
syndrome. ANA positivity increases the risk of eye disease in 
juvenile idiopathic arthritis patients.

Rheumatoid 
Factor (RF) 

Protein- Auto-
antibody 

RF antibodies target the Fc region of IgG and are detected in 60-80% of 
RA patients, though are present in other inflammatory and connective 
tissue diseases (Chen et al. , 1987).The presence of RF early in the 
course of RA is associated with more active disease (Nakamura, 2000). 

Anti-cyclic 
citrullinated 
peptide (CCP) 

Protein- Auto-
antibody 

Anti-CCP antibody positivity predicts the development of RA and 
may occur long before the onset of symptoms (Nielen, 2004). Anti-
CCP is associated with severe erosive disease and can predict disease 
progression in RA patients (Meyer et al., 2003).

Anti-Ds DNA 
antibodies 

Protein-Auto-
antibody 

Anti dsDNA antibodies are highly specific for the diagnosis of SLE 
with a specificity of 95% but with a low sensitivity of <60% 
(Kavanaugh et al., 2002).

HLA-DR4 or 
HLA-DRB 

Nucleic acid- 
Gene 

Human leukocyte antigen genes have been found to be associated 
with RA. This association is particularly strong for HLA-DRB-1 
alleles which share a similar amino acid sequence known as the 
shared epitope (van der Horst-Bruinsma et al., 1999). The presence of 
these alleles both increases the risk of RA and associate with more 
severe disease (Wagner et al., 1997).

PTPN22 
Nucleic acid- 
Gene 

The protein tyrosine phosphatase, non-receptor 22 (PTPN22) allele is 
a major risk factor for several autoimmune diseases. The protein 
product increases the tyrosine dephosphorylation of T-cell receptor 
resulting in decreased signaling via this pathway (Vang et al., 2005). 

TRAF1/C5 
Nucleic acid- 
Gene 

TNF-receptor-associated factor-1 is one of many single nucleotide 
polymorphisms involved in the pathway of tumour necrosis factor 
alpha. The protein encoded by TRAF1 mediates signal transduction 
from the family of TNF receptors (Kurreeman et al., 2007). Increased 
susceptibility to and severity of RA is associated with this SNP, by 
influencing TRAF1/C5 function.

TLR/ TNFR/ 
NF-κB 

Nucleic Acid- 
Transcript 

Pharmacogenomic tests which use cellular transcript measurements 
to predict drug response are yet to be implemented in the clinic. 
Interesting data has emerged on the association between anti-TNF 
antagonist response and genetic variation (Bowes et al., 2009; Potter 
et al., 2010).

Table 1. Biomarkers routinely used in the diagnosis & treatment of arthritides and some 
potential future markers-arthritides. 

www.intechopen.com



 
Validation of Protein Biomarkers to Advance the Management of Autoimmune Disorders 

 

139 

iii. The disease management stage: Early commencement of effective therapy is essential if 
joint damage and other complications are to be avoided. Historically, monitoring 
response to treatment is a composite of clinical findings and laboratory markers such as 
erythrocyte sedimentation rate (ESR), C-reactive protein (CRP) and disease activity 
score (e.g. DAS28) . Treatment is modified according to these parameters. However 
disease response can take many months, indeed years. Thus by the time the patients 
disease is deemed unresponsive substantial joint damage can have occurred. The 
identification of biomarkers that would predict disease response would have an 
enormous impact on outcome. Treatment may also be discontinued due poor 
tolerability. Identifying such patients in advance would improve patient care and 
reduce stress. Biologic drugs, as third line therapy such as anti-TNF have revolutionised 
the treatment of rheumatic diseases and systematic reviews have confirmed their 
efficacy and relative safety (Alonso-Ruiz et al. 2008). However these drugs are 
extremely expensive. Months of treatment can be required before the clinician knows 
whether they are effective. This is both costly and inefficient. The identification of 
biomarkers that would predict the response of individual patients to these expensive 
agents would help patients, clinicians and funding agencies alike. Finally there are 
concerns associated with the use of such targeted therapy i.e. the risk of life threatening 
infections using and more worryingly the long term risk of malignancy (Bongartz et al. 
2006). The ability to identify such patients in advance would protect them from such 
serious adverse reactions. 

2. The proteomics biomarkers development pipeline 

2.1 Overview 

There is no dispute that new biomarkers would advance the diagnosis and management of 

autoimmune disorders. The ongoing challenge, however, is how to discover candidate 

markers and how to validate them, i.e., define their performance characteristics when 

adopted in a routine clinical setting. 

A major impetus for increased interest in biomarkers has been the introduction of the omics 

technologies. In a single study these allow interrogation of hundreds (or thousands) of 

independent variables, such as genes, mRNA, metabolites or proteins and given the volume 

of information generated from such studies, many have anticipated candidate biomarkers 

would flow quickly from each new investigation. The reality, however, is otherwise. 

Comparing the levels of hundreds (or thousands) of data points in several distinct groups, 

especially when the sample numbers are small, gives rise to many apparent differences, only 

some of which are related to biology. Chance alone gives rise to many apparent 

“distinguishing features” - the trick is identifying the biologically relevant differences and 

ignoring the others.  

For example, consider a proteomics experiment in which 200 proteins are measured 

simultaneously in a control and a test sample. At P < 0.05, 10 proteins will appear to be 

different by chance alone and unrelated to the treatment or condition. This consideration is 

not presented to undermine the value or utility of omics research, but rather, to underscore 

the importance of verifying any observed differences in follow-up studies. In more 

conventional scientific studies it is typical to examine a single dependent variable, run 

replicates, and to use standard statistical approaches to analyze the outcomes. 
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Omics studies are very different. Data sets are typically of high dimensionality, but the 
sample size is small. There are typically very few if any replicates and any interesting trends 
are hidden within the combination the variables. Under these circumstances the probability 
of finding associations by random chance is high. Although multivariant statistics can help 
with the analysis of these complex data sets, there is no easy way out. Any single omics 
study is best considered as an observational investigation that aids in generating novel 
hypotheses that can direct their future studies. Contrary to what was hoped, the omics 
methods do not provide a fast-track to biomarkers or shortcut the scientific process. They 
do, however, allow an investigator to operate independent of existing knowledge and to be 
less dependent on insight, instinct or experience. A single omics study can provide data 
from which dozens of testable hypotheses can be formulated or, put another way, it can 
identify dozens of biomarker candidates. Accordingly, the validation of each candidate 
biomarker is analogous to hypothesis testing where the investigator sets out to falsify (or 
disprove) the claim that candidate “x” is a valid biomarker in defined clinical scenario “y”.  
In the sections that follow some of the other important components of the biomarker 
development pipeline are discussed and we highlight the primary concerns that are 
necessary to optimize the success of biomarker development. 

2.2 The clinical objective and study design considerations 

Several types of biomarkers can be developed, but in each instance the process requires a 
different study design and unique sample sets. Biomarker development in autoimmune 
disease must incorporate a cross-section of patients representing the full spectrum of the 
specific disorder, and given its complex and heterogeneous nature, a panel of markers, not a 
single marker, will likely be necessary to reflect all relevant clinical parameters. Depending 
on the groups incorporated into the study and the comparisons made, integrated panels of 
individual biomarkers may be identified that provide valuable screening/diagnostic, 
predictive or prognostic information. 
Screening biomarkers: Biomarkers that can be used to screen and identify disease before the 

onset of any symptoms are the Holy Grail of autoimmune disease; however, their discovery 

and validation presents substantial challenges. While some of the biomarkers evident in 

symptomatic disease may be present early on in asymptomatic individuals, it is more likely 

that these will be low abundance and masked by more abundant, non-specific biomarkers of 

inflammatory and secondary processes related to the disease. Therefore, reliable 

identification of the biochemical events that earmark early stage, asymptomatic disease 

requires access to biobanks with adequate numbers of samples to give statistical power 

collected from affected individuals well before disease onset. (In the case of juvenile RA 

these samples should ideally be collected from birth onwards.) When samples are available 

from the same individual both before and after disease onset, patients can serve as their own 

controls and therefore changes characteristic of the disease can be measured against a 

relatively constant biochemical background. Sample sets for these studies are, however, 

difficult to come by and require substantial long-term logistical and financial investment. 

Consequently, a compromised study design incorporating a relevant control group and 

early stage (symptomatic) subjects is more commonly adopted to meet this objective. 

Diagnostic biomarkers: Typically, a case-control approach is used in this setting, such that a 
cohort of disease-free controls is compared to a similarly-sized cohort of diseased subjects. 
Comparisons of this type require careful design and implementation because observed 
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differences may be non-specific and associated with the consequences of end-stage disease, 
rather than related to RA itself. Although widely used, for this reason alone the case-control 
study design is frequently problematic. Case and control samples need to be age- and 
lifestyle-matched, detailed clinical histories must be available on both cohorts, and strict 
inclusion/exclusion criteria are required. The value of any markers identified by this 
approach, and especially those that are not specific to autoimmune disorders alone, can only 
be assessed through large-scale hypothesis-driven studies performed in a defined clinical 
setting. 
Prognostic or predictive biomarkers: For a prognostic or predictive biomarker study, suitable 
samples must be available both before and after the measured outcome from each subject. 
Often these studies use samples collected from completed studies that addressed a different 
clinical question, but are then used to identify and track a molecular signature (biomarker 
profile) that may have predictive/prognostic value. (i.e., They employ retrospective 
samples.) However, in all instances, prospective (purpose-driven) sample collection is 
preferred. Although logistically difficult, this approach affords greater control over pre-
analytical variables including storage time, storage conditions and use of additives. With 
foresight and planning, a randomized controlled trial with longitudinal sample collection 
can incorporate multiple nested outcome studies relating, for example, to therapeutic 
response, disease progression or disease recurrence. 

2.3 Samples and sampling considerations 

It is important to state the obvious: a biomarker study can only be as good as the clinical 
samples and their associated records. If there are errors with annotation, if patient details 
are inaccurate, or if the samples themselves have not been collected and stored properly, the 
exercise of biomarker development may be futile (Poste, 2011). Although there are limited 
numbers of biobanks available at this time, thankfully, more and more investigators, 
research centers and commercial entities are committing to establishing and maintaining 
high-quality sample repositories linked to accurate clinical records. 
With respect to samples, factors such as the timing from sample collection to freezer, the 

complexity and reproducibility of any sample handling steps, length of storage time, storage 

temperature and freeze-thaw cycles, may affect the stability of some analytes. For example, 

samples sourced from different cohorts at different locations may ‘carry forward’ pre-

analytical background signals with discriminating features unrelated to the biology of the 

disease (Addona et al., 2009; Davis et al., 2010; Ransohoff, 2010). Ideally, samples should be 

processed immediately, then aliquoted into airtight tubes and frozen in liquid nitrogen or -

70°C freezers. Similarly, multiple freeze-thaw cycles can affect the stability of potential 

biomarkers (Flower et al., 2000; Rai et al., 2005). Protease inhibition may help preserve 

sample integrity, but this approach is not without its complications. For example, 

irreversibly-binding to sample components can have undesirable downstream 

consequences.  

Fluids or tissues proximal to the sites of pathology can act as biomarker sinks. As a result, 
these should also be considered, when available, alongside plasma or serum as a means of 
focusing the search on pathologically-relevant candidates. For example, in the case of 
arthritis, synovial fluid, cartilage and synovium are potential sources for biomarker 
discovery. Here protein variants unique to the site and pathology can be measured before 
they escape into plasma (Gibson et al., 2009).  
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Studies indicate that plasma is likely a better substrate for proteome analysis than serum 
due to the obfuscation of results associated with the high proportion (>40%) of clot-related 
proteins and peptides in serum (Haab et al., 2005; Rai et al., 2005; Tammen, 2005). Less 
invasive samples also amenable to protein biomarker discovery include urine, saliva and 
tear fluid. Although putative biomarkers can come from discovery work, candidates can 
also come from literature searches and genomic or transcriptomic mining. All candidates, 
however, must undergo subsequent verification and validation (Pepe et al., 2008). 

2.4 Discovery strategies 

Discovery strategies allow many analytes to be measured simultaneously (i.e., multiplexed 
analysis). The objective is to identify qualitative and/or quantitative differences across 
distinct clinical phenotypes that are reproducible and can then be adopted in a clinical 
setting. As discussed previously, however, what is observed in a discovery setting could be 
an artifact of statistical chance or experimental bias, and any findings must be rigorously 
validated. Discovery is typically costly, slow (low-throughput) and labor-intensive. Further, 
because the methods are not optimized for any single analyte, their performance 
characteristics are compromised (i.e., limited sensitivity, selectivity and precision). The 
methods are therefore only suitable to survey – they are not suited to efficient, precise and 
accurate quantification. When proteins are the targets of the discovery process then there are 
two orthogonal strategies that are adopted: peptide-centric and protein-centric. 
Peptide-centric (bottom-up or shotgun) strategies: This approach begins with proteolytic 
digestion of proteins to peptides and the ‘digest’ is then subjected to fractionation (HPLC) 
and tandem mass spectrometry (Duncan et al., 2010; Aebersold & Mann, 2003; Chait, 2006). 
The tandem mass spectra are then converted to peptide sequences and their precursor 
proteins are “assumed” by computational approaches. Refinements of this approach 
sometimes incorporate fractionation prior to digestion and/or multiple stages of 
fractionation post digestion (Washburn et al., 2001; Wolters et al. 2001). The principal 
assumption of a bottom-up strategy is that the identity of intact proteins can be ascertained 
from their constituent peptide fragments. As discussed elsewhere, this assumption is 
frequently invalid (Duncan et al., 2010). 
Protein-centric (top-down) strategies: With protein-centric approaches intact proteins are first 
separated, typically by 2D gel electrophoresis, then the proteins are isolated and identified 
by mass spectrometry. Typically identification involves enzymatic cleavage of each 
individual protein to peptides and then either: (a) the masses of the peptide products of each 
pure protein are determined (via single stage mass spectrometry); or (b) the tandem mass 
spectrum (fragmentation pattern) of one (or more) of the peptides is determined (via tandem 
mass spectrometry). One or both these data sets is/are then used to interrogate a database 
and identify the protein. Relative protein amounts can be determined from the gel by 
staining. Because a top-down approach retains the protein integrity, modifications and 
sequence variations can be investigated. 
As we will illustrate, the discovery findings should be considered a set of leads that require 
meticulous validation, especially with respect to the utility of the biomarker(s) in a routine 
clinical setting. 

2.5 Biostatistical considerations 

Because proteomic studies of clinical samples can generate cumbersome data sets, 
bioinformaticians are frequently involved in study design (e.g., patient selection and study 
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size calculation) and the hunt for significant and reproducible patterns in the data. Their 
objective is to find reproducible differences which correlate with a defined clinical outcome 
and that are independent of the influence of experimental bias, over-fitting and statistical 
chance. 
The incorporation of a randomization strategy in sample analysis reduces bias by 
accounting for the day-to-day variations in the analytical technique. Similarly, it is prudent 
to calibrate and record the performance characteristics of the instruments used in the 
analyses. Calibration in proteomic analyses entails, for example in mass spectrometry, 
initialising the mass accuracy to a standard mixture of purified proteins or peptides of 
known mass. Routine calibration of sensitive instruments subject to ‘drift’ in measurement 
over a period of time should become part of good laboratory practice. Further, in the 
discovery phase, the objective is to have sufficient sample numbers to provide confidence 
that the list of protein candidates is worthy of follow-up during the validation phase. 
Typically in this phase of biomarker development, the sample size is small due to the cost 
and time of analysis, and sometimes because of the difficulty associated with obtaining 
samples. However, the number of proteins (independent variables) measured in each 
sample is typically very large. This ratio of samples to variable size is contrary to the 
traditional application of multivariate statistics and leads to some unique considerations 
that have been discussed by others (Dowsey et al., 2009; Karp & Lilley, 2007). Conversely in 
the validation phase this relationship is inverted so that patient cohorts are much larger 
(typically 100’s -1000’s) and the number of biomarker candidates carried over from 
discovery are reduced depending on the strength of their relationship to the clinical 
outcome or measure being assessed. The costs incurred by the validation phase therefore sit 
in a multi-million dollar range far exceeding the costs of discovery. The financial 
implications alone may account for the relative dearth of publications on this phase as the 
main players, large pharmaceutical or diagnostic corporations, having invested large 
amounts of time and money likely strive to protect the resultant intellectual property prior 
to further clinical testing and pre-market approval.  
Bias, or any discrimination occurring due to a non-biological signal, can potentially 

confound discovery. For example, spurious results may arise because of differences in how 

patient samples are collected, e.g., type of blood collection tube, time taken to freeze sample, 

or the order in which the samples are analyzed. Over-fitting can occur when regression 

analysis tools are used to ‘fit’ (too) many variables to a limited set of outcomes. The 

discriminating ‘pattern’ or ‘signature’ then becomes an artifact of the patient cohorts. To 

resolve issues of bias, statistical analyses must consider the biology of the system being 

analyzed and take into account the assumptions and limitations of the methods (Ransohoff, 

2009). Statistical tests capable of gauging the level of false positives across multiple 

comparisons include the student’s unpaired t-test (for two group comparisons), ANOVA 

(for three or more group comparisons) and linear regression (for quantitative or correlative 

studies) (Dowsey et al., 2009). Alternatively, if the data are not normally distributed, non-

parametric Mann Whitney and Kruskal-Wallis tests should be substituted (Karp & Lilley, 

2007). These methods can be used to analyze the features one-at-a-time and then to compile 

a ranked list of them based on a combination of p values and effect size. As noted earlier, a 

longitudinal design can minimize the potential for bias relative to a typical case-control 

study. Nevertheless, false biomarker leads are common and therefore rigorous validation 

essential. 
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The false discovery rate (FDR) can also be calculated (Benjamini et al., 2003; Storey, 2003; 
Strimmer, 2008). By setting the FDR level, it is possible to diminish the risk of a false positive 
identification for a differentially-expressed protein, i.e., at P ≤ 0.05, we expect only 5% false 
positives. However, by doing so, the process of discovery may be compromised by overly 
stringent criteria. Although proteins displaying the most dramatic changes may appear to be 
useful biomarkers, it is important to attempt to rationalize their changes to the pathology. 
For example, acute phase proteins are frequently identified in plasma or serum-based 
studies as ‘specific’ biomarkers of a wide range of chronic disorders, including arthritis and 
cancer but clearly they are not specific to any one disease (Addona et al., 2009). 
Cross-validation procedures can be used to reduce false positives. In this instance one data 
set is used to build the model (called training) and a second data set generated from an 
independent patient cohort is used to assess the predictive accuracy of the model (called 
testing). Another commonly-used validation strategy is known as K-fold cross-validation 
where the analysis is repeated over many random splits of the data. For each analysis, a 
subset of the data is used to build K number of predictive models, with the remaining subset 
available for a test of predictive accuracy. Although useful initially after discovery, 
validation based on splitting a single data set is of limited use because confounding factors 
can introduce systematic biases into both training and test splits. 
Given the issues noted above, it advisable to validate intial ‘discoveries’ on independent 

sample sets, perhaps incorporating analysis by orthogonal methods which are more 

amenable to the requirements of clinical throughput and precision (Dupuy & Simon, 2007). 

Re-analysis or meta-analysis using raw data coming from other research groups is another 

possibility, although data standards, such as the ‘minimum information about a proteomics 

experiment’ (MIAPE) (Taylor et al., 2007), often do not extend into the initial design of 

clinical studies. Consequently, detailed clinical data may not be captured and reported 

consistently for clinical proteomics experiments, limiting the ability of investigators to 

independently verify, combine or correlate data from multiple experiments. 

For thorough validation, the number of patient samples required should be determined 

through the use of statistical tools that take into account the imprecision of the analytical 

method, inter-patient variability and the acceptable threshold of difference that is deemed 

significant for a given biomarker application (Ye et al., 2009). Patient numbers (biological 

replicates) and other statistical considerations of power have also been discussed in detail 

elsewhere (Cairns et al., 2009). 

2.6 Feature selection and classifier assessment  

Several multivariate analysis tools are available for the analysis of large multidimensional 
data sets and some of these have been arranged into commercial software packages. Visual 
tools, including principle component analysis, hierarchical cluster analysis and heat maps 
which display variance, relatedness and patterns in data (respectively), are also available 
and are useful preliminary aids in data analysis. These analyses stive to represent variance 
in a graphical fashion and give for example an overall view protein expression prevalence 
within outcome groups in the case of heat maps or ‘relatedness’ of expression levels between 

different proteins with hierarchical trees (Marengo et al. 2006; Marengo et al. 2008). Emphasis 
however, should be placed on using supervised or semi-supervised methods such as 
distribution free learning (kernel- based or Bayesian analysis) or support vector machine 
(SVM) which allow for advanced categorization and classification of multidimensional 
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proteomic data with respect to clinical data. This process known as ‘feature selection’ and 
leads ultimately to the creation of a ‘classifier’ or biomarker driven algorithm specific to the 
disease and outcome being measured (Liu et al., 2009; Zhu et al., 2009). Since most protein 
expression profiles will likely not be correlated to a specific outcome, supervised methods 
screen out uninformative proteins and select protein combinations to develop a ‘classifier’. 
A recent application of the SVM principle has been used to guide feature selection of 
exhaled peptides as potential biomarkers of asthma (Bloemen et al., 2011).  
Depending on whether proteome studies are focused on biomarkers for (i) diagnosis (class 
discovery), (ii) prognosis (outcome-related) or (iii) prediction (supervised prediction), 
various rationales should be employed to generate and assess the reliability a classifier. 
Class discovery methods are best suited for grouping proteins into subsets that elucidate 
pathways with similar expression profiles across patient subgroups. In outcome-related 
studies, the goal is to identify which proteins have expression levels that correlate with 
outcomes grouped into discrete classes: for example, in arthritis patients with a good versus 
a bad prognosis. When prediction of patient outcome is the aim, supervised prediction 
methods that use a selected proteome profile are used to generate an algorithm based on 
individual profiles. In supervised class prediction studies, a totally independent cohort 
should be used for cross-validation purposes when rigorous testing of a predictive model is 
desired (Dupuy & Simon, 2007). 
The statistical significance of a selected proteome ‘classifier’ gives an incomplete estimate of 
its predictive ability and potential clinical utility. The number of true and false positives or 
negatives should be presented allowing the calculation of sensitivity and specificity. This 
reveals clinically-relevant information on how the classifier performs in each outcome 
category. List of statistical tools and recommendations for their application have been 
reported (Dupuy & Simon, 2007; Karp & Lilley, 2007; Marengo et al. 2006). Depending on 
the clinical question there may however be multiple outcome measures that are not 
amenable to a simple binary classification system. Statistical evidence of prevalence and 
analytical limits of detection of a specific group of isoforms can then direct the study 
towards validation of candidate biomarkers in a much larger group of multi-center patient 
populations. 

3. The biomarker development process 

Three distinct phases can be delineated within a typical development pipeline: discovery, 
verification and validation. These can be further subdivided so there is a reduced number of 
candidates at each stage, each with an increased probability of utility 51. In the subsequent 
sections we aim to clearly segregate these phases in the biomarker ‘pipeline’ and further 
expand on the vastly different requirements of each (Figure 1). This process is prefaced by a 
brief overview of pre-analytical factors which can introduce unwanted bias or variation. 

3.1 The discovery phase 

In the discovery phase, proteomic platforms are unsupervised and are used to highlight 

qualitative and/or quantitative differences in multiple proteins across distinct clinical 

phenotypes. The process of discovery is focused on assessing many candidates, while 

minimizing the probability of false positives and negatives.  

Discovery by definition requires an analytical approach which does not preempt the identity 
of the biomarker candidates. Generally speaking as most discovery methods prioritise the 
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measurement of as many proteins as possible they have inherently low throughput, are 
labor intensive and offer a low dynamic range. These characteristics preclude their use in 
later phases of the biomarker pipeline. It is also important to realize that as yet there is no 
single method available for looking at the complete complexity of the proteome within a 
given clinical sample. Because we are working with a relatively blunt set of tools in 
discovery we need to transition to more precise methods for validation.  
A two-step approach to the discovery phase, though widely used, is not well defined in the 
literature. In the initial pilot exploration of a low number of individuals the aim is to gain a 
grasp of the variability of whole proteome being measured across the cohort, selecting a 
suitable sample type, optimizing the separation and quantification platform and ultimately 
calculating appropriate patient numbers to power a second (discovery) round with greater 
statistical confidence.  
 

 

Fig. 1. Biomarker pipeline 

Table describes the aim, the likely analytical platform and associated characteristics of each 

phase in an ideal biomarker discovery pipeline through verification to validation and final 

pre-market approval. The schema represents the increase in patient sample and decrease in 

candidate protein numbers as a biomarker study moves from discovery (two-step) through 

to validation phases; 2DE- 2-dimensional gel electrophoresis, DIGE- difference in-gel 

electrophoresis, LC-MS- liquid chromatography associated with mass spectrometry, ELISA-

enzyme linked immuno-adsorbant assay, MRM- multiple reaction monitoring mass 

spectrometry, IVDMIA-in vitro diagnostic multivariate index assay. 

3.2 Verification of protein modifications 

Protein modifications are common but are frequently overlooked, especially during the 
discovery phase. Amongst the most significant modifications are covalent alternations to 
amino acids (e.g., phosphorylation, nitration or redox changes) and covalent addition of 
large groups (e.g., glycosylation). These modifications can have dramatic effects on protein 
function and may play a significant role in a range of arthritides and autoimmune disorders. 
Because most biomarker candidate identification strategies rely on peptide surrogate based 
mass spectrometry, there is added potential to characterize low abundance PTM variants. 
MALDI-TOF is an example mode of mass spectrometry can scrutinize multiple variants of a 
given protein in a concurrent, swift and relatively sensitive fashion. Several criteria 
determine accurate structural assignment and the quantification of specific modifications via 
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a peptide-centric approach (Duncan et al., 2010), including spectra search criteria, sequence 
coverage and database completeness.  
Accordingly, changing levels of a modified protein may represent a better biomarker than 
changes in the total expression levels of a given protein. For example, alterations in the 
levels of naturally-occurring glycosylation motifs can serve as a marker of inflammation, 
lymphocyte tolerance and senescence in arthritis (Garcia et al., 2005), viz. increased 
branching of sugar moieties on alpha-1 acid glycoprotein can act as biomarkers of 
inflammation, whereas decreased branching of T-cell receptor affects the development of 
Th1/Th2 cells increasing susceptibility to autoimmunity (Havenaar et al., 1998; Morgan et 
al., 2004). 
 

 

Fig. 2. Protein isoform verification 

A depiction of possible qualitative and quantitative changes in protein isoforms between 

health and a disease state. The illustration of an isoform of a given protein associated with a 

specific adverse outcome demonstrates that it can only be detected by high ‘resolution’ 

proteomic strategies which can detect variance in post translational modifications. 

Conventional genomic and antibody based methods will only pick up on a change in 

expression of recognized transcripts or epitopes, giving a high likely hood of missing the 

significance of the isoform prevalent in a particular disease outcome. 
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Recent evidence suggests that oxidative modifications to the proteins S100A8 and S100A9 

shifts function from macrophage and neutrophil activation in inflammatory arthritis 

towards a protective role (Lim et al., 2009). In this case, the modification appears to serve as 

a regulatory switch. Citrulination of arginine side chains has the potential to alter structure, 

antigenicity and protein function (Wegner et al., 2010). In fact, synthetic peptides modified 

to mimic possible neo-antigens which trigger an autoimmune response have been used to 

identify novel diagnostic/prognostic autoantibodies (McLaren et al., 2005; Papini et al., 

2009). 

Before disease becomes apparent, it is likely that a particular disease pathology ‘specific’ 

protein isoform combination has been expressed for some time, impacting normal 

physiological pathways. These disease ‘specific’ proteins may also be expressed in a benign 

or developing state of the disease devoid of clinical symptoms and may contain a sub pool 

of surrogate markers of chronic inflammation. An example from the world of autoimmune 

disease is presented by a study of systemic lupus erythematosus patients in whom 

autoantibodies were detected prior to clinical symptoms (Eriksson et al., 2011). 

Susceptibility to develop several other auoimmune diseases including diabetes and 

rheumatoid arthritis can be predicted by long periods of pre-clinical autoantibody 

expression (Bastra et al., 2001; Rantapaa-Dahlquist et al, 2003). Another recent study 

indicates that galactosylation of IgG precedes disease onset, correlates with disease activity, 

and is prevalent in autoantibodies in rheumatoid arthritis patients (Ercan et al., 2010).  

Evidently these preclinical biomarker ‘screening’ studies are unique in that they rely heavily 

on concerted biobanking of samples in a prospective fashion, generally have focused on 

more easily retrieved antibodies and may incur long ‘wait times’ until a specific disorder 

may occur. They do however offer a fascinating glimpse of what could be occurring at the 

protein level prior to disease onset, which arguably could offer a window of opportunity to 

diagnose earlier, manage the pathology before it becomes clinically symptomatic and 

possibly prevent aberrant processes all together. Alterations in protein isoforms therefore 

may also comprise part of the milieu of pathological changes and thereby serve as 

biomarkers. Studies aimed at full length characterization of proteins indicate that 

preliminary discovery stages may therefore not reflect the full extent of protein variants due 

to the low cohort sizes (and low throughput techniques) typical of this stage. For example, a 

study of diabetes patients revealed that, within a cohort of 96 individuals, an average of 3 

variants of each protein were observed; a further 8 variants were observed across 1000 

individuals (Borges et al., 2010). This highlights the importance of accounting for protein 

micro-heterogeneity across patient populations and correlation of prevalence with specific 

disease outcome sub-groups (Figure 2). Statistical evidence of prevalence and analytical 

limits of detection of a specific group of isoforms should then direct the study towards 

validation of candidates in a much larger group of multi-center patient populations. 

4. Emerging tools for targeted biomarker validation 

The biggest challenge in proteomics remains independent validation of changes ‘discovered’ 
in observational investigations. Traditionally, validation has been undertaken by antibody-
based approaches, including Western blotting, ELISA and immunohistochemistry (IHC). 
However, despite major efforts to generate proteome-scale panels of suitable antibodies 
(most notably the impressive Human Protein Atlas initiative [http:// www. proteinatlas. 
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org/ index.php]), this remains a slow process. It requires antibody generation and 
characterization to establish specificity and utility in different assay formats. 

4.1 Multiple reaction monitoring 

Antibody-independent strategies are highly desirable. The most popular of these is based on 
peptide-centric, multiple reaction monitoring (MRM). MRM is a technology that has unique 
potential for reliable quantification of analytes of low abundance in complex mixtures. In an 
MRM assay, a predefined precursor ion and one of its fragments are selected by the two mass 
filters of a triple quadrupole instrument and monitored over time for precise quantification. A 
series of transitions (precursor/fragment ion pairs) in combination with the retention time of 
the targeted peptide can constitute a definitive assay (Lange et al., 2008). The combination of 
MRM, chemistry and software to aid with the selection of suitable proteotypic peptides, has 
provided the opportunity to rapidly develop quantitative multiplexed assays of protein 
expression and post-translational modification that are both highly specific and sensitive 
(Scheiss et al., 2009). In recent years, significant advances have been made in the measurement 
of protein expression using MRM on triple quadrupole (QQQ) mass spectrometers (Pan et al., 
2009). In this system, one or more peptide ions of unique and known mass are preselected in 
the first quadrupole (Q1), induced to fragment in the second quadrupole (Q2), and some of the 
resulting ‘product ions’ (or fragments) are selected for transmission to the detector in the third 
quadrupole (Q3) (Figure 3A). MRM supports the simultaneous measurement of multiple 
proteotypic peptides and synthetic mass variants of them (usually spiked into samples in 
known amounts). The strategy enables the absolute quantification of multiple proteins 
(Keshishan et al., 2007; Kuzyk et al., 2009). When MRM is combined with immunoaffinity 
purification and internal peptide standards, for example SISCAPA, detection is in the sub-
femtomolar range (Whiteaker et al., 2010).  
In a relatively early demonstration of peptide MRM, assays were developed to 
simultaneously quantify the expression of sixteen cytochrome P450 enzymes - proteins 
important in determining susceptibility to adverse drug reactions (Jenkins et al., 2006). 
Previously, a method was described for the MRM assay of C-reactive protein (CRP) as a 
means of differentiating erosive from non-erosive RA patients (Kuhn et al., 2004). The same 
research team then applied the same MRM technique to measure elevated levels in synovial 
fluid of six additional members of the S100 calcium-binding proteins associated with an 
erosive subtype of RA (Liao et al., 2004). 

4.2 Nucleic acid programmable protein arrays 

The production of antibodies against self-antigens (autoantibodies) is a characteristic feature 

of many autoimmune diseases. At a clinical level, tests for specific autoantibodies, such as 

ANA positivity, are routinely employed to aid the diagnosis and track the progress of these 

diseases. Traditionally, autoantibodies have been identified with a one-antigen-at-a-time, 

hypothesis-driven approach using methods such as immunofluorescence and ELISA. 

Microarrays provide a particularly effective platform for the systematic study of thousands 
of proteins in parallel because they are sensitive and require low sample volumes (MacBeath 
& Schreiber, 2000; Zhu et al., 2001). Protein microarrays involve the display of thousands of 
different proteins with high spatial density on a microscopic surface. Protein microarrays 
have been applied to autoimmune biomarker studies focused on pre-symptomatic screening 
and diagnosis, clinical outcome prognosis and therapeutic response prediction (Hueber et 
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al., 2005; Quitana et al., 2004) With particular relevance to the remit of this chapter, 
conventional printed arrays have been used to study rheumatoid arthritis, systemic lupus 
erythematosus, multiple sclerosis, hepatitis and encephalomyelitis (Fattal et al., 2010; 
Hueber et al. 2009; Li et al., 2005; Somers et al., 2009; Song et al., 2010).  
A In protein multiple reaction monitoring (MRM), one or more peptides of unique and 
known mass (proteotypic peptides) are preselected in the first quadrupole (Q1), induced to 
fragment in Q2 by collisional excitation with a neutral gas in a pressurized cell and some of 
the resulting ‘product ions’ (fragments) are selected for transition to the detector in the third 
quadrupole (Q3). B1 Nucleic acid programmable protein array (NAPPA) spotted with genes 
of interest; All proteins are tagged at the c-terminus to ensure only full length translated 
proteins can be captured in situ by co-spotted anti-tag antibodies. NAPPA has consistent 
protein amounts displayed at each spot; most are within two fold of the average 
(Ramachandaran et al., 2008). Proteins are expressed “just-in-time” for assay, which 
eliminates concern of protein stability. B2 Image of NAPPA with randomly selected 768 
genes probed with a synovial fluid sample from a patient with juvenile arthritis. Antibodies 
in patient samples bind to their antigen targets on the array and are detected by Alexa647-
conjugated goat anti-human IgG. B3 Scatterplot of reactivity on NAPPA between paired 
plasma and synovial fluid samples from arthritis patients. Median correlation is 0.982. C1 
Matrix assisted laser desorption ionization- time of flight (MALDI-TOF) mass spectrometry 
whereby proteins or peptides imbedded in a crystallized matrices are ionized by a high 
frequency laser beam and accelerated through a flight tube by electrical field; ions ‘fly’ and 
reach the detector plate with respect to their mass:charge ratio. C2 A spectra is generated 
which reflects the energy of a given ion vs the mass:charge ratio (m/z). C3 A birds eye view 
representation of the spectra reveals distinguishing peaks (*) from the six samples analysed. 
 

 

Fig. 3. Targeted identification methods 
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Nucleic Acid Programmable Protein Array (NAPPA) is an innovative method to produce 
protein microarrays, where cDNAs encoding proteins of interest are spotted onto activated 
surfaces and proteins are produced in situ using mammalian in vitro expression systems 
(Ramachandran et al., 2004; Ramachandran et al., 2008). The freshly made protein is 
captured by co-spotted antibodies specific for a ‘tag’ encoded at the end of the amino acid 
sequence. This approach circumvents the labor and cost considerations associated with 
conventional spotting of labile recombinant proteins into arrays. NAPPA technology 
recently revealed that ankylosing spondylitis patients' autoantibody responses were 
targeted towards connective, skeletal and muscular tissue, unlike those of RA patients 
(Wright et al., 2010). In a recent pilot study, a strong correlation was observed between 768 
autoantibodies in paired plasma and synovial fluid samples from patients with juvenile 
arthritis (Figure 3B). 

4.3 Proteomic profiling methods 

Intact protein profiling across clinical cohorts gives a glimpse into the degree of variation 
evident in a single gene product (Borges et al., 2008a). The same approach may be useful in 
the study of arthritis. Mass spectrometry-based techniques can potentially distinguish these 
physical and structural variations and allow the relative abundance of one isoform to be 
determined (Duncan et al., 2010). By contrast, these variants would be overlooked by 
conventional ELISA methods (Figure 2). A brief description and recent application of such 
techniques follows. 
MALDI / SELDI Profiling (Immuno-MALDI): Matrix assisted laser desorption ionisation 

(MALDI) mode of mass spectrometry allows the ‘soft’ ionization of complete proteins which 

are liable to fragment under conventional ionization methods. The type of a mass 

spectrometer most widely used with MALDI is the time-of-flight (TOF), mainly due to its 

large mass range (Figure 3C). Purifying a protein from a clinical sample by 

immunoprecipitation can greatly reduce the complexity of the proteome being analysed. In 

one approach, purified polyclonal antibodies that capture the target protein isoforms can be 

immobilized onto sepharose beads packed within a pipette tip or ‘fret’ (Borges et al., 2008b). 

Eluted proteins can then be spotted on a MALDI target plate and spectra obtained. For 

example, some recent MALDI profiling applications have demonstrated the ability to 

diagnose early RA and hypertension and distinguish active SLE (Dai et al., 2010; Long et al., 

2010; Reid et al., 2010). Glycosylation heterogeneity of selected inflammation associated 

molecules such as serum amyloid and vitamin D binding protein have been investigated in 

cancer and diabetic patients (Rehder et al., 2009; Weiss et al., 2011).  

As a modification of MALDI, surface-enhanced laser desorption ionization (SELDI) methods 
can be used to target lower molecular weight proteins (<20 KDa) to differentiate arthritides 
and therapeutic response (de Seny et al., 2008; Miyame et al. 2005). The technology is 
currently being developed to affinity capture the protein of interest directly to the mass 
spectrometry target plate (Brauer et al., 2010).  

4.4 Biomarker research and grant funding 

Although proteomics has been full of promise, few validated biomarkers have made their 
way into the public domain and even fewer influence clinical practice. There is little doubt 
that validation is a serious bottleneck in the biomarker development process. While there is 
abundant discussion of approaches to discovery, the tools for validation and their 
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applications have received little attention. It is very often difficult to receive funding from 
traditional grant programs to validate markers: funding agencies balk at the prospect of 
funding a ‘re-measurement’ of the same entity in larger independent cohorts. Additionally, 
the continuum from discovery through to validation is tedious and extends well beyond the 
time-frame of a typical research grant. In fact, the time from initial discovery to routine use 
can take up to a decade (Anderson, 2010; Wilson et al., 2007). A recent example illustrates 
the seven year journey from discovery to FDA approval for the multivariate diagnostic test 
OVA1, used to screen ovarian cancer patients (Fung, 2010). 
Similarly, when validation fails it is difficult for academic investigators to publish these 
‘negative’ results; when validation succeeds, the emphasis frequently shifts to 
commercialization rather than publication. 

5. Conclusions 

While there is widespread recognition of the value of biomarkers, scientific progress is slow. 
Over the years, biomarkers have sometimes been the center of excessive “hype”, prompting 
excessive or unreasonable expectations. In addition, the use of biomarkers as surrogate 
endpoints have led to some public failures when they were felt to be falsely reassuring, 
creating general skepticism amongst scientists and clinicians alike (e.g. Petricoin et al., 2002). 
In addition to limited validation, resistance still hindering biomarker acceptance includes: 

 Resistance to sharing data across independent efforts – Organizations may work on 
similar research or discover keystone advances yet resist sharing knowledge because 
they feel that doing so will jeopardize their competitive advantage. However, sharing 
information could help companies achieve greater overall progress and reduce costs. 

 Need for new R&D models with greater precision and flexibility – The industry needs 
an R&D model with greater precision to improve pipelines, leveraging active clinical 
knowledge to offset the declining success in new drug development. Some research and 
development leaders are concerned that using an approach that targets treatment for 
only a subset of patients decreases profits and increases research costs. Others recognize 
that this direction has already created value beyond costs and are building these 
capabilities into their business strategy. For example, Herceptin® is considered an 
effective targeted treatment for breast cancer. Targeted treatments could actually 
increase both the medical and economic success of a therapeutic. 

 Insufficient interoperability – Traditional data resides in disparate places that often do 
not easily connect. Factor in imaging biomarkers constituted by terabytes of data and 
you have a complex mix of data from which it is difficult to extract new insights (Poste, 
2011). The path forward – interoperability – is a design and intent to have systems share 
information that relies on data standards, and more importantly, semantics. Semantics 
use common vocabularies and business rules to relate clinical terms reported across 
different sources to find common meaning. 

Tools to support development, medical care, health policy such as the FDA’s critical path, 
and BioPharma investment decisions. The biomarker development and validation process is 
necessary but costly for one company. Innovation takes place in many organizations and, as 
such, stakeholders work redundantly on the same effort. Many collaborative forums exist 
but these usually involve sharing “safe” information that really does not hasten overall 
progress. Consequently, most existing biomarkers have taken decades to become part of 
medical practice. 
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Currently there are few FDA-approved proteomic tests for autoimmune disease. Although 
there is little doubt that such tests could help the diagnosis and treatment of arthritis, it is a 
major clinical and financial challenge to develop, validate and market them. Robust 
validation data including evidence of sensitivity, specificity and correlation to the existing 
limited set of clinical or laboratory criteria are necessary to support clinical utility. Disease 
activity scores (DAS-CRP and DAS28), for example, combine inflamed joint count and 
ESR/CRP to document levels of disease activity at a static time point. The measurement of 
specific proteins that flag a particular patient’s status add objectivity in circumstances where 
the clinician currently relies on clinical judgment alone. 
From a clinician’s perspective, it is important to address several questions in a timely 

fashion for a given patient presenting with autoimmune disease. In each instance, the 

clinician is attempting to minimize underlying disease and adverse outcomes, such as joint 

damage in arthritis. Key questions that can currently only be partially answered by clinical 

observation and patient history include: (a) is this true autoimmune-driven arthritis (i.e., 

diagnosis), (b) how severe or at what stage is the disease process, (c) what is this patient’s 

likely outcome (i.e., prognosis) and (d) which drugs could abrogate that outcome (i.e., 

prediction)? Decision-making also extends to selection of therapy: (e) what is the patient-

specific titer, (f) which disease subgroups will benefit from a specific therapeutic strategy 

and (g) when should treatment be terminated?  

This chapter has addressed and discussed three key areas for consideration, which if 

addressed after initial discovery work could provide solid evidence of their clinical utility 

and commercial viability: (i) limiting bias in study design, (ii) thorough protein isoform 

verification and (iii) modes of orthogonal and targeted validation. 

6. Glossary- the language of biomarker and proteomic research 

Bias- In statistics, bias is systematic favoritism present in data collection, analysis or 
reporting of quantitative research 
Biomarker- or biological marker, is a molecular characteristic that is objectively measured and 

evaluated as an indicator of normal biological processes, pathogenic processes, or 

pharmacologic responses to a therapeutic intervention. 

Classifier- in statistics is the formula or criteria for identifying a sub-population based on 
quantitative information on one or more measurements, traits or characteristics.  
Development pipeline- represents the process from candidate discovery, through verification, 

validation and final pre-market approval. 

Diagnostic- in the context of medicine is any test performed or criteria applied to aid to 
determine and/or identity a possible disease or disorder. 
Discovery- in the context of biomarkers, describes the initial process of observation, 
identification and quantification of one or more biological molecules which may act as a 
classifier.  
Isoform- describes the biological phenomenon of several different structural forms of the 
same protein which may arise by alternate gene splicing and single-nucleotide 
polymorphisms before messenger RNA translation and chemical modifications e.g. 
phosphorylation or glycosylation which occur post-translation of proteins. 
Multiplex- in the context of protein assay is a method or platform which permits the 
simultaneously measururement of multiple analytes (dozens or more) in a single test.  
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Omics- this suffix, often used in modern biological research, refers to the lofty aim of 
observing, identifying and quantifying the totality of a particular class of molecules i.e. 
genomics, proteomics. 
Orthogonal method- describes the ideal of using alternate types of analyses to corroborate the 
original findings by independent means. 
Peptide-centric- or bottom-up, proteomics is a common method used to identify proteins by 
proteolytic digestion of proteins prior to analysis by mass spectrometry. 
Protein-centric- or top-down, proteomics is a method of intact protein identification e.g. an ion 
trapping mass spectrometer used to store an isolated protein ion for mass measurement and 
tandem mass spectrometry analysis. 
Power analysis- to calculate the number of samples required for a study to reach statistically 
sound conclusions. 
Predictive model- in the context of medicine, is created or chosen to try to predict the 
probability of a clinical outcome by use of one or more classifiers. 
Prognostic- is a clinical test which can forecast the likely course or outcome of an illness. 
Sensitivity- measures the proportion of true positives which are correctly identified as such 
(e.g. the percentage of sick people who are correctly identified as having the condition). 
Specificity- measures the proportion of true negatives which are correctly identified (e.g. the 
percentage of healthy people who are correctly identified as not having the condition). 
Throughput- refers to the rate of analysis of samples by a particular method e.g. analysis of a 
single protein by Western blotting is relatively low throughput compared to ELISA. 
Validation- later stage in the biomarker pipeline is defined as the documented act of 
demonstrating that putative biomarker classifiers will consistently lead to the expected 
results i.e establish sensitivity and specificity performance in large populations and begin to 
optimize the assay for commercial use. 
Verification- intermediate phase in biomarker pipeline bridging discovery and validation, 
which typically reduces the number of candidates, confirms specific protein isoforms within 
a classifier and begins to assess the sensitivity in expanded populations. 
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