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Abstract. The electrical activity of the brain can be quantified by measuring the 
electroencephalogram (EEG), a technology that underpins emerging commercial 

Brain Computer Interface (BCI) devices. The EEG can be used to directly assess 
measures of brain function: sensory, motor and cognitive processes. In this paper 

we assess the readiness of this technology for application to teaching and learning. 

We propose a hybrid BCI methodology that can be used to gather EEG metrics 
during an immersive control task. The changes in EEG provide objective measures 

regarding user engagement with the task. When used in conjunction with eye 

tracking technology, a hybrid BCI offers the potential of exploring learning at a 
more granular level. 
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1. Introduction 

The Brain Computer Interface (BCI) is no longer considered as purely an assistive 

technology. With the advancements in electronics, wearable sensors, algorithms and 

software development kits there has been a shift towards exploring other applications 

that use ‘thought processes’ to interact with computing systems. BCI has gained interest 

within gaming [1], assessing creativity [2] and as a non-invasive physiological 

observation mechanism [3]. 

In terms of mental state, certain characteristics within the ongoing electrical activity 

of the brain, known as the electroencephalogram (EEG), can be derived which provide 

insight into the ongoing sensory, motor and cognitive processes. Features that determine 

levels of engagement may be measured and quantified. These are based on derived EEG 

components, such as theta and alpha waves which are diffusely distributed across the 

scalp. In the future with appropriate technology it may be possible to investigate more 

subtle location specific cognitive processes, whilst a user is actively learning. Of course 

researchers in the field of neuropsychology have been active in this pursuit for many 

decades. However, over the last few years, devices have become widely available that 

record this activity away from the dedicated neurophysiology laboratory, allowing for a 

more pervasive solution. In addition software applications can provide feedback in real-

time, allowing the effects of sensory stimulation to be assessed in an interactive manner, 

and facilitating the user to become more actively involved in the paradigm.    
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In this paper we assess the possibility of using a commercial BCI to provide an 

objective measure of task engagement. The research is at an early stage. If engagement 

can be measured, then this could be an initial step towards assessing whether a person is 

actively involved with a learning paradigm. Indeed it can potentially allow known 

conditions such as dyslexia to be quantified and alternative learning strategies to be 

investigated. The remainder of the paper is structured as follows. Section 2 reviews this 

emerging technology to support an immersive environment. It proposes that engagement 

can be enhanced by combining an EEG headset with eye tracking technology. Thus we 

can assess ‘where’ the person is looking and if this is having an effect on the EEG. 

Section 3 defines the concept of engagement and evaluates previous work on EEG 

components that could objectively measure engagement. Section 4 details a preliminary 

experiment, which shows that EEG can be used to differentially classify 4 navigation 

tasks, which the user must actively engage with. Section 5 concludes with a discussion 

of the possibility of using this technology in an education scenario. 

2. Advances in BCI and Eye Tracking Technology 

Commercial BCI is increasingly targeting health and wellbeing applications, such as 

brain training, cognitive state monitors and digital entertainment controllers [4]. Vendors 

such as Emotiv (EPOC), Neurosky, Advanced Brain Monitoring (B-Alert X10), 

Interaxon (Muse) and Melon provide “lifestyle” BCI systems that employ headsets and 

headbands designed for ease-of-use and comfort. Dry and water based electrodes have 

been introduced to promote user acceptance. The technology has been designed with 

portability in mind, using wireless communication protocols, linked to laptops, tablets 

and smart phones. Additional sensor technologies such as accelerometer and gyroscope 

can provide contextual information on movement and orientation. Other channels such 

as electrocardiogram (ECG), electromyogram (EMG), electro-occulogram (EOG) and 

eye gaze may also be recorded, providing the possibility of a ‘hybrid’ BCI. On the 

downside, this emerging technology is restricted in the number of recording positions (4-

14 electrodes) by comparison with laboratory systems (typically 16-32 electrode 

positions). Vendors have also provided psychophysiological assessment using 

proprietary signal analysis, yielding ab array of user behaviour metrics such as ‘focus’, 

‘engagement’, ‘interest’, ‘excitement’, ‘stress’, ‘confusion’ and ‘fatigue’. For example, 

the Melon headband measures brainwave activity at the front of the scalp, and claims to 

facilitate the detection and analysis of mental states including ‘focus’ and ‘meditative 

states’. 

Eye tracking is useful technology to assess task engagement. Until recently it has 

been expensive and restricted to dedicated laboratories. However this is changing; 

vendors such as Eyetribe have introduced a low cost, portable device with an Application 

Programming Interface (API) that facilitates integration with BCI to provide a hybrid 

BCI system where eye tracker and BCI can be used in a collaborative fashion. 

3. User Engagement in an Immersive Environment 

In order to address the effectiveness of any immersive environment, it is desirable to 

measure the level of engagement that a subject has with computer-generated content 

being played. Conventional objective measurement approaches involving visual (e.g. eye 



tracking) or aural sensing (e.g. speech analysis) do not necessarily indicate fully 

objective engagement with the user’s thought and reasoning processes. Self-report data 

in the form of a questionnaire may be used but these data are subjective.  

Engagement comprises the “perception-cognition-action-experience”; it refers to 

sustained involvement with an activity. Peters et al. [5] state that many overlapping user 

states are termed as engagement: interest, sustained attention, immersion and 

involvement. They suggest that a key factor in promoting engagement is the design and 

implementation of intelligent interfaces that can adapt to both the user and context. They 

further partition engagement as attentional and emotional involvement, leading to 

affective involvement.   

States of extreme engagement, as in gaming for example, have been described: bored, 

apathetic, in-flow or anxious. Transitions between states occur as the balance between 

task demand and the user’s skills change (this is why games need different levels of 

challenge). Task engagement can be defined with respect to cognitive activity (mental 

effort), motivational orientation (approach versus avoidance) and affective changes 

(positive versus negative valence) [6]. The engagement cycle, as defined by O’Brien and 

Tom [7], consists of four phases: point of engagement, sustained engagement, 

disengagement, and re-engagement. They propose the following definition: 

“Engagement is a category of user experience characterized by attributes of challenge, 

positive affect, endurability, aesthetic and sensory appeal, attention, feedback, 

variety/novelty, inter- activity, and perceived user control”.  

Hence an effective computer mediated task must comprise feedback, user control, 

attention, motivation and the ability to challenge individuals at levels appropriate to their 

knowledge and skills. Engagement has also been described as the first in three levels of 

immersion. A mechanism that has been previously considered as a measure for 

engagement is ‘where’ the user is looking on the screen in correlation with certain times. 

Additional useful information may be derived from user attributes such as head direction, 

blinking, body movement and gestures. EEG can provide a direct channel to the brain’s 

sensory and cognitive processing, providing a direct channel to measure engagement. 

This provides a further area of investigation, particularly with the deployment of 

appropriate low cost technology.  

3.1. EEG for Measuring Engagement 

In terms of measuring engagement as a cognitive process, EEG and other physiological 

signals may offer insight. According to Fairclough et al [6]: “Physiological computing 

describes a category of technological systems that capture psychophysiological changes 

in the user in order to enable and inform real-time software adaptation.” 

To evaluate suitable mechanisms for extracting such useful information, it is 

important to understand how physiological signals, such as EEG, can be used to 

determine a measure of engagement. The role of EEG in determining levels of alertness, 

attention and cognitive tasks, suggests that measuring brain activity can form a valuable 

input to such a system [8]. Using EEG, alone or combined with other sensor inputs, it is 

possible to evaluate the degree of engagement or immersion that a user has with different 

types of digital content. The content can potentially be updated in reaction to the user’s 

response. Table 1 gives an overview of the ‘classic’ frequency bands within the EEG, i.e. 

the rhythms, which can signify certain characteristics.  

Gevins et al. [9], [10], used theta activity from central frontal sites combined with 

suppression of alpha activity from occipital areas to indicate an increase in mental 



workload with an emphasis on remembering information. Davidson et al. [11] 

investigated frontal asymmetry as a potential metric, on the basis that positive emotions 

relate to high levels of left frontal activity and negative emotions are associated with 

higher activity in the right frontal location. Fairclough et al. [6] investigated frontal 

asymmetry combined this with frontal theta activity and cardiovascular response, namely, 

systolic blood pressure. 

Table 1. Frequency Bands of the EEG 

Rhythm 
Freq 
(Hz) 

Amp 
(μV) 

Description 

Delta 1-5 20-200 Present during deep sleep but may also increase during mental 

activities requiring concentration. 

Theta 4-8 10 Present during sleep but may also occur at times when subject is 
frustrated, daydreaming or performing automatic tasks. In 
general, the occurrence and amplitudes of delta and theta rhythms 
are highly variable within and between individuals. 

Alpha 8-13 20-200 Prominent wave pattern of an adult who is awake but relaxed typically 

with eyes closed although some subjects can use relaxation techniques 

to maintain the signal amplitude while eyes open. 

Greatest amplitude from the occipital areas but also from the parietal 

and frontal regions of the cerebral cortex. 

Beta 13-32 5-10 Present when subjects are alert with attention to external stimuli, or 

engaged in a mental task. Recorded from the parietal and frontal lobes. 
Lower in amplitude than alpha waves 

Gamma 32-100 5-10 Observed as neural synchrony from visual cues (both conscious and 

subliminal).  The waves are link to consciousness and may relate to 
perception. They may be enhanced by meditation. The waves are 

prominent at 40Hz and may be linked to sensory processing in the 

visual cortex.  

3.2. Examples of the use of BCI systems and EEG for self-quantification  

Aspinall et al. [3] used a consumer-grade BCI headset, specifically the Emotiv EPOC, to 

monitor the effect of the surrounding environment on the mental states of their subjects. 

They asked subjects to walk through different areas of Edinburgh, which had been 

categorized as urban shopping streets, a green space, and a busy commercial district. 

From their recordings they looked for periods of excitement, frustration, engagement and 

meditation. 

Crowley et al. [12] evaluated the use of Neurosky’s Mindset headset to measure the 

attention and meditation levels of a subject. They found that the device provided 

information about the user’s change in emotions. Szafir et al. [8] presented a system with 

an adaptive agent; and with the goal of monitoring and improving engagement. They 

also used the Mindset headset, gathering recordings from 4 electrodes. Reinecke et al. 

[13] analysed the EEG in the alpha, beta, theta, and gamma bands. Their results 

reinforced the capability of EEG as a suitable measure of user engagement and mental 

state, applied to sports science. 

Zander et al. used of passive BCI; in [14] they suggest that passive BCI could be 

used to enable a greater understanding of important contextual information during mental 

tasks. Similarly, it has been proposed that electrophysiological patterns associated with 

specific cognitive processes, such as concentration, may be identified and explored using 



BCI technologies [15]. Rebolledo-Mendez [16] used the Mindset to investigate alpha 

wave activity for meditative states; they compared these with self-reported attention 

levels.  

A series of experiments demonstrated that augmentation of theta activity (4–7 Hz) 

from central frontal sites and suppression of alpha activity from occipital areas were both 

associated with increased mental effort in response to working memory load (i.e. number 

of items to be retained in memory) [9] [10]. In addition, Andujar et al. [17] [18] focused 

on improving subjects’ experience during a reading task using the EPOC. They 

established a baseline for engagement and when the signal values dropped beneath this 

level they improved engagement by showing snippets of videos. They use a simple ratio 

devised by Pope [19] to give a measure of enagement from alpha, beta and theta bands: 

𝐸𝑛𝑔𝑎𝑔𝑒𝑚𝑒𝑛𝑡 =  𝑏𝑒𝑡𝑎 (𝑎𝑙𝑝ℎ𝑎 + 𝑡ℎ𝑒𝑡𝑎)⁄           (1) 

Goldberg [20] devised an Intelligent Tutoring Systems using outputs from Emotiv’s 

Affectiv Suite; short-term excitement, long-term excitement, and engagement. Overall, 

this study supported the use of the Emotiv as a low-cost solution to model cognitive state 

for desktop training applications. Roe at al. [21] also employ Emotiv’s Affective Suite, 

using excitement, frustration, engagement, long-term excitement, and meditation 

measures to evaluate a subject’s response to natural versus urban settings. 

4. Experimental Methodology and Results of a Pilot Study 

How useful could the information obtained from these devices be for measuring 

engagement? A pilot study was conducted, which evaluated a consumer-grade BCI 

device, the Emotiv EPOC, in order to engage subjects in an immersive task. 

4.1. Methodology 

Eight healthy participants (age range 23-56, 7 male and 1 female, all with prior BCI 

experience) took part in a short recording session that lasted approximately 30 minutes 

inclusive of setup and data acquisition. The Emotiv EPOC was cleaned with a 50% 

diluted solution of white vinegar and a soft cloth. The rear of each sensor was gently 

agitated with this solution to remove any corrosion. Before each trial, all electrodes and 

felt pads were placed in a hydrator pack and a saline solution applied. After this, each 

electrode was secured to the device and positioned appropriately on the head of the 

participant. 

At the beginning of the session, the participant was required to undergo a training 

procedure facilitated by the Cognitiv Suite, which employs various approaches such as 

EEG and electrooculography (EOG). It records and interprets a user’s conscious EEG 

and intent so as to enable the user to manipulate virtual objects. The Cognitiv Suite was 

used to train a ‘neutral’ state plus four navigation commands; left, right, lift, and drop. 

When training the neutral state the participants were required to relax and clear their 

thoughts. To train the left and right commands, the participants were asked to focus their 

gaze on markers to the left and right of the screen. To train the lift command, the 

participants were required to clench their teeth, and to train the drop command the 

participants were asked to tap their left foot. 



Each trial commenced only after the individual participant had trained each 

command to an accuracy of greater than 60% (as advised by the Emotiv software). For 

all participants, each command had 3-15 training periods, with each training period 

lasting eight seconds. Once the session began, the participant was issued with twenty 

requests (e.g. move a virtual object in one of four directions) and allowed ten seconds to 

complete each request. A five second rest period was given between each request in 

which the participant was asked to relax in order to simulate the neutral state. For each 

request the participant had to concentrate on moving an object to one of four locations 

on the screen; top, bottom, left, or right.  

4.2. Results 

Including the training phase, each session took no longer than 30 minutes to complete. 

The easy to use interface with real-time feedback on the status of the electrodes also 

improves usability. The EEG time activity for each channel and spectral bands may also 

be viewed in real-time. Within this study, it was established that the use of a consumer-

grade BCI headset (and accompanying software) for manipulating a virtual object based 

on gaze direction and actual movement is possible. These results suggest that the quality 

of EEG recorded using the EPOC is of an acceptable level for such tasks. 

Over the initial training phase all four participants acquired a reported skill level 

greater than 60% for each command, as shown in Table 2, which also defines the skill 

rating of each individual command for all participants. From Table 3 it can be observed 

that each participant exceeded the 20% accuracy expected by chance. The mean accuracy 

for all participants equates to 78%, with participants B, C and G performing greater than 

85%. Each of the four commands was issued five times per participant in a random order. 

All participants were able to correctly complete the lift command 97.5%, the right 

command 70%, the drop command 60%, and the left command 52.5% of the time. In 

addition, Table 3 represents the actual accuracy and defines the number of each request 

that was completed correctly.  

 

Table 2. Training skill rating as reported by the Cognitiv suite 

Subject Gender 
Overall Skill 

Rating 
Left Right Lift Drop 

A M 83% 86% 94% 76% 76% 

B M 79% 77% 71% 91% 78% 

C M 81% 74% 83% 87% 80% 

D F 81% 80% 95% 71% 78% 

E M 73% 70% 70% 81% 70% 

F M 76% 79% 75% 81% 70% 

G M 68% 60% 60% 72% 78% 

H M 86% 86% 99% 78% 81% 

Mean  78% 77% 81% 80% 76% 

 

 

 



Table 3. Subject accuracy achieved for each subject for each request 

Subject Gender 
Actual 

Accuracy 
Left Right Lift Drop 

A M 35% 1 1 5 0 

B M 85% 4 3 5 5 

C M 90% 5 3 5 5 

D F 45% 0 4 5 0 

E M 75% 0 5 5 5 
F M 80% 5 5 5 1 
G M 90% 3 5 5 5 
H M 60% 3 2 4 3 

Total  70% 21 28 39 24 

 

Within this study, it is evident that reasonable control can be achieved with little 

training. Nevertheless, there are number of previous studies that suggest that the 

performance of the EPOC is lower than that of a research-grade BCI [22]. All participants 

had experience of research-grade devices and stated that the EPOC was much more 

comfortable and less difficult to setup. Furthermore, all participants agreed that, as with 

any BCI device, prolonged use causes fatigue. However, this study demonstrates that 

specific users are able to gain reasonable control with little effort, though suggests that 

this will not be the case for all users.  

5. Discussion 

The data presented in this paper shows that it is possible to interact with an immersive 

environment using a BCI headset alone. Albeit, we must be cautious due to the small 

sample size (N=8). However, this is not sufficient to study the active learning process. A 

further challenge is to analyze the EEG activity for robust measures of engagement using 

metrics such as suggested in Equation 1. To date, we have utilized purposely created 

classification algorithms, and these show some promise. Whilst engaged in a learning 

task, the EEG activity will include artifact due to eye movement and muscle activity. For 

a BCI to have merit in an education environment ‘cognitive features’ must be able to 

compensate for this or we may well be recording reading (ocular movement) without 

comprehension, for example.  

An important educational ‘use case’ could be the automated assessment of 

engagement for children with special educational needs, such as sensory impairments, 

dyslexia, autism, etc. Part of this could be the assessment of comprehension and 

assimilation of information provided to the subject. Assuming that a robust measure can 

be derived from this engagement task, it may be possible to further address specific tasks 

such as reading. This could be valuable for understanding learning and the lack of 

educational progress associated with these conditions.  Andujar and Gilbert [17] have 

used a BCI approach to investigate ‘physiological reading’; in this innovative reading 

approach the reader’s learning experience is enhanced by displaying engaging videos 

related to the reading when the engagement metric drops under an EEG determined 

baseline. In further work we have combined commercial devices (EPOC and Eye Tribe 

Eye Tracker) to achieve better control and interactivity with a virtual environment. This 

hybrid BCI has the potential to provide a finer grained environment for investigating 

engagement as we will be able to determine the link between where the person is looking 

and EEG measures of engagement. 
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