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Abstract Geodetic measurements following the 23 October 2011, Mw = 7.2 Van (eastern Turkey)
earthquake reveal that a fault splay on the footwall block of the coseismic thrust fault was reactivated
and slipped aseismically for more than 1.5 years following the earthquake. Although long-lasting aseismic
slip on coseismic ruptures has been documented following many large earthquakes, long-lasting,
triggered slip on neighboring faults that did not rupture during the earthquake has not been reported
previously. Elastic dislocation and Coulomb stress modeling indicate that the postseismic deformation can
be adequately explained by shallow slip on both the coseismic and splay fault and is likely driven mostly by
coseismic stress changes. Thus, the slip deficit on the shallow section of the coseismic fault indicated by
interferometric synthetic aperture radar-based models has been partially filled by aseismic slip, suggesting
a lower likelihood for a large earthquake on the shallow section of the Van fault than suggested by
previous studies.

1. Introduction

On 23 October 2011, an Mw 7.2 earthquake occurred in eastern Turkey, causing more than 600 deaths and
heavy damage in the city of Van and town of Erciş (Figure 1). A large aftershock (Mw=5.6) struck the city
17 days later, killing an additional 40 people. The 2011 Van earthquake is among the largest events to occur
over the last 35 years in eastern Turkey. It occurred in the tectonically complex region located within the
Turkish-Iranian Plateau (TIP) that formed as a result of the Arabia-Eurasia continental collision since the early
Miocene (~15Ma) [e.g.,McKenzie, 1972;McQuarrie et al., 2003] (Figure 1). The overall N-S convergence of Arabia
with Eurasia at ~23mm/yr at the location of the TIP is currently accommodated by NE-SW trending left-lateral
and NW-SE trending right lateral strike-slip faults, and fewer E-W striking thrust faults [e.g., Şengör et al., 1985;
Reilinger et al., 2006].

Although a clear and prominent surface rupture was not observed in the field after the earthquake, a fault
between Lake Erçek and Lake Van (here named the Van fault) was mapped as the causative fault based on
coseismic synthetic aperture radar (SAR) interferograms (at http://supersites.earthobservations.org) and
some compressional surface deformation features observed along its western section [Emre et al., 2011;
Dogan and Karakaş, 2013]. Focal mechanism solutions for the main shock, the distribution of aftershocks
and a number of interferometric synthetic aperture radar (InSAR) studies confirm that the earthquake
took place on a ENE striking, 45°–55° NW dipping reverse fault with a minor left-lateral component, consistent
with the trend and location of the Van fault [Irmak et al., 2012; Akoğlu et al., 2013; Elliott et al., 2013;
Fielding et al., 2013].

Modeling of seismic waves and InSAR data reveals that coseismic slip was unusually deep and largely
confined to below 10 km [Elliott et al., 2013]. Analysis of early postseismic Constellation of small Satellites for
the Mediterranean basin Observation (COSMO-SkyMed) (23 October 2011 to 26 October 2011) and Envisat
(19 November 2011 to 19 December 2011) interferograms showed insignificant and fairly superficial afterslip.
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Based on the small coseismic and early postseismic shallow slip, Elliott et al. [2013] suggested that the shallow
coseismic slip deficit could result in another damaging earthquake close to the city of Van. In contrast, as we
show below, significant afterslip occurred on both the Van rupture plane and on a splay fault over 1.5 years
following the main shock, which likely reduces the probability and/or magnitude of any potential earthquake
on the Van fault in the aftermath of the 2011 event.

2. GPS Processing and Results

Six days after the 2011 earthquake, we visited the Van region in order to estimate coseismic displacements
of existing GPS sites in the earthquake zone. Eleven sites were reoccupied and measured in static mode for
8–10 h. Coseismic offsets for six sites located within a distance of 40 km from the earthquake epicenter are
shown in Figure 1. Unfortunately, there were no GPS sites on the hanging block close to the fault prior to the
earthquake, although three sites were located immediately south of the rupture on the footwall block.

Figure 1. Tectonic map of Van and surrounding regions with active faults (dashed lines from Şaroğlu et al. [1992]) and
proposed surface rupture (thick black lines from Emre et al. [2011]) for the 2011 Van earthquake on a shaded elevation
image (from SRTM 90m data). Gray circles are the aftershocks within about 6months after the earthquake (http://udim.
koeri.boun.edu.tr/). Vectors indicate the coseismic horizontal GPS displacements estimated in this study. Inset map shows
major tectonic plates (AN: Anatolia, EU: Eurasia, and AR: Arabia), boundary faults in Middle East (NAF: North Anatolian Fault,
EAF: East Anatolian Fault, DSF: Dead Sea Fault, CA: Cyprus Arc, BZS: Bitlis-Zagros Suture, and KTJ: Karlıova Triple Junction),
and the location of the continuous GPS station (HORS located at 42.1673°N, 40.0416°E) used as reference for the coseismic
and postseismic GPS displacements.
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About a month after the earthquake in November 2011, we revisited the region and established eight new
GPS survey sites mostly on the hanging block of the Van fault in order to monitor postseismic surface
displacements (Figure 2). One of the sites (VN01) on the footwall block to the northwest of the city of Van
was destroyed after the second survey. During the 1.5 year period following the earthquake, these new
and the preexisting GPS sites were resurveyed 4 times (January 2012, June 2012, September 2012, and
May 2013).

The GPS data were analyzed using Bernese (v5.0) software [Dach et al., 2007]. We used International GNSS
Service final precise ephemeris and Earth rotation parameters for the processing. Detection and repair of
cycle slips were performed simultaneously for L1 and L2 phase data at triple and double difference levels.
The first-degree ionospheric refraction was reduced by the ionosphere-free linear combination (L3) for
double difference phase observations. The Quasi-Iono-Free Strategy was used to determine L1/L2 phase
ambiguity resolution. The ionosphere-free linear combination was used for the final baseline solution
using the solved L1/L2 phase integer ambiguity resolution and an atmospheric model [Saastamoinen,
1972] for the estimation of path delay. The troposphere zenith delays were estimated from the
observations with 2 h intervals.

Estimated coseismic GPS site offsets are shown in Figure 1 (Table S1). Observed northward coseismic
displacements up to 50 cm in and around the metropolitan area of Van city (site KALL) are consistent
with thrust faulting on a northward dipping fault plane as interpreted from the coseismic focal mechanism

Figure 2. Observed (black) and modeled (gray) postseismic horizontal displacement vectors deduced from GPS measure-
ments between 29 November 2011 and 20 May 2013 and their 95% confidence ellipses. Black polygons show the surface
projection of the modeled fault surfaces. White lines show the surface trace of the fault thought to have been ruptured
during the earthquake. The gray beach ball is the geodetic focal mechanism deduced from dislocation modeling of the
postseismic GPS data using the mean fault rake and strike. It shows much more left-lateral strike-slip motion compared to
the coseismic focal mechanism shown in black.
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(e.g., U.S. Geological Survey Earthquake Center; Figure 2), field observations [Emre et al., 2011], and InSAR
studies [Akoğlu et al., 2013].

Postseismic displacements were calculated, with respect to the HORS station that is located ~200 km north of
the earthquake area (see inset in Figure 1), by fixing the International Terrestrial Reference Frame 2008.0,
epoch 2011 coordinates of the HORS station (Table S2). To isolate postseismic deformation, the interseismic
component of the site velocity was determined from pre-earthquake observations where available and
otherwise estimated from the block model of Reilinger et al. [2006] and removed from the total measured
displacements. One and a half years of horizontal postseismic displacements following the Van earthquake
are listed in Table S2 and shown with black vectors in Figure 2. Except for KALL, all the sites on the western
side of the fault show southwest directed horizontal motion reaching a maximum of ~26 cm at site VN02 on
the hanging block immediately north of the Van fault. Pointing in the opposite direction, site VN07 on the
eastern part of the fault reveals a divergent pattern of horizontal displacement at the surface consistent with
blind thrust faulting. Site VN08 displays northward motion since the first measurements, suggesting that it is
on the footwall of the coseismic fault, and hence, the coseismic rupture may veer toward the north along its
eastern segment.

Comparison of coseismic and postseismic horizontal displacements reveals a remarkable change in the
direction of motions at GPS site KAL2 and the VAAN continuous station, both located on the footwall
block of the rupture plane (Figures 1 and 2). Both sites moved northward coseismically and
southwestward postseismically. In contrast, other nearby GPS sites on the footwall block (i.e., KALL and
GURP) show northward directed postseismic motions as expected for afterslip on the coseismic fault.
We suggest that the change in the direction of postseismic motion is due to aseismic reactivation of a
low-angle fault splay that runs between KALL and KAL2 north of VN01 merging with the Van fault at
depth (Figures 2 and 3). This inference is supported by postseismic InSAR observations as shown in
Figure 3c and 3d, and the logarithmic decay of postearthquake motion of the VAAN site (Figure 4).
Tracing the phase discontinuity reveals a 20 km long splay (named here the Bostaniçi fault) that passes
through the northern part of the city and reaches the railway port by Lake Van. Although the Bostaniçi
fault follows the foothills north of the city, its topographic expression is not clear in the city center on
the alluvial plain. The time series for the motion of site KAL2 with respect to site KALL, bracketing the
Bostaniçi fault, indicates a logarithmic rate decrease between these sites, consistent with postseismic
relaxation processes on the Bostaniçi fault. The time series of continuous GPS site VAAN, also
characterized with a logarithmic relaxation function, suggests that aseismic creep will likely continue
(Figure 4). Analysis of the motion of site KAL2 with respect to other sites on the hanging wall (e.g., VN02)
reveals similar temporal decays on the Bostaniçi and Van faults.

3. Modeling

The temporal and spatial patterns of postseismic deformation are consistent with triggered aseismic slip
both on the coseismic rupture plane and its southern splay. To investigate this further, we use the
Poly3Dinv inversion software [Maerten et al., 2005] to estimate the cumulative postseismic slip observed
between 1 month and 1.5 years following the earthquake. The Poly3D method is based on the analytical
solution for a triangular dislocation in a linear, elastic, homogeneous, and isotropic half space, which uses
triangular surfaces as discontinuities [Thomas, 1993]. The use of triangular elements allows us to construct fault
models that better approximate 3-D fault surfaces, avoiding gaps and overlaps that are inevitably encountered
when modeling a complex network of faults with simple rectangular dislocations. A coseismic rupture surface
50 km long and 28 km wide was constructed with a northward dip of ~50° inferred from InSAR data [Akoğlu
et al., 2013] using triangular elements of about 4× 4 km in dimension along the dip and strike directions. The
location and strike of the eastern part of the coseismic fault could not be well determined due to Lake Erçek.
Coseismic Envisat interferograms [Elliott et al., 2013] and the postseismic displacement of site VN08 suggest
that the rupture likely runs northeast through the lake. Future measurements on a new site established in
September 2013 south of the Lake Erçek may provide better constraints on the eastern extension of the
fault. The surface trace of the Bostaniçi fault was located based on postseismic interferograms as shown in
Figures 3c and 3d. We assume that the two faults merge at depth (Figure 3b). Modeling tests show that the
goodness of fit increases nearly linearly with decreasing depth (i.e., with decreasing fault dip), precluding
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determination of an optimum depth from the GPS observations (Figure 4c). We chose a dip of 30° that
corresponds to a depth of 5 km (Figure 4c). The slip distribution on both faults was then inverted for with a
negativity constraint on the dip slip component (i.e., no normal slip) using both horizontal and vertical
components of GPS displacements (Table S1). To avoid unphysical oscillatory slip, a smoothing operator
was applied to the modeled slip distribution [Çetin et al., 2012]. We chose a smoothing factor of 0.25 that
provides the best compromise between the roughness of slip and misfit to the data for both the Van and
Bostaniçi faults (Figure 4c). This model has a weighted root-mean-square misfit of 1.27 cm and explains well
the amplitude and direction of observed horizontal displacements (Figure 2). Vertical displacements fit
relatively less well as they were weighed less in the inversion (Figure S1).

The final model of postseismic slip distribution (Figure 5) shows aseismic thrust slip with a significant left-
lateral component particularly on the coseismic rupture, which can also be seen from the geodetic focal
mechanism estimated from the simplified dislocation model (Figure 2). A minor right lateral slip component
is predicted on the eastern shallow portion of the fault accounting for the eastward motion at site VN07.
While the maximum slip (~50 cm) is found to be on the shallow section of the Bostaniçi fault, an elliptical lobe
of afterslip reaching 40 cm is predicted to be centered at ~11 km depth on the Van rupture plane. It must be

Figure 3. Relationship between (a) coseismic and (b) postseismic deformation illustrated with schematic geological cross
sections with real topography along the N-S profile shown in Figures 2 and 3c. Blind slip on coseismic fault (f1; Van fault)
causes all the GPS sites on the footwall block to move northward (Figure 3a). During the postseismic period, in addition
to the shallow section of the fault, a fault splay (f2; i.e., Bostaniçi fault) that crops out farther south beneath the coseismic
fault starts slipping aseismically, reversing the direction of motion at the VAAN and KAL2 benchmarks(Figure 3b). (c, d)
Evidence of aseismic deformation along the Van and Bostaniçi faults can be seen in postseismic interferograms with
10 days temporal baselines we constructed from a descending (Figure 3c) and ascending (Figure 3d) pair of TerraSAR-X
images (data from http://supersites.earthobservations.org) using Delft Object-oriented Radar Interferometric Software
InSAR processing software [Kampes et al., 2003]. Solid and dotted black lines show the surface ruptures inferred from
coseismic interferograms and limited ground deformation and modeled surface ruptures, respectively. Circular fringes in
the metropolitan area of Van city (Figure 3d) are due to surface deformation caused by the Mw=5.6, 9 November 2011
aftershock whose focal mechanism calculated by the USGS is shown with a beach ball. The difference in the fringe pattern
of the aftershock between the two interferograms is due to the difference in the radar-viewing geometry. Aseismic slip
along the Bostaniçi fault (f2) may be the cause of the clearly observed offsets and disturbances to the coseismic fringes of
the aftershock.

Geophysical Research Letters 10.1002/2014GL059291

DOGAN ET AL. ©2014. American Geophysical Union. All Rights Reserved. 2338

http://supersites.earthobservations.org


noted that slip on the shallow part of the Van fault is difficult to distinguish from slip on the splay, and given
the small number of stations, the resolution of some features in the model is rather limited, in particular the
highly variable rake. In addition, some parts of this high-strain release on the splay and on the eastern section
of the Van fault may result from lack of nearby GPS sites.
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Figure 4. (a) Time series of KAL2 with respect to KALL that shows the logarithmically decreasing total displacement across
the Bostaniçi fault indicative of postseismic fault slip (Figure 2). Measurements of these sites were conducted after the 9
November 2011 aftershock. (b) Time series of VAAN continuous GPS station. The thin curved line is a fit to the coordinate
changes of the form a+ b log(t) (where t is the time after the earthquake in years, a and b are constants) with dashed
lines showing the 95% confidence interval [Savage et al., 2005]. (c) Fitting tests of varying smoothing factors for slip
distribution and depth at which the Van and Bostaniçi faults merge. The selected depth and smoothing factor are shown
with dashed boxes.

Figure 5. Block diagram showing a 3-D perspective view of the modeled Van and Bostaniçi faults with distribution of
estimated postseismic slip during ~1.5 years following the earthquake. Black vectors indicate direction and amplitude
of slip. Although aerially, there is a large overlap between the coseismic and postseismic slip on the main fault; large
postseismic afterslip is located on the western upper parts of the main fault, a region with low or no coseismic slip
(Figure S1).
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4. Discussion and Conclusions

Field observations and geodetic measurements show that moderate to large earthquakes often reactivate
nearby faults triggering aseismic surface slip [Allen et al., 1972; Wright et al., 2001; Fialko et al., 2002; Fielding
et al., 2004; Wei et al., 2011]. The Van earthquake provides an opportunity to gain further insights into
triggered slip and crustal deformation along active faults. The phenomena of seismically triggered slip affect
directly the rate of strain accumulation and stress on the fault and accordingly seismic hazard estimates.
Static or dynamic stress or strain transfer is thought to trigger slip on preexisting, nearby, or distant faults by
changing the state of stress on them [Hill et al., 1993; Stein et al., 1992; King et al., 1994; Nalbant et al., 2005] or
modifying the properties of the fault zone [Fialko et al., 2002]. Such transient slip events are often short-lived
phenomenon occurring simultaneously or shortly after a large earthquake [Cervelli et al., 2002; Fielding et al.,
2004]. A COSMO-SkyMed coseismic interferogram calculated using a SAR image taken only 4 h after the
Van earthquake shows no clear phase discontinuity indicating triggered slip across the Bostaniçi fault [Elliott
et al., 2013]. Thus, the triggered slip on the Bostaniçi fault did not occur immediately at the time of the Van
rupture but started some time after it and lasted more than 1.5 years. An Envisat interferogram calculated by
[Elliott et al., 2013, Figure S5] using images from 1 to 2months after themain shock clearly shows deformation
along the splay. A similar triggered slip may have occurred on the Berrocal thrust fault following the 1989
Loma Prieta earthquake on the San Andreas fault [Bürgmann et al., 1997], but it is not known whether or not
the Berrocal fault broke simultaneously during the coseismic rupture.

The causes for the delay in triggered slip are not known at the moment. However, modeling of the coseismic
Coulomb stress change following the Van earthquake shows that static stress on the deeper section of the
Bostaniçi fault was increased up to several MPa (Figure S1d). Combination of the stress changes due to the
coseismic and postseismic slips on the Van rupture as well as fluid migration driven by coseismic strain
changes might be the most likely mechanism to explain triggering and sustaining the aseismic slip on the
Bostaniçi fault. Further evidence of aseismic deformation along the Van and Bostaniçi faults can be seen in
postseismic interferograms with 10 days temporal baselines constructed from a descending and ascending
pair of TerraSAR-X images (Figure 3d).

The total cumulative postseismic geodetic moment including both faults is 9.8 × 1018 Nmwhich is equivalent
to an Mw= 6.6 event or 12% of the main shock moment release (compared to U.S. Geological Survey (USGS)
body wave Moment Tensor Solution). Therefore, the slip deficit on the shallow section of the coseismic fault
predicted by InSAR-based models [Elliott et al., 2013] is filled by a significant amount of postseismic slip,
suggesting that the potential for a large earthquake on the shallow section of the Van fault may have been
considerably reduced. If, as suggested by Akoğlu et al. [2013], the coseismic slip deficit in the upper seismogenic
crust is due to the presence of ophiolitic cover rocks [Şengör et al., 2008] which exhibit velocity-strengthening
frictional behavior, then the seismic hazard for the city of Van will be lower than otherwise estimated. Stress
transfer caused by the aseismic slip should also be taken into account in the assessments of seismic hazards for
nearby seismically active faults. In addition, aseismic slip on the main or secondary fault has important
implications for paleoseismic studies, particularly for those in which magnitudes of paleo-earthquakes are
estimated based on surface offset measurements. Space-time evolution and the nature of the postseismic
deformation will be constrained better by additional survey mode and continuous GPSmeasurements planned
for the next 3 years.
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