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Abstract

Although image data can often be sparse for a variety of different reasons, standard image processing
techniques require the use of complete image data. Therefore sparse image data must undergo reconstruc-
tion to yield complete images prior to any subsequent processing. Highly accurate image reconstruction
techniques tend to be expensive to implement whilst simpler techniques, such as image interpolation, are
usually not adequate to support subsequent reliable image processing. A common approach to image re-
construction is normalised convolution; we present a modified approach to normalised convolution which
is based on the sparse image content and we demonstrate that accurate reconstruction is achieved yielding
better image processing results than the current standard normalised convolution.
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1 Introduction

Sparsity is a well-documented problem in all branches of science; numerous methods including statistical
approaches and multi-resolution analysis do exist in the literature to overcome this problem whether in a time
series, a 2-D planar image or an unordered set [Rybicki and Press, 1992, Ford and Etter, 1998]. One of the key
points to be addressed when thinking of a solution for data incompleteness is the nature of such incompleteness.
As usual, regularity is always easy to deal with and when the image sparsity is regular conventional interpolation
techniques can reconstruct the image successfully [Jain, 1989]. However, this is not the case when the data are
irregularly distributed. This situation is often encountered in computer vision applications; for example the
use of omnidirectional cameras [Yagi and Kawato, 1990, Hong et al., 1992, Yamazawa et al., 1993] where un-
warping the omnidirectional images to planar images results in incomplete projections [Scotney et al., 2006].
This sparsity, which should be handled before proceeding with feature detection and managing the process of
feature detection on such sparse un-warped images, has attracted considerable research efforts over the last two
decades. Normalised convolution is one of the methods used for interpolating irregularly sampled images. It
was first introduced in [Knutsson and Westin, 1993] and has shown superiority over conventional grid-based
techniques [Foster and Evans, 2008]. It also has illustrated remarkable capabilities in dealing with low sub-
sampling rates [Piroddi and Petrou, 2004].

Feature detection is at the heart of all computer vision applications. There has been an incessant desire
to develop reliable and stable feature detectors that could reveal the actual informative content of an image
while withstanding possible image distortions and scale variations. In [Kerr et al., 2008], a novel technique
was presented for corner detection adopting the finite-element method and working directly on sparse images.
Within that framework, an adaptive gradient operator is formulated where an irregular image is represented by
an irregular mesh of triangular elements and piece-wise linear basis functions. We have extended the work in
[Kerr et al., 2008] by presenting a normalised convolution based approach called Gradient Magnitude-Weighted
Normalised Convolution (GMWNC). Using the gradient operator proposed in [Kerr et al., 2008] as a weighting
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function, GMWNC improves the reconstruction of sparse images compared with the conventional normalised
convolution (NC). For comparative purposes, feature detection evaluation methods have been applied to the
reconstructed images using GMWNC as well as standard normalised convolution (NC). While maintaining
low computational complexity, the proposed algorithm results in improved feature detection with consistently
improved root mean square error (RMSE) than the traditional NC approach.

The paper is organised as follows: in Section 2, an overview on the conventional NC technique is presented.
In Section 3, the GMWNC is proposed. Results are shown in Section 4 and Section 5 presents a conclusion and
suggested future work.

2 Normalised Convolution

Normalised convolution is an algorithm that operates on irregularly sampled or sparse data sets in order to fill-
in the missing information. Accordingly, it has been used extensively to deal with image data incompleteness
as a spatial interpolation technique. NC adopts a standard convolution filter, classically a Gaussian filter, in
addition to a certainty map. The idea of constructing a certainty map was suggested to differentiate between
the locations where we have a zero-valued pixel and the locations where we have missing data; this map is a
simple binary filter [Piroddi and Petrou, 2004].

Conventional NC is called normalised averaging and it involves two convolutions and an element-wise di-
vision [Knutsson and Westin, 1993]. The first convolution is where the standard filter, namely the applicability
filter is convolved with the sampled sparse data. This filter is responsible for the process of diffusing the infor-
mation from the areas where it exists to the areas where it is missed, according to a certain profile. According
to its properties, it defines the vicinity over which it operates. In the case of a Gaussian filter, interpolation takes
place within the function support according to a Gaussian profile. Equations (1), (2) and (3) shows the three
operations which are carried out in the simplest NC algorithm. The first step is to calculate

D(x, y) = f (x, y)⊗ g (x, y) (1)

where f (x, y) is the sampled input data and g (x, y) is the applicability filter. The second step is to calculate

N (x, y) = c(x, y)⊗ g (x, y) (2)

where c(x, y) is the binary valued certainly map.
The second convolution can be thought of as the certainties associated with the interpolations that took place

in the first convolution [Foster and Evans, 2008]. In order to normalise the first convolution, the reconstructed
image f̂ is determined by

f̂ = D(x, y)

N (x, y)
(3)

By using the available information and a map for data certainty, we are able to generate interpolated pixel
values in the locations where none were originally present. The NC technique is superior to many conventional
in-filling techniques such as the bi-linear and bi-cubic interpolation [Foster and Evans, 2008].

3 Gradient Magnitude-Weighted Normalised Convolution

Gradient Magnitude-Weighted Normalised Convolution GMWNC is a NC-based technique that enhances the
performance of the conventional NC for reconstructing sparse images. The approach in based on that presented
in [Kerr et al., 2008] and an overview is presented in the following subsections.

3.1 Overview of Gradient Operator Design

As in [Kerr et al., 2008], we consider sparse image to be represented by a spatially irregular sample of values
of a continuous function u(x, y) of image intensity on a domain Ω. The operator design procedure is then based



on the use of a mesh generated using Delaunay triangulation. With each node i in the mesh is associated a
piecewise linear basis function φi (x, y) which has the properties φi (x j , y j ) = 1 if i = j and φi (x j , y j ) = 0 if i 6= j
where (x j , y j ) are the co-ordinates of the nodal point j in the mesh. We then approximately represent the image
function u by a function U (x, y) =∑N

j=1 U jφ j (x, y) in which the parameters {U1, . . . ,UN } are mapped from the
sparse image intensity values. The approximate image function representation is therefore piecewise linear on
each triangle and has value U j at node j .

The gradient operator design in [Kerr et al., 2008] is based on weak forms of operators in the finite element
method [Becker et al., 1981, Scotney and Coleman, 2007]. In order to be directly applicable to sparse image
data, the operator design needs to explicitly embrace the concept of operator size and shape, thus the design
procedure explicitly embodies a size parameter σ that is determined by the local point density. Therefore, we
use sets of Gaussian test functions ψσ

i (x, y), i = 1, . . . , N , when defining the derivative based operators; for first
order operators respectively, this provides the functionals

Eσ
i (U ) =

∫
Ωσ

i
¯
bi · ∇̄Uψσ

i dΩi (4)

where
¯
bi is the basis function and U is the image. Each Gaussian function ψσ

i (x, y) is restricted to have support
over a neighbourhoodΩσi , centred on node i , consisting of those triangular elements that have node i as a vertex
and therefore that the integral in the definition of the functional Eσ

i need be computed by integration over only
the neighbourhood Ωσi rather than the entire image domain Ω. This process enables us to compute the gradient
magnitude at each point within the sparse image for subsequent use in the reconstruction process.

3.2 Weighted Normalised Convolution

The algorithm commences by calculating the gradient magnitude responses across the sparse image using the
gradient operators presented. Referring to equations (1) and (2) in Section 2, the gradient magnitude is equiva-
lent to the applicability filter denoted here as the weighting function, and the presence of a gradient magnitude
value implies a value of 1 in the certainty map in equation (2). Depending on whether the current location
is non-zero-valued or not, D(x, y) and N (x, y) will be calculated and weighted by the gradient magnitude re-
sponse. Equations (5) and (6) demonstrate the steps of carrying out the GMWNC algorithm. First, D(x, y) is
calculated as follows

D(x, y) = f (x, y)⊗ [g (x, y)∗ (v −GM(x, y))] (5)

where v is the maximum gradient magnitude response and GM(x, y) is the gradient magnitude at the point
(x, y). Similar to NC, N (x, y) is identical to D(x, y) with the sampled input data is replaced by the certainty
filter c(x, y).

N (x, y) = c(x, y)⊗ [g (x, y)∗ (v −GM(x, y))]. (6)

This ensures that when the gradient magnitude is high (i.e. a potential feature point) the smoothing is reduced
and when the gradient magnitude is low (i.e. a background point) the smoothing is increased, thus retaining
the key images features during image reconstruction whilst removing noise. The reconstructed image is then
calculated in the same way as indicated by equation (3).

4 Performance Evaluation

Improving the reconstruction of features is the main goal of the proposed technique. Therefore for eval-
uation purposes we apply a feature detector and use the well-known Figure of Merit (FoM) technique
[Abdou and Pratt, 1979]. Taking into account the fairness of evaluation, FoM has been calculated over a range
of signal to noise ratios, typically 100, 50, 20, 10, 5 and 1. In addition, the assessment was made using different
percentages of sparsity. FoM was calculated using synthetic images for diagonal, vertical and horizontal edges.
However, the results obtained for 75% of the image data were similar for both the proposed GMWNC and NC



techniques and are therefore not shown here; the significant improvements are found when the percentage data
is reduced as low as 25%.

Figure 1 and Figure 2 present graphs for the Figure of Merit versus Signal to noise ratio using only 25%
of the original image data for three edge types (diagonal, horizontal and vertical) using 3×3 and 7×7 filters
respectively. In all cases we can see that the proposed GMWNC technique outperforms the traditional NC
approach with respect to subsequent image processing, i.e., edge detection.

Edge image Method
RMSE
25% data 75% data

Diagonal
NC 25.845 26.6573
GMWNC 26.5877 26.0140

Horizontal
NC 28.0025 28.3764
GMWNC 28.2964 28.1106

Vertical
NC 25.896 26.3009
GMWNC 27.124 26.1031

Table 1: RMSE values for different sparsity ratios and edge orientations

In addition, Table 1 presents root mean squared errors (RMSE) for both approaches, comparing the re-
constructed images with the original images using 25% and 75% data. The RMSE values demonstrate that
both approaches have similar accuracy with respect to reconstruction; however the FoM results in Figure 1 and
Figure 2 illustrate that our proposed approach yields better edge detection and hence feature reconstruction.

5 Conclusion

Techniques that are based on image reconstruction without prior image knowledge do not generally provide re-
liable mechanisms for accurate feature extraction. The most accurate reconstruction technique currently avail-
able that is also computationally efficient is the Normalised Convolution approach. In [Scotney et al., 2006],
a design procedure was presented for edge detection operators for direct use on sparse image data. Here we
extend this existing approach by applying it to sparse image data to derive knowledge of the image content
that can be subsequently used to enhance the image reconstruction process. We have demonstrated the success
of this approach by presenting root mean squared errors that are similar to those obtained using the standard
Normalised Convolution method but also by demonstrating via the Figure of Merit technique that the images
reconstructed using the proposed GMWNC approach yield better results with respect to edge detection than
images reconstructed using standard NC even when using as little as 25% of the original image data. Hav-
ing obtained accurate results for image reconstruction the focus of our further work will be the use of real
omnidirectional images for robot localisation.

References

[Abdou and Pratt, 1979] Abdou, I. E. and Pratt, W. K. (1979). Quantitative design and evaluation of enhance-
ment/thresholding edge detectors. Proceedings of the IEEE, 67(5):753–763.

[Becker et al., 1981] Becker, E. B., Carey, G. F., and Oden, J. T. (1981). Finite elements, an introduction:
Volume i. ., 258, page 1981.

[Ford and Etter, 1998] Ford, C. and Etter, D. (1998). Wavelet basis reconstruction of nonuniformly sampled
data. Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on, 45(8):1165–
1168.



[Foster and Evans, 2008] Foster, M. P. and Evans, A. N. (2008). An evaluation of interpolation techniques for
reconstructing ionospheric tec maps. Geoscience and Remote Sensing, IEEE Transactions on, 46(7):2153–
2164.

[Hong et al., 1992] Hong, J., Tan, X., Pinette, B., Weiss, R., and Riseman, E. M. (1992). Image-based homing.
Control Systems, IEEE, 12(1):38–45.

[Jain, 1989] Jain, A. K. (1989). Fundamentals of digital image processing. Prentice-Hall, Inc.

[Kerr et al., 2008] Kerr, D., Scotney, B., and Coleman, S. (2008). Interest point detection on incomplete im-
ages. In Image Processing, 2008. ICIP 2008. 15th IEEE International Conference on, pages 817–820. IEEE.

[Knutsson and Westin, 1993] Knutsson, H. and Westin, C.-F. (1993). Normalized and differential convolution.
In Computer Vision and Pattern Recognition, 1993. Proceedings CVPR’93., 1993 IEEE Computer Society
Conference on, pages 515–523. IEEE.

[Piroddi and Petrou, 2004] Piroddi, R. and Petrou, M. (2004). Analysis of irregularly sampled data: A review.
Advances in Imaging and Electron Physics, 132:109–165.

[Rybicki and Press, 1992] Rybicki, G. B. and Press, W. H. (1992). Interpolation, realization, and reconstruc-
tion of noisy, irregularly sampled data. The Astrophysical Journal, 398:169–176.

[Scotney et al., 2006] Scotney, B., Coleman, S., and Kerr, D. (2006). A graph theoretic approach to direct pro-
cessing of sparse unwarped panoramic images. In Image Processing, 2006 IEEE International Conference
on, pages 1557–1560. IEEE.

[Scotney and Coleman, 2007] Scotney, B. W. and Coleman, S. A. (2007). Improving angular error via
systematically designed near-circular gaussian-based feature extraction operators. Pattern Recognition,
40(5):1451–1465.

[Yagi and Kawato, 1990] Yagi, Y. and Kawato, S. (1990). Panorama scene analysis with conic projection. In
Intelligent Robots and Systems’ 90.’Towards a New Frontier of Applications’, Proceedings. IROS’90. IEEE
International Workshop on, pages 181–187. IEEE.

[Yamazawa et al., 1993] Yamazawa, K., Yagi, Y., and Yachida, M. (1993). Omnidirectional imaging with
hyperboloidal projection. In Intelligent Robots and Systems’ 93, IROS’93. Proceedings of the 1993 IEEE/RSJ
International Conference on, volume 2, pages 1029–1034. IEEE.



(a) Diagonal Edge

(b) Horizontal Edge

(c) Vertical Edge

Figure 1: FoM Vs SNR using images with 25% data and a 3×3 filter



(a) Diagonal Edge

(b) Horizontal Edge

(c) Vertical Edge

Figure 2: FoM Vs SNR using images with 25% data and a 7×7 filter


