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Abstract

Purpose: To quantify the effect of cathode-tube-ray (CRT) monitor refresh rate

on the measurement of the upper limit of complete temporal summation (critical

duration) in the peripheral visual field of healthy observers.

Methods: Contrast thresholds were measured for seven achromatic spot stimuli

(diameter 0.48°) of varying duration (nominal values: 10–200 ms) at an eccen-

tricity of 8.8° along the 45°, 135°, 225° and 315° meridians of the visual field in

three healthy, psychophysically experienced observers. Stimuli were presented on

a CRT display with a refresh rate of 60 and 160 Hz. Contrast thresholds were

expressed as contrast energy with stimulus durations being estimated using (1)

the sum-of-frames (SOF) method and (2) Bridgeman’s method incorporating

measurements of phosphor persistence. Estimates of the critical duration were

produced using iterative two-phase regression analysis.

Results: With stimulus duration expressed as SOF equivalent the critical duration

was, on average, 10.6 ms longer with a refresh rate of 60 Hz (mean 45.7 ms, S.D.

10.1 ms) relative to 160 Hz (35.1 ms, S.D. 7.6 ms). When the Bridgeman method

was used, minimal differences (1.8 ms) in critical duration values between the

two refresh rates (60 Hz: 33.0 ms, S.D. 9.4 ms; 160 Hz: 31.2 ms, S.D. 7.0 ms)

were observed. Identical trends were observed in all three subjects.

Conclusions: Psychophysical measurements of temporal summation are indepen-

dent of variations in CRT refresh rate when the Bridgeman method, incorporating

measured values of phosphor persistence, is used to estimate stimulus duration.

This has significant implications for the specification of stimulus duration in psy-

chophysical studies of vision employing conventional display monitors.

Introduction

The value of any visual psychophysical investigation is

highly dependent upon the precise control of stimulus pre-

sentation parameters. Within the published literature, cath-

ode ray tube (CRT) monitors remain in widespread use for

the presentation of psychophysical stimuli despite their lack

of production.1,2 Image generation in this class of monitor

occurs as a result of the activation of individual phosphor

particles on the posterior surface of the display screen by an

incoming electron beam. Once activated, each phosphor

displays a rapid increase in luminance output followed by

an exponential decline in activity until energy emission

ceases. Owing to this decay, the re-excitation or refresh of

each phosphor is required for the desired image to remain

on the display screen. The number of occasions each pixel

is re-activated in one second determines the refresh rate,

with the frame duration being calculated as the reciprocal

of this value. Because of the sequential re-activation of each

pixel, the temporal delivery of light energy to the eye from
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a CRT is intermittent with the rate of flicker being depen-

dent on the refresh rate selected (Figure 1). Despite such

periodic temporal output, flicker is not perceived as long as

the refresh rate is kept above the critical flicker frequency

(CFF). Currently, the majority of studies using a CRT

employ refresh rates of 60 Hz (range: 60–200 Hz).2

Although widely used, CRTs and other frame based dis-

play monitors (e.g. organic light emitting diodes) are not

ideal for the psychophysical examination of vision. Their

primary limitation relates to temporal display artefacts

resulting from the image generation process.1–4 Specifically,

CRT monitors are unable to properly replicate stimuli with

square wave temporal profiles due to phosphor decay and

reactivation.1,2 This limitation introduces two specific

issues for the use of CRT monitors in vision science – (1)

the generation of neural artefacts that can potentially influ-

ence the results of any psychophysical experiment and (2)

difficulties in meaningfully specifying the duration of stim-

uli.

Within the literature, the potential for neural artefacts

arising from the pulsed nature of CRT output has been

widely discussed.3 Gawne and Woods,5 in a neurophysiol-

ogy study, report that pulsed stimuli with a gradual offset,

such as those generated on a CRT, do not produce

responses in neurons within cortical area V1 that are com-

parable to those gained when using a true square wave

stimulus of equal nominal duration. Zele and Vingrys6 also

propose neural artefacts to occur at the level of the retina

due to the formation of high-frequency noise, this effect

being amplified when lower refresh rates are used. Shady

et al.7 in a psychophysical study reported that adaptation

to flicker could affect visual thresholds even if the flicker

frequency is above the CFF. They point out that, even if

flicker is not perceived, low CRT refresh rates can influence

visual sensitivity, advising that high refresh rates should be

used where possible to avoid artefactual deficits in visual

sensitivity. Despite evidence that variations in refresh rate

can influence some neural processing in the visual path-

way,5,6 it is unknown if such changes can also influence the

integration of light photons over time (temporal summa-

tion), and specifically the critical duration (Figure 2).

The inability of a CRT to reproduce stimuli with a square

wave temporal profile also creates problems when attempt-

ing to specify the duration of psychophysical stimuli.

Square wave stimuli generated on a CRT characteristically

have a rapid onset, a variable temporal profile and display a

tapered offset due to phosphor decay in the final frame of

presentation (Figure 1). The most commonly used method

to estimate presentation duration is the sum-of-frames

(SOF) calculation. This method calculates presentation

duration on the basis that stimuli may only be integers of

frames when generated on a CRT display and assumes con-

tiguous light output over the duration of the stimulus with

no allowance being made for phosphor activation and

decay within each frame.2,3 The SOF method, although

convenient, can lead to significant over-estimation of stim-

ulus duration, this being amplified for single frame presen-

tations where the period of phosphor activation is shorter

than the frame duration (Figure 3a). In response to such

limitations, Bridgeman1 proposed that stimulus duration

be measured from the point of phosphor activation in the

first frame to the temporal limit of phosphor activity in the

final frame of presentation. Although theoretically superior

Figure 1. Comparison of the temporal profile of luminance output for

a 100 ms stimulus as measured on a CRT display running at 60 Hz

(upper panel) and 160 Hz (lower panel).

Figure 2. Schematic temporal summation function. For short duration

stimuli there is complete summation (grey shaded area) and the data

may be fit with a line of slope zero for calculated energy data up to the

critical duration (blue arrow). Beyond the critical duration incomplete

summation is exhibited.
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to the SOF method, knowledge of the phosphor decay time

is required, it also being unknown if this value is affected

by luminance output. Furthermore, as the SOF method is

used almost exclusively in the literature to specify stimulus

duration on display monitors2 it is currently unknown

what effect, if any, using the Bridgeman method will have

on the results of a psychophysical study of temporal vision.

In this study, we sought to investigate the effect of vary-

ing refresh rate on measurements of temporal summation

for an achromatic spot stimulus, generated on a CRT dis-

play under photopic conditions. The purpose of this inves-

tigation was twofold. Primarily we wished to determine if

the selection of a low (60 Hz) or a high refresh rate

(160 Hz), in those studies employing frame based display

monitors, impacts upon the measurement of temporal

summation in healthy observers. We also wanted to deter-

mine the effect of specifying stimulus duration using the

SOF and Bridgeman methods on the perceived trends

within a psychophysical study of temporal vision.

Methods

Subjects

Three healthy volunteers, aged 25, 31 and 48 years with

normal or corrected–to-normal vision, were included in

this study. These included two of the authors (PJM and

RSA) and one naive observer (NCS). Corrected visual acu-

ity was �0.10 logMAR (Snellen 6/5 or 20/17) with a refrac-

tive error within �3 dioptres (D) and 0.50 D astigmatism

in all subjects. Each subject’s right eye was examined with a

natural pupil (5–7 mm diameter). Ethical approval was

gained from the London-Central National Research Ethics

Service committee and the research protocol adhered to the

tenets of the Declaration of Helsinki.

Apparatus & stimuli

Stimuli were presented on a c-corrected 21″ Phillips FIMI

MGD-403 achromatic CRT monitor (www.ampronix.com)

with a pixel resolution of 500 9 720. Two refresh rates of

60 Hz and 160 Hz were used. A ViSaGe MKII Visual Stim-

ulus Generator (ViSaGe, Cambridge Research Systems,

www.crsltd.com) and Cambridge Research Systems toolbox

(v.1.27) for MATLAB (version R2011a, www.math-

works.com) were used to generate stimuli. Chromaticity

co-ordinates of stimuli, background and central fixation

cross were x = 0.258 and y = 0.257 as measured using a

colorimeter (ColorCal MKII, Cambridge Research Systems,

www.crsltd.com). For all trials, circular stimuli of diameter

0.48° (equivalent to a Goldmann size III clinical perimetric

stimulus) were presented on a background of 10 cd m�2.

The CRT display was viewed from a distance of 60 cm with

subjects placing their head in a chin-rest during examina-

tions. All subjects were optically corrected for the test dis-

tance using full aperture trial lenses.

The temporal profile of luminance output from the CRT

display, in addition to the refresh rate of the display, was

measured using an Optical Transient Recorder 3 (OTR-3,

www.display-messtechnik.de/) configured for unipolar out-

put. To permit full measurement across the complete range

of possible contrast levels, a gain or amplitude setting of S3

and variable voltage range between 1 and 10 V were

employed, together with a receiver aperture of 3 mm. Prior

to any data collection measurements were performed in the
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Figure 3. (a) Schematic detailing how phosphor persistence/decay time (p) was calculated from phosphor activity plots. Dashed lines indicate the

start of the frame, decay time and end of frame (refresh 160 Hz). Stimulus duration as specified using the SOF and modified Bridgeman methods are

also listed for reference. (b,c) Phosphor decay times measured for the P45 phosphor at a range of (b) luminance and (c) energy output levels (Estim for

single frame presentation of one pixel area) for a CRT running at 60 (blue circles) and 160 Hz (red squares).
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absence of light (five measurements of 1 s duration) to

account for any noise within the OTR-3 device. All other

OTR-3 recordings were normalized using the mean ampli-

tude value in dark conditions as a baseline, any excursion

beyond this point representing light output.

Measurement of phosphor activity

Circular spot stimuli of diameter 42 mm and single frame

duration were presented at one of the test locations (8.8°
eccentricity along 45° meridian). The OTR-3 was posi-

tioned so that the centre of the receiver aperture was per-

pendicular to, and coincidental with, the centre of the test

stimulus. Measurements were repeated for all contrast lev-

els in an otherwise dark room.

Estimated stimulus contrast energy

To estimate contrast energy (DE) from luminance values,

we assumed the CRT luminance output to be a square

wave, with Equation 1 then used to estimate DE for stimuli

of varying duration. The value L corresponds to the lumi-

nance measurement collected by the ColorCal II, Lb the

background luminance, f the stimulus duration (expressed

as number of frames) and r the refresh rate.

DE ¼ f

r

� �
ðL� LbÞ ð1Þ

Calculation of stimulus duration

Stimulus duration was calculated using both the SOF (tsof)

and Bridgeman methods (tbn). Equation 2 was used to cal-

culate SOF durations in ms where f is the number of frames

within the stimulus and r the refresh rate.

tsof ¼ f
1000

r

� �
ð2Þ

Stimulus duration was also estimated from the point of

phosphor activation in the first frame to the temporal limit

of activity in the final frame of presentation (Bridgeman

method, Equation 3).

tbn ¼ ðf � 1Þ 1000

r

� �� �
þ p ð3Þ

Bridgeman1 suggests that a constant value for phosphor

persistence (p), or decay time, be incorporated in the calcu-

lation. Unfortunately the percentage decay to which p

should be measured (i.e. temporal limit of phosphor activ-

ity), together with the point above zero output that defines

the start of phosphor activity, was not specified. For the

purposes of this study we specified both the start and end

of phosphor activity within a frame to be 10% above base-

line (Figure 3a). When plotted as a function of luminance

output (Figure 3b) and energy values (Figure 3c, see supple-

mentary information for calculation of output energy from

OTR-3 measurements), no change in p was observed

(60 Hz: r2 = 0.11; 160 Hz: r2 = 0.10, both p > 0.05 for r2

values). In view of this p was calculated as the mean of all

measurements collected (1.8 ms).

Psychophysical procedure

Two subjects (RSA and NCS) underwent one complete

examination for each refresh rate. The experiment was per-

formed twice at each refresh rate (in a random order) for

subject PJM. In each experiment, contrast thresholds were

measured for achromatic spots (0.48°) of varying nominal

duration (10–200 ms) at 8.8° eccentricity in the visual field

along the 45°, 135°, 225° and 315° meridians, in an inter-

leaved fashion. A yes/no response paradigm was employed

with a 1/1 staircase that terminated after six reversals.

Threshold luminance was calculated as the mean of the

final four reversal values at each test location. Subjects were

instructed to fixate a central cross target and press a

response button if a stimulus was seen. Reliability was

assessed with blank presentations (false positive catch tri-

als) that accounted for approximately 30% of all presenta-

tions. The session was halted and repeated if the false

positive rate exceeded 20%. Prior to data collection, sub-

jects were given one or more practice sessions, until it was

clear that they fully understood the task.

Data analysis

Temporal summation functions were generated with stim-

ulus durations calculated as SOF (Equation 2) and Bridg-

eman equivalents (Equation 3). Each summation function,

expressed as log DE vs log stimulus duration, was con-

structed for each subject using thresholds (mean across all

test locations and test runs) for stimuli of different dura-

tions. Two-phase regression analysis8 was used to estimate

the critical duration from the temporal summation curves.

As part of this analysis, the slope of the first line was con-

strained to 0 in accordance with Bloch’s law (complete

temporal summation). The slope and intercept of the sec-

ond line, along with the point at which the two component

lines met (breakpoint), were free to vary. The critical dura-

tion was estimated, following multiple iterations (maxi-

mum 1000), as the breakpoint in the function.
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Results

When stimulus duration was expressed as SOF, equivalent

critical duration values were greater for stimuli presented

with the lower refresh rate of 60 Hz (mean 45.7 � 10.1

ms) compared with 160 Hz (mean 35.1 � 7.6 ms). This

trend was seen for all subjects with a mean difference of

10.6 � 2.8 ms (Figure 4, upper panel). This difference

was statistically significant when examined with a paired

t-test (p = 0.02). When the Bridgeman method was used

to estimate stimulus duration, minimal differences (mean

1.8 � 2.8 ms) in critical duration were observed with

refresh rate (Figure 4, lower panel). These differences were

not statistically significant (p = 0.43 in a paired t-test).

Mean critical duration values for the 60 Hz and 160 Hz

frame rates were 33.0 � 9.4 ms and 31.2 � 7.0 ms,

respectively. Unsurprisingly, the critical duration values

were shorter when stimulus duration was expressed using

the Bridgeman method compared to the SOF method. If

the data collected using the 60 Hz display are considered,

critical duration values are on average 12.7 ms shorter

using the Bridgeman durations compared to the SOF

equivalent. For the same method of threshold expression,

the discrepancy was much smaller (3.9 ms) for the

160 Hz data set.

The discrepancy in stimulus durations when expressed as

SOF and Bridgeman equivalents (mean values across all

locations and subjects in study) for each nominal stimulus

duration (i.e. those specified in experimental code) may be

seen more clearly in Figure 5. The SOF method consistently

yields higher estimates of stimulus duration across the

range of stimuli presented in this study. This discrepancy is

greatest for the lower refresh rate of 60 Hz. It may also be

seen that for stimuli of single frame duration the SOF

method can introduce particularly large errors, these inac-

curacies being greatest for displays running with a low

refresh rate.

Discussion

Temporal summation with variations in refresh rate

The present study shows that the critical duration of tem-

poral summation for a perceptually single achromatic spot

stimulus is independent of CRT refresh rate when the

Bridgeman method, incorporating measured values of

Figure 4. Temporal summation functions for threshold data expressed as contrast energy values for individual subjects and stimulus durations speci-

fied as SOF equivalent (upper panel) and Bridgeman values (lower panel). Error bars included represent the standard error of the mean (S.E.M.). The

breakpoint in each function (dashed line) indicates the critical duration.
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phosphor persistence, is used to estimate stimulus dura-

tion. Although no previous experiment has investigated the

temporal summation of a CRT signal, a variety of studies

have explored the summation of pairs of incremental stim-

uli presented with varying temporal separations. A finding

common to these studies is the complete summation of

energy for temporally double-pulsed spot stimuli when pre-

sented with short inter-stimulus intervals up to a critical

duration.9–12 After this partial summation is observed until

a point is reached at a separation of approximately 60 ms

where cancellation or inhibition is seen to occur.11,12 Such

trends have been attributed to the presence of bi-phasic

temporal filters in the visual system.11

If the response to the temporally modulated stimulus at

threshold is considered to be mediated by a linear filter (see

Watson13 for a review), it can be shown that the visual

thresholds within the critical duration should not change

with the refresh rate of the monitor. It has been proposed

that the response of the visual system will be constant if the

product of the amplitude spectra of the stimulus and

amplitude response of the linear filter is equal within the

critical duration.13 Assuming that the amplitude response

remains constant within each subject under the conditions

of this experiment (i.e. identical background luminance,

stimuli, etc.), it can be seen from the amplitude spectra

(Figure 6, lower panel) that the peak amplitude (1st har-

monic) is identical for the 60 Hz and 160 Hz stimuli.

Treating the visual system as a linear filter with a certain

amplitude response with a maximum at 7–8 Hz and a cut

off frequency at about 40 Hz,14 it can be seen that increas-

ing the refresh rate of the display should not significantly

influence the product (convolution) of the amplitude spec-

tra of the stimulus and the amplitude response of the linear

filter in the range of maximal response, with the result that

visual thresholds and thus the critical duration will remain

invariant of refresh rate.

One study has, however, challenged the notion that the

visual system may completely sum stimuli presented on a

CRT display with a low refresh rate. Using a large stimulus

diameter (17°) and high retinal illuminance (700 trolands),

Rashbass12 found summation to be incomplete when the

time interval between two successive incremental pulses

was 8 ms, this being noticeably shorter than the critical

duration (16 ms) found under identical test conditions for

a single stimulus of equal total duration and area. One pos-

sible explanation for the discrepancy between the work of

Rashbass12 and the results of this study is the experimental

conditions used. The temporal summation of single stimuli

is known to be influenced by a number of factors including

stimulus area15,16 and background adapting luminance,17

with a shorter critical duration at higher adapting illumi-

nance and larger stimulus size. In a similar fashion, the

summation of stimuli composed of multiple incremental

pulses is affected by factors relating to both the stimulus

and environment.11,13 It is thus likely that the relatively

smaller stimulus (0.48°) and lower background luminance

(10 cd m�2) used in this investigation would lead to a

longer critical duration in a temporal double-pulse experi-

ment and, as a result, no difference in the critical duration

with refresh rate.

Specifying stimulus duration

The inherent difficulty in estimating the duration of a stim-

ulus presented on any display monitor has been widely

reported in published literature.1–3,18 In agreement with

previous work, the SOF method, as applied in this study,

appears to overestimate durations for stimuli with a small

number of constituent frames.1,4,18 Significantly, these dis-

parities appear to be greater when the lower refresh rate of

60 Hz was selected (Figure 5). Considering the example of

a nominal 10 ms stimulus reproduced on a display with a

60 Hz refresh rate, the SOF estimation of duration (one

frame, 16.7 ms) is 828% greater than the Bridgeman equiv-

alent (1.8 ms) for the group of subjects in this study. For

the same stimulus generated on a display running at

160 Hz (two frames, tsof = 12.5 ms, tbn = 8.1 ms), the dis-

crepancy is smaller (54%). These differences and their rela-

tive effect on psychophysical thresholds are, however,

partly dependent upon the type of phosphor used. Di Lollo

Figure 5. Comparison of stimulus duration as estimated using the SOF

(squares) and Bridgeman methods (circles) for stimuli generated on dis-

play with 60 (blue) and 160 Hz frame rates (red). Nominal stimulus

durations represent the duration specified in the experimental code.

The number of constituent frames in each stimulus is included as a label

on the Bridgeman data points.
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et al.19 found the persistence of the P31 phosphor to be vis-

ible several hundred milliseconds after presumed stimulus

offset in dark-adapted conditions and also in the presence

of a ‘veiling glare’ (achieved with two lamps with an output

attenuated to 0.33 cd m�2). This effect was amplified for

displays using phosphors of high persistence and stimuli of

high luminance.

A number of authors have questioned the value in accu-

rately specifying the duration of stimuli when shorter than

the critical duration.18 It is well established that spatial and

temporal resolution decrease with increasing levels of sum-

mation,20 thus if a stimulus is shorter than the critical dura-

tion, the visual system will only differentiate on the basis of

luminous flux and not duration. The results of this study

present a strong argument against this view. When examin-

ing the temporal aspects of vision, such as summation, it is

clear that small discrepancies in stated duration can induce

large deviations from the true trends in a given data set.

Elze4 in an examination of simulated frequency-of-seeing

data found the maximum likelihood method used to gener-

ate each psychometric function to be influenced by the

method used to estimate stimulus duration. This difference

was attributed to lack of assumed proportionality of the

SOF method compared with the Bridgeman calculation.

More simply, a stimulus composed of two frames is

assumed by the SOF to be double the duration of a single

frame presentation. This is not the case when duration is

specified as a Bridgeman equivalent. In a similar fashion

the results of the iterative two-phase regression analysis

used to estimate the critical duration in this study was also

influenced by the method chosen to estimate stimulus

duration.

In this study, Bridgeman’s method was exclusively

applied to estimate the duration of stimuli generated on a

CRT display. The use of this calculation may, however, be

also extended to describing the duration of stimuli pro-

duced on other display types such as organic light-emitting

diode (OLED) monitors whose pulsed output resembles

that of a CRT.21 Although the temporal output of OLED

monitors varies from that of a CRT (i.e. a more rapid decay

to 0% of peak output within a frame) there appears to be a

period within each frame where no energy output takes

Figure 6. Schematic temporal profile (upper panel) of threshold stimuli of duration shorter than the critical duration (12 & 24 ms, equal total energy)

generated with temporal frequencies of 1 Hz (leftmost plot, black lines), 60 Hz (centre plot, blue lines) and 160 Hz (rightmost plot, red lines) along

with corresponding amplitude spectra (lower panel). The 1 Hz frequency is included for illustration only as reference to a true square wave stimulus.
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place. Ito et al.21 demonstrated that a stimulus alternating

in RGB values from (255, 255, 255) to (192, 192, 192) with

each frame refresh on a Sony PVM-2541 OLED monitor

(refresh rate 60 Hz) led to periods of light emission

(~7.5 ms) followed by intervals (~9.2 ms) where no light

output was detected. Considering this evidence it is also

likely that very short duration stimuli produced on OLED

displays might also suffer from over-estimations of stimu-

lus duration should the SOF method be used. In this situa-

tion the Bridgeman method incorporating persistence (p)

values equal to the period of light emission in a single

frame could be applied to improve the accuracy of any esti-

mates of stimulus duration.

Refresh rate selection

The issue of temporal presentation artefacts associated with

display monitors, together with methods for their reduc-

tion, has been widely discussed within the psychophysical

literature. Specifically, temporal variations in luminance

output secondary to phosphor decay in CRT displays have

been highlighted as a drawback when attempting to accu-

rately estimate the duration of stimuli presented and also

replicate stimuli with square wave temporal profiles.1–3 To

partially alleviate such issues, it has been suggested that a

high refresh rate should be employed. This assertion

appears to have been made without regard to how the

visual system sums the temporal output from a CRT dis-

play or whether varying refresh rate impacts upon psycho-

physical thresholds. It is clear from the results of this study

that the upper limit of complete temporal summation

remains constant in contrast energy terms despite variations

in the nature of energy delivery resulting from changes to

refresh rate. Despite potentially influencing the activity of

retinal ganglion cells6 and cortical neurons in area V1,7 low

refresh rates do not appear to impact upon the investiga-

tion of temporal vision provided output from the CRT dis-

play is accurately characterised in terms of both energy and

duration using appropriate metrics.

A wide range of CRT refresh rates have been selected for

use in both the clinical and basic psychophysical examina-

tion of vision, in order to reduce neural artifacts,6,22

improve temporal resolution,3 reduce flicker perception at

high background luminance1 and also reduce the effects of

adaptation to invisible flicker on visual sensitivity.7 In this

study, we have demonstrated that the selection of refresh

rate may also have an effect on the ability to accurately

specify stimulus duration, thus leading to secondary and,

most importantly, artificial variations when investigating

temporal visual processing. Interestingly, the difference

between critical duration values estimated using SOF stim-

ulus durations, compared with the more accurate Bridg-

eman durations, was smallest when a high refresh rate was

used. This finding may be due to an improved correspon-

dence between the temporal profile of a stimulus produced

with a high refresh rate and the contiguous energy output

assumed by the SOF method of classifying stimulus dura-

tion on a CRT display. As the measurement of energy out-

put, or indeed phosphor decay time, may not be

practicable in all situations, it is strongly advisable that,

when using the SOF method, a high refresh rate be used

where possible to reduce any disparities between the real

and estimated stimulus durations.

Conclusions

CRT displays continue to offer psychophysicists the ability

to present a wide variety of accurately calibrated visual

stimuli. The capability of the visual system to sum energy

delivered over a given temporal window appears to be inde-

pendent of duty cycle changes, secondary to variations in

refresh rate, for an achromatic stimulus of 0.48° diameter.

It is clear from the results of this study that the quantifica-

tion of CRT output, specifically presentation duration, can

greatly impact upon the investigation of temporal vision

using this class of display monitor. The use of accurate met-

rics that make reference to the real temporal profile of

monitor output partially alleviate such issues and have the

potential to serve as universal metrics through which data

collected using varying CRT refresh rates, or indeed of dif-

ferent monitor types, may be accurately, and more impor-

tantly, validly compared.
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