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Abstract—The detection of brain responses corresponding to
the presentation of a particular class of images is a challenge
in Brain-Machine Interface (BMI). Brain decoding is nowadays
possible thanks to advanced brain recording devices (fMRI,
EEG, MEG), and the use of appropriate signal processing and
machine learning techniques. Current systems based on the
detection of brain responses during rapid serial visual presen-
tation (RSVP) tasks use EEG recording. We propose to evaluate
the performance of single-trial detection with signal recorded
with magnetoencephalography (MEG) during an RSVP task
where participants were asked to detect images containing a
person. We compare several classifiers (LDA, BLDA, k-nearest
neighbor, support-vector machines) with spatial filtering, and
with different sets of channels (magneto-meters, gradio-meters,
all the channels). The results suggest that single-trial detection
can be obtained with an AUC superior to 0.95, while typical
studies based on EEG recordings using the same type of tasks,
the AUC is often around 0.8. The present results show that
MEG can be successfully used for target detection during a
difficult RSVP task.

I. INTRODUCTION

Magnetoencephalography (MEG) signal has several ad-
vantages over EEG signal. First , it allows to measure non-
invasively the ongoing brain activity with sub-millisecond
time resolution. Second, it is possible to obtain a high spatial
resolution thanks to the 306 sensors that are distributed over
the head. Therefore, it can be possible to localize in the
brain with certain accuracy where the activity is produced.
Thanks to those properties, MEG is well suited for studying
the human brain dynamics and the different brain areas that
are involved during various cognitive tasks [1]. While the
main applications of MEG are related to clinical studies and
neuroscience research, other potential applications can be
possible in relation to what has been done during several
decades with EEG in the field of Brain-Machine Interface
(BMI). Like MEG, electroencephalography (EEG) has an
excellent temporal resolution, but MEG has a more precise
spatial resolution by mapping the magnetic sources in the
brain.

The neuromagnetic fields of the brain are very small, and
they are usually in the order of 50-500 fT (10-15 Tesla).
The neurmagnetic fields that are originated from the brain
correspond to the resulting current of a synaptic input to
a neuron. In order to detect the magnetic field outside the
skull, it is necessary that a large population of neurons

receives synaptic inputs within a short time-window. MEG
is based on superconducting quantum interference device
(SQUID) technology that was originally introduced in the
1960s. Current MEG systems contain a large number of
SQUIDs connected to sensor coils in a helmet-like config-
uration. The MEG system must be placed in a magnetic
shielded room due to the environmental magnetic noise that
is higher than the magnetic fields coming from the head
of a subject. Contrary to EEG recording where the cap is
placed on a precise location on the head with an international
system for the placement of the electrodes, the subject in
an MEG system does not have his head against precise
sensors. However, several sensors are placed on the head
of the subject to readjust the recorded MEG signal to a
normalized position. For instance, transformation of MEG
signals between different head positions can be performed
with Signal Space Separation (SSS) method.

Brain decoding is a popular research field as it aims at
decoding the information in the brain [2], [3], [4]. Several
types of tasks can be achieved: classification, identification,
and reconstruction. Let us consider a set of N different
stimuli {x1, . . . , xN} with their respective labels coded as
a number {y1, . . . , yN}, and si the recorded brain activity
corresponding to the presentation of xi, 1 ≤ i ≤ N .
Classification tasks aim at determining a function Fc, such
that Fc(si) = yi. The function Fd corresponding to an iden-
tification task can be defined by Fd(si, {x1, . . . , xk}) = xi,
where {x1, . . . , xk} is a subset of stimuli, with k ≤ N .
In reconstruction, the purpose is to find a function Fr,
such that Fr(si) = xi. Such a task includes visual image
reconstruction from human brain activity [5]. In this paper,
we will consider a binary classification task.

The stability of the spatial distribution, the amplitude,
and the latency of a brain evoked response are the key
elements that allow robust single-trial detection. Thanks to
signal processing methods that can denoise the signal and
enhance its main discriminant characteristics, and advanced
machine learning techniques, it is possible to detect brain
evoked responses. This principle has been used in BMI to
detect specific event-related potentials [6]. Several research
groups have developed BMI virtual keyboards that are based
on the detection of the ERP components such as the P300 [7]
and the N200 [8]. Despite the stability of these ERP compo-
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nents, accurate and reliable detection of the specific neural
responses often requires averaging multiple responses. For
instance, it is common that about ten trials are averaged in
BMI virtual keyboards to optimize the accuracy [9]. The
requirements of several trials is mainly due to the noise
in the EEG that is not task-related, and by the spatially
diffuse distribution of the brain responses across sensors.
Although averaging the signal from multiple brain responses
can increase the efficiency of detection, it also decreases
the information transfer rate of the BMI due to the number
of trials that are needed to reach a robust decision [10].
Moreover, there exist tasks where it is not possible to repeat
the visual stimuli: they appear only one time [11]. It happens
when a subject watches a video. Each frame of the video is
presented only one time. Thanks to the high spatial resolution
of MEG, it is expected to achieve high performance in single-
trial detection.

One application that has gained attention in the past decade
has been single-trial target detection in rapid serial visual
presentation (RSVP) tasks [12], [13]. In the RSVP paradigm,
a rapid sequence of images are presented sequentially to
subjects in the same location on a screen [14], [15]. The
stream of images contains different types of visual stimuli,
which can be classified as targets or non-targets. In relation
to the task given to the object, i.e., increment an imaginary
variable each time an image corresponding to a particular
class is presented, different brain responses will be evoked.
This paradigm has been successfully used during visual
search (e.g., the triage of satellite images [16], [17], [18],
[19], [20], face recognition tasks [21]). The main advantage
of the RSVP task is that the speed of the stimulus sequence
combined with single-trial detection can provide a means
to increase the information transfer rates in BMI systems.
In a previous international competition (MLSP) [22] using
an RSVP task with EEG recordings, the area under the
receiver operating characteristic (ROC) curve (AUC) [23] of
the best subjects reached only about 0.82. While this result is
significantly above a random decision, the decision of several
trials should be combined to obtain a perfect accuracy.

Working with high quality signals is critical for high per-
formance in single-trial classification. The primary purpose
of the present study is to investigate the performance of
various classifiers, with the addition of spatial filtering, on
the single-trial detection of brain responses recorded during
a difficult RSVP task with MEG. Parra et al. [24] show
the relevance of linear analysis methods for discriminating
between different events in single-trial. Other efficient strate-
gies without spatial filtering have been proposed for EEG
single-trial detection that can be also used for MEG. The
methods in the literature include linear classifiers (Fisher’s
linear discriminant analysis), Bayesian Linear Discriminant
Analysis [25], [26], support vector machines (SVM) [9], and
artificial neural networks [27], [28]. The remainder of the
paper is organized as follows. First, we present the experi-
mental protocol. Second, we describe the signal processing
and classification methods. Finally, the results are presented

and discussed in the last two sections.

II. METHODS

A. Subjects

Three volunteer healthy male subjects participated to the
study (mean=30 sd=5.2). All participants provided written
informed consent, reported normal or corrected-to-normal
vision, and no history of neurological problems. All partic-
ipants had no experience with MEG recordings. Only one
subject had prior experience with the task.

B. Visual stimuli

Visual stimuli consisted of 300 color images (256 × 256
pixel). These images were taken from “Insurgency: Modern
Infantry Combat” (Insurgency Team), a total conversion
modification of the video game “Half-Life 2” (Valve cor-
poration) that is available on Steam®. The realistic images
were separated into target scenes that contained a person
(100 images) and non-target scenes that did not contain
a person (200 images). Figure 1 depicts several examples
of the images that were presented during the experiments.
The images were presented on a screen with a resolution
of 1920 × 1080 pixels and a refresh rate of 60 Hz. The
images were centered on the screen (visual angle ≈ 20o).
Participants were seated comfortably 100 cm from the screen
in a darkened electromagnetically shielded chamber.

Fig. 1. Examples of visual stimuli (targets (top) vs. non-target (bottom)).

C. Procedure and design

The rapid serial visual presentation task had the following
properties: the stimulus onset asynchrony was set to 250 ms,
i.e., the images were presented at 4 Hz. The inter-stimulus
interval was set to 0 s, i.e., there was no blank between two
images. The target probability was set to 10% [29]. The set
of images was shuffled in such a way that it was not possible
to see an image two times in row. Moreover, an additional



constraint was set to the stream of images: it was not possible
to see consecutively two images corresponding to a target.
The duration of the experiment was 16.66 minutes, which
corresponds to the presentation of 4000 images (3600 non-
targets, and 400 targets).

D. Signal acquisition
The data was recorded with an Elekta Neuromag 306-

channel MEG system at the Intelligent Systems Research
Centre (ISRC), Ulster University, Derry/Londonderry, UK.
The signal was recorded with a sampling rate of 1 kHz using
204 planar gradio-meters and 102 magneto-meters, based on
thin-film technology. The planar gradio-meters are mostly
sensitive to fields arising from nearby sources, whereas the
magneto-meters couple strongly also to distant sources, and
therefore the system provides accurate information of both
brain signals and the interference. EMG electrodes were
placed close to the eye to monitor eye blinks. Five head
position indicator (HPI) coils were placed on the head to
monitor eye movement during the task.

E. Temporal and spatial filtering
A common first step in analyzing the MEG data is to pre-

process the signal using the Neuromag sofware Maxfilter 2.2
that implements Signal-Space Separation (SSS). The SSS
method idealizes magnetic multichannel signals by trans-
forming them into device-independent idealized channels
representing the measured data in uncorrelated form [30],
[31], [32]. The method is a purely spatial method to trans-
form electromagnetic multi-channel signals into uncorrelated
basic components. It separates magnetic signals coming from
within the brain from those coming from outside. This pro-
cessing step is useful for removing noise, particularly using
its temporal extension (tSSS), for detecting bad channels,
for interpolated data after movement if continuous HPI was
recorded, and for moving the data to a standard space that
can be analyzed across subjects. After applying SSS on the
recorded signal, the signal was downsampled to 125 Hz,
and bandpass-filtered between 0.1 Hz and 41.66 Hz. A time
segment of 640 ms (80 time points) was used to capture ERP
components, such as the P300 and N200, can appear during
the presentation of a target as expected by the experimental
protocol.

The next step consisted of enhancing the relevant signal
using the xDAWN spatial filtering approach [33], which was
also used for sensor selection [34], [35], [36]. In this method,
spatial filters are obtained through the Rayleigh quotient by
maximizing the signal-to-signal plus noise ratio (SSNR) [37].
The signal corresponds to the information relative to the
presentation of a target. The result of this process provides
Nf spatial filters that are ranked in terms of their SSNR. The
enhanced signal XU is composed of three terms: the ERP
responses on a target class (D1A1), a response common to
all stimuli, i.e., all targets (images with a person) and non-
targets (images without a person) confound (D2A2), and the
residual noise (H), that are all filtered spatially with U .

XU = (D1A1 +D2A2 +H)U. (1)

where {D1, D2} ∈ RNt×N1 are two Toeplitz matrices, N1

is the number of sampling points representing the target and
superimposed evoked potentials (640 ms), and H ∈ RNt×Ns .
The spatial filters U maximize the SSNR:

SSNR(U) = argmax U

Tr(UT ÂT
1D

T
1 D1Â1U)

Tr(UTXTXU)
(2)

where Â1 represents the least mean square estimation of A1:

Â =

[
Â1

Â2

]
= ([D1;D2]

T [D1;D2])
−1[D1;D2]

TX(3)

where [D1;D2] ∈ RNt×(N1+N2) is obtained by concatena-
tion of D1 and D2, and Tr(.) denotes the trace operator.

F. Classification
For the classification we consider the two first best spatial

filters (Nf = 2). For the binary classification of target versus
non-target images, we have used: LDA, BLDA, k-nearest
neighbors (k-nn), and SVM, with a 4-fold cross validation
procedure. The performance of single-trial classification in
the subsequent sections was assessed by the area under
the ROC curve. We evaluate the performance for three
conditions: (1) the use of all magneto-meters (102 channels),
(2) all the gradio-meters (204 channels), and (3) all the 306
channels.

III. RESULTS

A. Evoked responses
Before classification, the signal was checked with Brain-

storm [38]. The amplitude fluctuations over time for all the
sensors are presented in Figure 2 for both the gradio-meters
and the magneto-meters. The spatial distribution for two key
time points are depicted in Figure 4. At 200 ms, it is possible
to observe a strong activity in the occipital area, while at
350 ms the activity is more important in the parietal region.
Those results are coherent with results in the event-related
potential literature with EEG studies [39].

B. Single-trial detection
The performance for single-trial detection is presented for

each classifier and each subject in Table I, II, III, and IV.
The best performance is obtained with the BLDA classifier,
with a mean AUC=0.894 ± 0.043. The best subject has a
mean AUC of 0.960. It is worth mentioning that this subject
was also the subject who had experience with the RSVP
task. Other subjects provided comments about the difficulty
of the task, as it is difficult to focus for a long time. The
information transfer rate (ITR) in bits per minute (bpm) is
defined by ITR= 60

T · ψ where ψ, the information transfer
rate, in bits per symbol, is defined by:

ψ = ϑ0 − ϑ1 (4)

ϑ0 = −
Nout∑
j=1

p(wj) · log2(p(wj)) (5)

ϑ1 = −
Nout∑
i=1

Nout∑
j=1

p(wi) · p(wj |wi) · log2(p(wj |wi))(6)



Fig. 2. Representation of the grand averaged difference between targets and non-target for both magneto-meters (left) and gradio-meters (right) for a
representative subject (s1).

Fig. 3. ROC curve of the xDAWN+BLDA classification: magneto-meter channels (left), gradio-meter channels (middle), all channels (right). The bold
curve represents an estimation of the mean AUC across subjects.

where Nout being the number of possible different outputs,
and T being the time in seconds of recorded MEG signal
that is required to take the decision among the Nout outputs.
Due to the constraint of the target probability of 10%, we
consider the Nykopp definition of the ITR, and Nout = 2
with p(w1) = 0.1 and p(w2) = 0.9 are the prior probabilities.
p(wj |wi) being the element (i, j) in the confusion matrix of
the classification obtained with a threshold set to maximize
the f-score in the training data-set. The ITR for the best
subject reaches 0.46 bits/symbol, or 110 bits/minute.

IV. DISCUSSION

Despite the current requirements for technologies such
as MEG and fMRI in term of cost and space, it is highly
anticipated that those devices will become portable and
smaller in a near future, following the same evolution of EEG
amplifier devices. For this reason, MEG based BMI systems
stay relevant thanks to the quality of the signal obtained by

TABLE I
AUC FOR XDAWN+BLDA CLASSIFICATION.

Subject Mag Grad All
s1 0.960± 0.023 0.960± 0.022 0.957± 0.024
s2 0.887± 0.058 0.882± 0.062 0.877± 0.065
s3 0.835± 0.048 0.819± 0.041 0.806± 0.034

Mean 0.894± 0.043 0.887± 0.042 0.880± 0.041
SD 0.063± 0.018 0.071± 0.020 0.076± 0.022

TABLE II
AUC FOR XDAWN+LDA CLASSIFICATION.

Subject Mag Grad All
s1 0.943± 0.032 0.941± 0.033 0.942± 0.027
s2 0.869± 0.066 0.870± 0.070 0.859± 0.073
s3 0.813± 0.042 0.797± 0.034 0.783± 0.025

Mean 0.875± 0.047 0.869± 0.045 0.861± 0.042
SD 0.065± 0.017 0.072± 0.021 0.079± 0.027

the high time and space resolution. Whereas the size of the
device can be an issue for BMI that are used at home for



Fig. 4. Spatial distribution corresponding to the difference between targets
and non-target at 200 ms (top) and 350 ms (bottom).

TABLE III
AUC FOR XDAWN+KNN (K=5) CLASSIFICATION.

Subject Mag Grad All
s1 0.896± 0.052 0.899± 0.063 0.890± 0.056
s2 0.781± 0.101 0.762± 0.117 0.770± 0.116
s3 0.703± 0.051 0.697± 0.053 0.683± 0.055

Mean 0.793± 0.068 0.786± 0.077 0.781± 0.075
SD 0.097± 0.029 0.103± 0.035 0.104± 0.035

TABLE IV
AUC FOR XDAWN+SVM CLASSIFICATION.

Subject Mag Grad All
s1 0.941± 0.013 0.938± 0.018 0.924± 0.015
s2 0.601± 0.135 0.571± 0.164 0.645± 0.190
s3 0.501± 0.015 0.523± 0.039 0.536± 0.008

Mean 0.681± 0.054 0.678± 0.073 0.702± 0.071
SD 0.231± 0.070 0.227± 0.079 0.201± 0.104

patient rehabilitation, MEG signal can probably significantly
improve the quality of therapy sessions using neurofeedback
thanks to the definition of more precise sources. Indeed, it
may be judicious to have shorter session with a patient using
an MEG based system, than long sessions with a portable
EEG system. Brain recording devices have been mainly used
for clinical applications. Yet, BMI can be advantageously ex-
ploited for military applications [40], where the performance,
the accuracy of the decision is the main goal. In addition,
for target-detection systems based on the detection of brain
responses, the size of the signal recording device may not be
an issue.

In the presented study, the images in the RSVP task
were realistic images with no control on the contrast or
the color. The characters were always placed at the fixation
point but in various angles, and under different shades.
Because the images for both the target and non-target classes
contained objects that are contextually inconsistent, it can be
assumed that the task was more difficult than the detection of
more simpler objects (e.g., geometric shapes). With the high
number of channels, the number of trials may not have been
high enough to train the classifier, and to estimate the spatial
filters. Moreover, the spatial filters were only estimated on
a large time segment. The estimation of spatial filters on
different time segments may provide better results.

The current classification task did only involve two cat-
egories of images. Since novel images may be processed
and be visually close to the target images, it would impair
the performance. If the categories of images are very close,
then the difficulty of the task increases, and the subject
has to find a feature that will allow him to discriminate
between the two classes. This new feature may have an
impact on the characteristics of the brain evoked response.
This is why incremental solutions should be implemented to
track potential changes of the problem over time (the images
become too noisy, the difficulty of the task changes).

V. CONCLUSION

In this paper, we have shown that it is possible to
achieve high performance for single-trial detection of brain
responses corresponding to the presentation of images during
a rapid serial visual presentation task. The performance with
magneto-meters was relatively similar to the performance
using gradio-meters. Hence, this study suggests that only
102 channels could be enough to perform robust single-
trial detection. Different approaches should be investigated
to better take into account unique brain patterns that can
be found with the gradio-meters. Future works will include
the addition of other classes of images to go beyond binary
single-trial detection.
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