
Greedy Multi-Class Label Propagation
Hubert Cecotti

School of Computing and Intelligent Systems
Ulster University

Londonderry, Northern Ireland, UK
email: h.cecotti@ulster.ac.uk

Abstract—In many real-world applications such as image
classification, labeled training examples are difficult to ob-
tain while unlabeled examples are readily available. In this
context, semi-supervised learning methods take advantage of
both labeled and unlabeled examples. In this paper, a greedy
graph-based semi-supervised learning (GGSL) approach is
proposed for multi-class classification problems. The labels are
propagated through different graphs, which are obtained with
neighborhoods of different sizes. The method assumes that
nearby points share the same label, by starting with a small
neighborhood where a reliable decision can be obtained, and
iterates with larger neighborhoods where more examples are
needed to determine the label of an example. The experimental
results on toy data-sets and real data-sets, such as handwritten
digit recognition, demonstrate the effectiveness of the proposed
approach if a well chosen distance is used. Finally, the method
does not require the tuning of hyper-parameters. We show
that it is possible to achieve a recognition rate of 97.16% on
handwritten digits (MNIST) while considering only one labeled
example per class in the training data-set.

I. INTRODUCTION

In many real-world applications that rely on the classifi-
cation of objects, the creation of those classifiers can suffer
from a lack of labeled data because labeling a large amount
of data requires a lots of time [1]. Thanks to internet and
the emergence of the Big Data paradigm, it is now possible
to easily access large databases of documents (texts and
images). However, only a small part of those databases are la-
beled, and could be useful for classifiers based on supervised
learning. In supervised learning methods such as Support
Vector Machine (SVM), Multi-Layer Perceptron, that predict
labels, only the labeled examples are used. In unsupervised
learning problems such as clustering, only unlabeled data are
used. To take advantage of the current situation where a large
amount of unlabeled data and a minority of data is labeled,
semi-supervised learning (SSL) methods have been proposed
to take advantage of both labeled and unlabeled data for the
creation of efficient classifiers.

Those approaches are typically used when only few la-
beled examples are available, while there exists a large
amount of unlabeled examples. Due the emergence of large
databases that must be classified, it is unrealistic to label
a large database manually, and classical supervised method
may not grasp the complexity of the data with only a limited
number of labeled examples. In addition, it is relatively
inexpensive to acquire new data that may improve the
performance of a classifier.

In semi-supervised learning, several approaches have been

proposed [2]. Transductive SVMs optimize margins of both
labeled and unlabeled examples [3], [4]. Some other ap-
proaches use the cluster assumption. In this case, the clas-
sifier takes into account decision boundaries through low-
density regions in the input feature space. Most of the
techniques in semi-supervised learning are graph-based tech-
niques [5], [6], [7], [8]. Most of the semi-supervised learning
approaches rely on two assumptions. The first one is the
cluster assumption. It assumes that examples associated to
the same cluster, or the same group of clusters, will share
the same label. The second hypothesis is the manifold
assumption, which considers that examples that are close to
each other will have the same label. The label prediction of
an example x will depend on both the labeled and unlabeled
examples that are very close to x. Depending on the data,
those assumptions can be difficult to obtain. It is particularly
the case for problems where a linear classifier can be used
(e.g., two Gaussian distributions) where a large overlap
between classes can occur, i.e., the data density remains high
close to the decision surface.

The remainder of the paper is organized as follows:
First, we define the graph based semi-supervised learning
approach. Then, we propose a new greedy semi-supervised
learning method in Section III. The presentation of the
performance on toy data-sets and real data-sets are given
in Section IV. Finally, the performance of the proposed
technique is discussed in Section V.

II. GRAPH BASED SEMI-SUPERVISED LEARNING

In semi-supervised learning, many methods rely on the
geometry of the data (e.g., distance between data points)
by using both labeled and unlabeled examples to improve
classification accuracy on regular supervised techniques [9].
Among the techniques that have been proposed in the liter-
ature, a key family of the semi-supervised learning methods
are based on graphs. They offer flexibility and are relatively
easy to implement.

The same way that in supervised learning, a classifier
will benefit from discriminant inputs that can allow a linear
separation between classes, graph based semi-supervised
technique will benefit from a graph that respects the manifold
and cluster assumption. For instance, the k-nearest neighbor
(k-nn) classifier has some drawbacks in term of complexity,
and for the choice of the parameter. However, a bad perfor-
mance with k-nn may result from a poorly chosen distance.
If the Euclidean distance is applied in a problem where this

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ulster University's Research Portal

https://core.ac.uk/display/287020537?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

distance does not respect the manifold assumption, then it
may be difficult to correct the errors that are due to the
distance.

In those methods, a graph g = (V,E) is defined by the
nodes V = {1, . . . , n}, which represent all the n examples of
a training database X = {x1, . . . , xn}, and edges E, which
represent the similarities between examples. The similarities
are typically represented by a weight matrix W ∈ Rn×n.
A cell W (i, j) corresponds to the similarity between the
example xi and xj , i.e., the edge (i, j) in E. If xi and xj are
close to each other (they belong to the same neighborhood),
then W (i, j) has a non-zero value.

A key research problem is the definition of W , which can
be non-trivial for real-world problems with large multivariate
data that include non-trivial underlying structures. W can be
instantiated in different ways. W can correspond to the direct
k-nearest neighbor matrix.

W (i, j) =

{
1 iff xi ∈ N(xj)
0 otherwise (1)

where N(xj) represents the set of examples in the neighbor-
hood of xj . In this case, W is sensible to the the parameter
k, and the weights that are used for each neighbor in N(xj).

Another way to initialize W is to consider a Gaussian
kernel:

W (i, j) = e−
‖xi−xj‖2

2σ2 (2)

where σ is the width of the kernel. In this case, W is defined
as a symmetric positive function (∀(i, j) ∈ {1, . . . , n}2,
W (i, j) = W (j, i) and W (i, j) > 0). The Gaussian kernel
is a fine distance in pairwise graph-based methods. How-
ever, there is no completely reliable method for determining
the optimal value of σ. It has been shown that a small
change of σ can significantly change the classification per-
formance [10]. In addition, it may be better to set different
σ for different dimensions and classes.

We define now Ws ∈ Rn×k and Es ∈ Nn×k. Ws

contains for each example xi, the sorted weights of the
k neighbor examples of xi. Es contains for each example
xi, the associated list of the edges corresponding to the
closest neighbors. We have Ws(i, 1) = 0 and Es(i, 1) = i,
because each point is its closest neighbor in the graph. This
representation allows to store the data in O(kn), which is
significantly smaller than a storage in O(n2).

A type of technique for semi-supervised learning is to
propagate labels on the graph g. For the binary classification,
there are M = 2 classes, we consider the set of l labeled
examples Xl, with their respective label Yl. Each labeled
example is defined by (xi, yi), with 1 ≤ i ≤ l. If xi belongs
to the first class, yi = −1; if xi belongs to the second class,
yi = 1. We also consider the set of u unlabeled examples
Xu, with predefined labels Yu set to 0. In the graph, Xl and
Xu correspond to the nodes 1 to l, and l+1 to n, respectively.
Label propagation techniques are iterative algorithms.

III. GREEDY SEMI-SUPERVISED LEARNING

In this section, we present a greedy semi-supervised
learning method. The main advantages of this method come
from its ability to process several classes simultaneously,
and more importantly, from its storage requirement as it
does not need to use a large matrix W , which can be a
significant issue for large databases. Moreover, typical graph-
based semi supervised learning methods deal with label
propagation only in binary classification. The multi-class
variation of those algorithms uses a one-versus-rest strategy.
For instance, the labeled examples of one class are set to
yi = 1 if xi belongs to class C1, yi = 0 otherwise, with
1 ≤ i ≤ l. Contrary to this common approach, the proposed
method allows to process several classes directly. In other
graph-based methods, parameters such as the size of the
neighborhood (k), and the σ, which is often set empirically,
are pre-defined. Instead of having a single iteration step, the
greedy approach has two iterative stages.

The method takes as inputs Ws, Es, and the associated
ground truth Y , where yi = m if xi belongs to the class
m ∈ {1..M}, and yi = −1 if xi is unlabeled (it is a
default value). The initial value of k, kmin, corresponds to
the initial size of the neighborhood that is considered, and
this value is set to the minimum number of labeled examples
that can be found in one of the M classes. At the beginning
of the procedure, an unlabeled example can have at least k
examples of its own class in his neighborhood. kmax is the
maximum number of neighbors that may be considered to
establish a decision. First, we iterate with a neighborhood of
size k until convergence, i.e., until it is not possible to label
any new unlabeled examples. If all the initially unlabeled
examples are not labeled, then we increment the value of k,
and we repeat the method until all the examples are labeled,
or k = kmax.

At each iteration, for each unlabeled examples xi, we
apply the following procedure: we define a vector v, such
that v(m) = 0, ∀m ∈ {1..M}. The values of v are updated
for each neighbor j, 1 ≤ j ≤ kmax, of xi that follows
these conditions: j > 1 (it is not xi), and j ≤ 1 + k or
|Ws(i, j) − Ws(i, 1 + k)| ≤ ε, and the neighbor Es(i, j)
is currently labeled Y (Es(i, j)) > 0. The second condition
assures that the neighborhood has a size k, while allowing
extra neighbors if they are as close as the neighbor at
the position 1 + k. If the conditions are fulfilled, then
v(Y (Es(i, j))) is incremented. Finally, we determine the
probability for xi as:

pi =
v(i)

M∑
m=1

v(m)

(3)

(pmax, parg) = max(p) (4)

where pmax represents the maximum value in p, and parg
represents the argmax value. If pmax ≥ α then yi takes
the value of parg, the code corresponding the class with
the maximum score. If all the elements of v are null, then
pi keeps the prior probabilities to belong to one of the M

classes. In the next sections, we set α = 1. When α = 1,
all the neighbors of the test example share the same label, it
corresponds to a consensus decision: all the examples in the
neighborhood of the unlabeled example share the same label.
If the method stops when k = kmax, i.e., it was not possible
to assign a label to each example, then a k-nn classifier is
used to determine the remaining missing labels. Because it
is a greedy method, the order of the examples can have
an impact on the results. Several runs can be performed
in parallel, and then the final result will be obtained by
combining the results from those different runs, e.g., by
taking the average of the scores from the different runs.

An example is depicted in Figure 1. It presents the
different steps of the method with different values of k.
At k = 1 and k = 2, there is no propagation because
there exist no example that has as a closest neighbor one
of the two examples that is already labeled. Thus, the size
of neighborhood has to be increased until it finds a labeled
example. On toy data-sets, the proposed method achieves
the same type of performance as other SSL techniques such
as label propagation [10] while avoiding setting values to
different parameters.

IV. RESULTS

A. Toy datasets

The classification results on standard state-of-the-art toy
examples (double half-moon, double circles, normal distri-
butions) are depicted in Figures 2, 3, 4 and 5, which shows
the ground truth, the results with a k-nn classifier, and the
proposed method Greedy-SSL. g50c is an artificial dataset of
550 examples (50 labeled examples) that was generated from
two unit-covariance normal distributions (50 features) with
equal probabilities (M = 2). The class means were adjusted
so that the true Bayes error is 5%. Coil20 is a dataset of
32 × 32 gray scale images of twenty objects (M = 20)
viewed from varying angles. This data-set contains 1440
examples (40 labeled). Due to their contents, g50c is less
likely to satisfy the condition to apply the proposed method,
while coil20 is more likely to possess a manifold structure as
it contains images. Performance is evaluated by accuracies
averaged over ten random choices of the labeled set. Each
random set contains one example per class for g50c, and two
examples per class for coil20. The first evaluation deals with
the validity of the assumptions given in the introduction. We
perform k-nn (k from 1 to 5) for all the examples in a data-
set to determine to what extent the closest neighbor xj of an
example xi share the same label, i.e., yi = yj . Tables I and II
present the accuracy for coil20 and g50c when the decision
from k-nn is obtained through a majority decision (Table I),
and a consensus decision (Table II). In Table II, each cell of
the table represents a couple recognition rate; rejection rate.
The recognition rate is calculated with the examples where a
consensus decision could be made. For k = 1, the accuracy
of 100% on coil20 suggests that propagating the labels is
less likely to involve errors compared to 80.18% of g50c.

TABLE I
RECOGNITION RATE (IN %) FOR G50C AND COIL20 WITH K-NN

(MAJORITY DECISION ACROSS THE NEIGHBORS).

data-set 1 2 3 4 5
coil20c 100.0 100.0 99.93 100 89.93

g50c 80.18 81.27 88.00 88.91 90.73

TABLE II
RECOGNITION AND REJECTION RATE (IN %) FOR G50C AND COIL20

WITH K-NN (CONSENSUS DECISION ACROSS THE NEIGHBORS).

data-set 2 3 4 5
coil20c 100.0/0.49 100.0/2.99 100.0/7.15 100.0/12.15
g50c 93.33/29.09 95.83/43.27 96.64/51.27 96.54/58.00

The accuracy with the proposed method is 97.54± 1.31%
for Coil20, and 63.52±7.38% for g50c. The performance for
g50c is bad, and significantly under other results presented
in the literature. This low performance can be explained
by the greedy approach that was used. In addition, all the
assumptions were wrong as indicated by the low accuracy in
Table I.

The comparison with other state-of-the-art methods are
presented in Table III. Comparisons with other methods on
the same databases can be obtained in [4]. The best results
on coil20c are obtained with the proposed method GSSL.
However, GSSL offers the worst results on g50c, as it was
expected due to the non respect of the assumptions.

B. Handwritten recognition

In this section, we apply the proposed method on a
database of handwritten digit characters (MNIST). This
database is used for benchmarks in supervised classi-
fiers [11], [12]. Typical state-of-the-art methods include
deep learning architecture (e.g., convolutional neural net-
works [13], [12]), SVM [14], or their combinations [15],
[16]. It includes a pre-defined training and test database of
60000 and 10000 images, respectively. In order to optimize
the respect of the manifold assumption, we use an appropriate
distance based on local deformations [17], with images
filtered after horizontal and vertical edge detection with the
Sobel operator. This distance provides good performance for
handwritten digit recognition, and it can take advantage of
GPU and High Performance Clusters. The algorithm of the
Image Deformation Model Distance is given in Algo. 1. In
the evaluation, we set w0 = 2, w1 = 1, w2 = 2, and p = 2.
Those parameters correspond to the size of the displacement
field (w0), the size of the neighborhood around a pixel (w1),
the number of filtered images (w2), and the order of the
Minkowski distance (p).

For the evaluation of the method, we create the graph with

TABLE III
RECOGNITION RATE (IN %) FOR G50C AND COIL20 WITH

STATE-OF-THE-ART METHODS.

database SVM RLS LapSVM LapRLS GSSL
coil20c 75.40 74.00 96.00 95.70 97.54

g50c 90.30 91.50 94.60 94.80 63.52

k = 1 k = 2 k = 3 k = 4 k = 5

Fig. 1. Evolution of the labeling process in relation to different values of k, with the corresponding graph of the neighborhoods.

Ground truth K-NN (k=1) Greedy-SSL
Fig. 2. Double moon.

Ground truth K-NN (k=1) Greedy-SSL
Fig. 3. Two circles.

the whole training database. While the test could be included
for transductive SSL, we only consider the training data-set in
order to better compare the results with other results from the
literature [18], [17], [11]. The original ground truth is chosen
based on the nodes that correspond to the closest neighbor
of the maximum number of nodes. If a node is often the
closest neighbor of other nodes, then if it is labeled, it will
propagate its label to a large number of nodes. By using this
simple strategy, we sort the nodes by the descending number
of times they appear as a first neighbor in a different node.
We select the nodes that must be labeled in this list until the
labeled examples contain a least one example of each class
for the purpose of the experiment.

We have then two conditions. In the first one, we consider
all the examples until we get at least one example per class.
In the second condition, we only use the best examples from
each class, i.e., the best seed for each class. In MNIST, we
have 35 examples in the first condition, and 10 examples
in the second, as there are 10 classes. The first condition
corresponds to an active learning condition. While regular

SSL deals with a pre-defined set of labeled examples, active
learning is able to interactively query one or several oracles
to obtain the label of some new examples. It can be a
human expert of the data to be classified, or it can be simply
the user. For the second condition, it is required to know
the labels of the examples until it is possible to reach a
number of 10 samples per class. With all the 60000 correctly
labeled images from the training database, the accuracy on
the test database is 99.36%. With only 10 labeled images in
the training database, and after performing GSSL on only
the training database, the accuracy on the test database is
97.16%. With the active learning condition, the accuracy
reaches 97.35%. The evolution of the accuracy in the training
database in relation to the number of labeled examples with
GSSL, including the initial labeled examples, is depicted in
Fig 6. With 10 labeled images, the accuracy on the training
data-set is 96.81 ± 0.06%, it is 97.07 ± 0.07% with 35
examples. The accuracy for the test, and for each class
is presented in Table IV. It is worth noting the particular

Ground truth K-NN (k=1) Greedy-SSL
Fig. 4. Normal distributions.

Ground truth K-NN (k=1) Greedy-SSL
Fig. 5. Toy example.

low accuracy of the digit ‘7’, with only about 86%, which
suggests that there exists a large number of images that were
used as bridges to mislabel the ‘7’ images.

Fig. 6. Accuracy in relation of the number of examples in the training
database with 10 and 35 seeds for GSSL.

V. DISCUSSION AND CONCLUSION

The graph is the heart of semi-supervised learning based
on a graph. This graph is built in relation to a distance be-
tween examples in the data-set. In addition, other parameters,
such as the neighborhood and its size, can be used to simplify
the graph, and approximate the manifolds where the data
lie, i.e., where the data density is supposed to concentrate.

1: Input: images I1, I2
2: Parameters: w0, w1, w2, p
3: d← 0
4: for i1 ← Nmin, Nmax do
5: for j1 ← Nmin, Nmax do
6: i5 ← 1
7: for i2 ← −w0, w0 do
8: for j2 ← −w0, w0 do
9: s2 ← 0

10: for i3 ← −w1, w1 do
11: for j3 ← −w1, w1 do
12: for i4 ← 1, w2 do
13: v1 ← I1(i1 + i3, j1 + j3, i4)
14: v2 ← I2(i1 + i3 + i2, j1 + j3 + j2, i4)
15: s2 ← s2 + |v1 − v2|p
16: end for
17: end for
18: end for
19: s1(i5)← s2
20: i5 ← i5 + 1
21: end for
22: end for
23: d← d+min(s1)
24: end for
25: end for
26: return d

Algorithm 1: Image Deformation Model Distance (IDMD)
between I1 and I2.

TABLE IV
RECOGNITION RATE (IN %) ON THE TEST DATA-SET OF MNIST.

labeled examples
class 10 35 60000

0 99.59 99.59 99.59
1 98.59 98.68 99.74
2 99.32 99.32 99.42
3 99.80 99.70 99.90
4 95.72 96.44 99.19
5 97.31 97.76 99.33
6 99.16 99.27 99.37
7 86.19 86.28 98.83
8 99.08 99.18 99.49
9 97.03 97.52 98.71
all 97.16 97.35 99.36

Those parameters, with the degree of the graph Laplacian,
and the parameters of the distance, can be chosen with a
cross-validation procedure on a grid of parameter values [19].
With a low number of labeled examples, it may be difficult
to correctly estimate the right parameters.

For problems such as image classification, more adaptive
distances shall be used such. For instance, other efficient
distances that are mainly used for image retrieval could be
used (e.g. structural similarity measures). We have shown
that it is possible to use a greedy approach to perform semi-
supervised learning when nearby points share the same label.
Thanks to an approach that assigns step by step labels to the
examples, this method does not propagate the labels in a
single step, but the propagation is achieved through multiple
iterations that increase the size of the graph. The method
takes advantage of the manifold assumption that is critical
because the cost of this assumption has a high impact on
the performance of the classifier. It is worth mentioning that
this approach shifts the machine learning problem from the
SSL methods to the quality of the distances, and therefore
the quality of the graphs. If the graph is well built, i.e., the
assumptions are respected, then it is possible to use a greedy
approach that does not require specific parameters.

With new technologies and with the Big data paradigm, it
is possible to acquire a large number of examples. However,
this large number of examples does not facilitate the effi-
ciency of current SSL techniques because the large amount
of data can correspond, or not, to the classification problem.
It may be difficult to exploit the low density that can exist
between classes, because the data space is very noisy due to
the presence of examples that can be completely irrelevant
to the problem. While we have shown that it is possible
to achieve a good recognition rate with only few images
on MNIST and few parameters, fast methods are required
to both evaluate the graph, and to test the distances to new
examples. Approximate k-nn strategies are therefore required
to build large graphs [20]. In current databases, most of the
examples are circumscribed to a single problem. For this
reason, a challenge is to incorporate hierarchical views of
the examples through adaptive distances or adaptive graphs.
In addition, databases that are typically used such as MNIST
do not correspond to what can be called Big-data. Despite

70000 images, MNIST lacks the number of examples, and
the complexity of multimedia databases (e.g., the 80 Million
Tiny Images [21]), which include different types of images.
Further works will include clustering techniques to better
select the labeled examples in the training data-set in an
active learning setting.

REFERENCES

[1] W. Liu, J. Wang, and S.-F. Chang, “Robust and scalable graph-based
semisupervised learning,” in Proc. of the IEEE, vol. 100, no. 9, Sept.
2012.

[2] X. Zhu and Z. Ghahramani, “Learning from labeled and unlabeled
data with label propagation,” Carnegie Mellon University, Tech. Rep.
Technical Report CMU-CALD-02-107, 2002.

[3] T. Joachims, “Transductive inference for text classification using
support vector machines,” in Proc. the Int. Conf. on Machine Learning,
1999, pp. 200–209.

[4] V. Sindhwani, P. Niyogi, and M. Belkin, “Beyond the point cloud:
from transductive to semi-supervised learning,” in Proc. of the 22nd
Int. Conf. on Machine Learning, 2005, pp. 824–831.

[5] A. Blum and S. Chawla, “Learning from labeled and unlabeled data
using graph mincuts,” in Proc. of the Int. Conf. on Machine Learning,
2001, pp. 19–26.

[6] M. Belkin, P. Niyogi, and V. Sindhwani, “Manifold regularization: a
geometric framework for learning from examples,” JMLR, vol. 7, pp.
2399–2434, Dec. 2006.

[7] Y. Bengio, O. Dellalleau, and N. L. Roux, “Label propagation and
quadratic criterion,” in Semi-supervised learning, B. S. O. Chapelle
and A. Zien, Eds. MIT Press, 2006, pp. 35–58.

[8] J. Wang, S.-F. Chang, X. Zhou, and S. T. C. Wong, “Active microscopic
cellular image annotation by superposable graph transduction with
imbalanced labels,” in Proc. of the Conf. Computer Vision and Pattern
Recognition (CVPR), 2008, pp. 1–8.

[9] X. Zhu, “Semi-supervied learning literature survey,” University of
Wisconsin-Madison, Tech. Rep. Computer Sciences Technical Report
1530, 2005.

[10] F. Wang and C. Zhang, “Label propagation through linear neighbor-
hoods,” IEEE Trans. Knowl. Data Eng., vol. 20, no. 1, pp. 55–67, Jan.
2008.

[11] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based
learning applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[12] P. Simard, D. Steinkraus, and J. Platt, “Best practices for convolutional
neural networks applied to visual document analysis,” in Proc. of the
7th Int. Conf. Document Analysis and Recognition (ICDAR), Aug.
2003, pp. 958–962.

[13] D. Cireşan, U. Meier, and J. Schmidhuber, “Multi-column deep neural
networks for image classification,” in Computer Vision and Pattern
Recognition (CVPR), 2012, pp. 3642–3649.

[14] D. DeCoste and B. Schölkopf, “Training invariant support vector
machines,” Machine Learning, vol. 46, no. 1-3, pp. 161–190, 2002.

[15] F. Lauer, C. Y. Suen, and G. Bloch, “A trainable feature extractor for
handwritten digit recognition,” Pattern Recognition, vol. 40, no. 6, pp.
1816–1824, 2007.

[16] X.-X. Niu and C. Y. Suen, “A novel hybrid cnn-svm classifier for
recognizing handwritten digits,” Pattern Recognition, vol. 45, no. 6,
pp. 1318–1325, 2012.

[17] D. Keysers, T. Deselaers, C. Gollan, and H. Ney, “Deformation models
for image recognition,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 29, no. 8, pp. 1422–1435, Aug. 2007.

[18] S. Belongie, J. Malik, and J. Puzicha, “Shape matching and object
recognition using shape contexts,” IEEE Trans. Pattern Analysis and
Machine Intelligence, vol. 24, no. 4, pp. 509–522, Apr. 2002.

[19] X. Zhang and W. S. Lee, “Hyperparameter learning for graph based
semi-supervised learning algorithms,” in Advances in Neural Informa-
tion Processing Systems (NIPS) 19, 2006, pp. 1585–1592.

[20] M. Muja and D. G. Lowe, “Scalable nearest neighbor algorithms for
high dimensional data,” IEEE Trans. Pattern Analysis and Machine
Intelligence, vol. 36, no. 11, pp. 2227–2240, Nov. 2014.

[21] A. Torralba, R. Fergus, and W. T. Freeman, “80 million tiny images: A
large dataset for non-parametric object and scene recognition,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 30, no. 11, pp.
1958–1970, Nov. 2008.

