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Abstract— Non-invasive brain-computer interface (BCI) 

provides a novel means of communication. This can be 

achieved by measuring electroencephalogram (EEG) signal 

over the sensory motor cortex of a person performing motor 

imagery (MI) tasks. However, the performance of BCI remains 

currently too low to be of wide practical use. A hybrid BCI 

system could improve the performance by combining two or 

more modalities such as eye tracking, and the detection of brain 

activity responses. In this paper, first, we propose a 

simultaneous hybrid BCI that combines an event-related de-

synchronization (ERD) BCI and an eye tracker. Second, we aim 

to further improve performance by increasing the number of 

commands (i.e., the number of choices accessible to the user). 

In particular, we show a significant improvement in 

performance for a simultaneous gaze-MI system using a total of 

eight commands. The experimental task requires subjects to 

search for spatially located items using gaze, and select an item 

using MI signals. This experimental task studied visuomotor 

compatible and incompatible conditions. As incorporating 

incompatible conditions between gaze direction and MI can 

increase the number of choices in the hybrid BCI, our 

experimental task includes single-trial detection for average, 

compatible and incompatible conditions, using seven different 

classification methods. The mean accuracy for MI, and the 

information transfer rate (ITR) for the compatible condition is 

found to be higher than the average and the incompatible 

conditions. The results suggest that gaze-MI hybrid BCI 

systems can increase the number of commands, and the 

location of the items should be taken into account for designing 

the system.  

I. INTRODUCTION 

Non-invasive brain-computer interface (BCI) provides a 
communication pathway for healthy as well as differently-
abled people such as those with severe motor impairments. 
With the aid of analyzed EEG signals, BCI systems have the 
potential to be used in neuro-rehabilitation, controlling 
robots, virtual keyboard and other augmentative devices, and 
entertainment such as video games, switching control, and 
virtual automobile control [1],[2]. Current BCIs are mainly 
dependent on the cognitive functions associated with motor 
imagery (MI) [3]. A BCI system can be devised by 
measuring EEG signal over sensory-motor cortex, while a 
user is performing an MI task [4]. The vividness of MI is 
highly dependent on visual perception and imagery. 
However, current BCI systems’ performance remains too low 
to allow users to fully exploit the advantages [5]. Although 
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some research groups have claimed to achieve systems’ 
accuracy of up to 96% [6],[7] they came along with 
limitations such as low information transfer rate (ITR), 
reliability, and user acceptability. By incorporating other 
modalities, i.e. hybrid BCIs, the performance can be 
improved. 

To design a hybrid BCI system for clinical and 
rehabilitation purposes, the constraints of the patients have to 
be considered. For example, for patients who are not 
completely locked-in (e.g., quadriplegic), they may still be 
able to control their gaze and a hybrid BCI can exploit this 
ability [8],[9]. The recording of gaze position may be done 
using an eye-tracker system, which measures eye movements 
and positions with two major monitoring features. The first 
feature measures the position of the eye relative to the head, 
and the second feature measures the orientation of the eye in 
space (point of regard). The recorded eye position and 
movement data can be analyzed to determine the pattern, 
duration of eye fixations (dwell time), and the sequence of 
the scan paths on a screen [10],[11].  

An eye-tracker can be used independently to search and 
select an item; the searching is done by gaze coordinates and 
the item selection may be done by the dwell time [3],[12]. 
Therefore, the dwell time should be sufficiently long enough 
for a correct selection of the intended item. Otherwise, high 
false selections may result, leading to high level of frustration 
in the user and thus delaying the overall process. A hybrid 
BCI may overcome such dwell time issue, by a combination 
of two or more different systems, often combining different 
neurophysiological (e.g., EEG) signals, or neurophysiological 
with other physiological input signal sources [13],[8]. For 
designing hybrid BCIs, the systems can be combined 
sequentially or simultaneously [13],[8],[14]. Furthermore, to 
enhance the effectiveness and use of hybrid BCIs, it is 
important to increase the number of commands for the user. 
This can be achieved through combining the gaze and the 
brain responses (i.e., MI, SSVEP, and P300) [8], 
[9],[15],[16].  

In this work, we propose a novel simultaneous gaze-MI 
hybrid BCI (see Fig. 1) to increase the number of commands 
from two or four to eight. The system is based on the item 
search through gaze, and item selection by the EEG response 
detection during an MI task simultaneously on the computer 
screen. The novelty of the task stems from the inclusion of 
visuomotor compatible and incompatible task conditions to 
allow more potential choices to the user. However, as far as 
we know, there is no study in BCI that evaluates the 
performance of incompatible task conditions. In our 
incompatible condition, a word “Left” would appear on the 
right of the screen, or a word “Right” appearing on the left of 
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Fig 1: A simultaneous hybrid BCI that combines an ERD BCI and an 
eye tracker, wherein an item is searched through gaze and the item 
selection is made by motor imagery simultaneously.  
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Fig 2: Proposed hybrid BCI and timing scheme of the paradigm. Computer 
screen in (A) represents an incompatible state of imagining right and left 
hand movements with four gaze coordinates (1, 2, 3, 4), Computer screen 
in (B) shows  a compatible state of imagination of right and left hand 
movements with four gaze coordinates (1, 2, 3, 4). (C) Timing scheme of 
the single trial paradigm. 

the screen. Several signal processing techniques are tested on 
these data. Our results show that the accuracy for MI and the 
ITR of the compatible condition is higher than that of the 
average and the incompatible condition. This paper is 
organized as follows: Section II discusses the experimental 
protocol. Section III is dedicated to the methods used. 
Section IV presents the results. Finally, Section V provides a 
discussion and conclusion.     

II. EXPERIMENTAL PROTOCOL  

A. Subjects 

Seven consenting healthy male subjects participated in the 
study. They were in the age range 21-35 years, (mean age of 
28.7 and standard deviation=4.2). All subjects had no prior 
experience with an eye tracker. None of the subjects had any 
visual or neurological conditions. Prior to experiments, every 
subject was advised about the nature and purpose of the 
study. No financial reward was received by the subjects for 
their participation in the study. The experiments were 
conducted with full consent of the subjects as per the revised 
Helsinki Declaration of 2000. 

B. Design and Operational Procedure 

Fig. 1 depicts the proposed model of simultaneous hybrid 
BCI system. The experiment consisted of a search and select 
task in a two dimensional environment. It is mainly divided 
into two categories. The recording is done simultaneously for 
both EEG and eye movement data from subjects. The eye 
tracker is used as a searching device, which has a direct 
mapping to the mouse cursor, providing a real-time feedback 
response. The BCI was used to provide an additional 
selection command to the user, using left or right hand MI. 
We have used a visual cue paradigm for stimulus 
representation on a computer screen. It consists of four visual 
stimuli, each containing a fixation cross to fixate the gaze. 
Two visual stimuli are located on each side of the screen, 
with an additional visual stimulus located at the center of the 
screen, representing an idle state (Fig. 2 (A)-(B)). 

Subjects used the eye tracker controlled search command 
to direct the cursor to the target visual stimuli, whilst 
attempting the prompted select command by left or right 
hand MI. A rigid and stable eye tracker head lock was used 
for positioning the subjects’ head at the center of the screen. 
Each subject was seated in a comfortable chair located in 
front of the eye tracker head lock and approximately 55 cm 
from a 22 inch LCD monitor. Lighting conditions were 
maintained constant during the experiments. 

Prior to an experiment, the eye tracker was calibrated 
using a 16-point calibration scheme. This provides each 
subject with an accurate position of his/her gaze. Each 
experiment consists of one session, comprising of 40 trials 
each lasting about 7 s. In each trial, the target of interest 
appears in a pseudo-random order with equal probability but 
they are evenly distributed over a session, appearing 10 times 
each. During each trial, subjects were prompted to search for 
a single target of interest on the visual display using the eye 
tracker controlled mouse cursor, while attempting a left or 
right hand MI command. Fig. 2 (C) shows a timing scheme 
of the paradigm. A beep command is issued at 1 s to indicate 
a get ready signal, with a visual cue appearing at 2 s. The 
visual cue, a colored rectangle with a fixation cross, appears 
for a period of 3.5 s, and during this period subjects would 
perform the search and select assessment task. On/off-set 
times should not be deterministic to minimize anticipatory 
responses. Each session lasts about 5 minutes. For each 
subject, one session is provided.  

C. Data Acquisition 

The eye tracker signals were recorded from an Arrington 
Research Eye Tracker system comprising of a monocular 
high resolution infrared camera, which records gaze x, gaze 
y, trigger, and label indexes at 128Hz sampling rate. The 
EEG signal was recorded at a 128Hz sampling rate using the 
gUSBamp and g.SAHARA dry electrode system from g.Tec. 
It consisted of two bipolar recordings (C3 and C4), with the 
right mastoid serving as ground. A bandpass-filter  between 
0.5Hz and 60Hz, and a notch filter at 50Hz were enabled.  

III. METHODS 

A. Gaze Detection 

Eye tracker signals i.e., gaze x- and y-coordinates were 
distributed according to label indexes (1, 2, 3, and 4). The 
label indexes were used to identify one of the four classes 
and these indexes show the start activity in each trial. A 
median filter was applied to the eye tracker data to remove 
eye blinks and the mean gaze position in horizontal and 
vertical directions were recorded for each trial. The distance 
of x- and y-coordinates from each visual stimulus was 
calculated, and corresponding to the minimum distance from 
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TABLE I. Gaze detection accuracy 

Sub Accuracy (%) Level of 

expertise  Total 1 2 3 4 

S01 100 100 100 100 100 Moderate 

S02 97.5 100 95 100 93 Novice 

S03 99.1 100 100 96 100 Experienced 

S04 91.6 91 100 90 85.4 Moderate 

S05 100 100 100 100 100 Experienced 

S06 95.9 100 100 100 83.3 Novice 

S07 82.5 82 100 75 73 Novice 

Mean 95.2 96.1 99.3 94.4 90.7  

Std. 6.3 7.1 1.9 9.3 10.5  

TABLE II. Single trial detection performance for (LM) Vs (RM) in 
standard state. 

Sub SVM kNN LDA 

Linear Quad. Poly. Gauss. K=1 K=5 

S01 85.0 77.5 77.5 82.5 72.5 80.0 85.0 

S02 62.5 50.0 50.0 52.5 65.0 55.0 62.5 

S03 57.5 55.0 55.0 55.0 50.0 47.5 55.0 

S04 55.0 50.0 55.0 55.0 62.5 60.0 52.5 

S05 55.0 52.5 50.0 47.5 47.5 57.5 47.0 

S06 57.5 60.0 50.0 55.0 60.0 52.5 55.0 

S07 60.0 57.0 70.0 60.0 62.5 65.0 60.0 

Mean 61.8 57.4 58.2 58.2 60.0 59.6 59.6 

Std. 10.6 9.6 11.1 11.3 8.7 10.6 12.3 

TABLE III. Single trial detection performance for (LM ∩ Ls) Vs (RM ∩ 
Rs) in compatible state. 

Sub SVM kNN LDA 

Linear Quad. Poly. Gauss. K=1 K=5 

S01 90.0 90.0 80.0 90.0 85.0 80.0 85.0 

S02 55.0 55.0 40.0 55.0 70.0 45.0 65.0 

S03 65.0 55.0 55.0 55.0 60.0 55.0 50.0 

S04 54.3 56.7 61.7 55.0 61.7 66.7 53.3 

S05 65.0 60.0 60.0 65.0 50.0 55.0 65.0 

S06 65.0 60.0 50.0 60.0 70.0 65.0 65.0 

S07 58.3 60.0 71.6 68.3 58.5 58.3 66.6 

Mean 64.7 62.4 62.3 64.1 65.0 60.7 64.3 

Std. 12.1 12.4 13.3 12.6 11.2 11.1 11.3 

 
TABLE IV. Single trial detection performance for (LM ∩ Rs) Vs (RM ∩ 
Ls) in incompatible state. 

Sub SVM kNN LDA 

Linear Quad. Poly. Gauss. K=1 K=5 

S01 85.0 63.3 61.7 80.0 65.0 66.7 78.3 

S02 60.0 45.0 50.0 50.0 40.0 45.0 60.0 

S03 56.6 51.7 56.7 48.3 43.3 46.0 53.3 

S04 55.0 40.0 45.0 40.0 60.0 45.0 50.0 

S05 59.1 58.0 55.0 58.3 48.3 50.0 54.5 

S06 61.0 60.0 50.0 58.3 60.0 60.0 56.6 

S07 55.0 55.0 65.0 60.0 65.0 55.0 60.0 

Mean 61.7 53.3 54.8 56.4 54.5 52.5 59.0 

Std. 10.6 8.4 7.0 12.6 10.5 8.4 9.3 

 

 

 

the gaze coordinates, the actual output was estimated 
according to label indexing. The confusion matrix was used 
to compute the accuracy.  

B. Feature Extraction and classification 

Band-power features for all the channels are extracted for 
mu (µ) (8-12Hz) and beta (β) (12-30Hz) rhythms. During 
each trial, the time over the imagery period is selected for 
extracting the band-power features. This information called 
event-related de-synchronization (ERD) and event-related 
synchronization (ERS) over µ and β frequency bands are 
used for classification. The ERD/ERS can be seen as a 
correlate of an activated cortical area, so as to effectively 
account for ERD and ERS phenomena observed during MI 
tasks. The performance of the proposed hybrid system was 
assessed by seven binary classifiers: support vector machines 
(SVM) with linear kernel, quadratic kernel, q-polynomial 
kernel, Gaussian kernel, k-nearest neighbors (kNN) with 
(K=1 and K=5), and linear discriminant analysis (LDA). The 
performance evaluation was performed with a ten-fold cross 
validation. In the next section, we report the accuracy (in %) 
and the ITR [9],[17] in bit per symbol (bps). 

IV. RESULTS 

A. Gaze Detection 

The performance evaluation of gaze detection was based 
on 40 trials per subject. The minimum distance between the 
fixation point (i.e. the center), and the detected gaze location 
was used to assign the item selected by the user. The offline 
gaze detection (eye tracker only) results are presented in 
Table I. The mean accuracy for all subjects is 95.2 ± 6.3%. 

B. Single-Trial Detection   

To evaluate the performance of single-trial detection we 
considered two classes – left and right hand MI, with respect 
to the four events – left computer screen (1, 3) and right 
computer screen (2, 4). The single-trial detection results were 
computed in the form of visuomotor compatible and 
incompatible conditions for each subject. Accordingly, the 
single-trial detection results are divided into three classes: 
(LM vs RM); (LM ∩ LS) vs (RM ∩ RS); (LM ∩ RS) vs (RM ∩ 
LS). Here, the symbol LM denotes the left MI and symbol RM 

represents right MI whereas LS and RS represent left and right 
sides of the computer screen, respectively. The symbol ∩ 
denotes the combination of the two conditions. The class (LM 
vs RM) is a standard situation which considers the total 
number of trials for each subject, consisting of left and right 
hand MI with four gaze events for all trials. The (LM ∩ LS) vs 
(RM ∩ RS) is a compatible situation for each subject, and 
considers the total number of trials when left MI appears on 
left side of computer screen and right MI appears on right 
side of computer screen. (LM ∩ RS) vs (RM ∩ LS) is an 
incompatible situation for each subject wherein we 
considered only the situation when left MI appears on right 
side of computer screen and right MI appears on left side of 
computer screen for all trials.   

Tables II, III, and IV present the accuracies of MI (EEG 
only) (in %) and Table V provide the ITR (hybrid BCI) in 
bps. The accuracies are obtained with motor imagery with 
two classes, Nout=2 (left and right). In the Table II, the 
achievable mean accuracy of standard condition for all  

subjects is 61.8 ± 10.6% computed by SVM linear kernel 
whereas the mean accuracy of (LM ∩ LS) vs (RM ∩ RS) and 
(LM ∩ RS) vs (RM ∩ LS) conditions are 64.7 ± 12.1% and 
61.7 ± 10.6% achieved, respectively with SVM linear kernel, 
shown in the Table III and IV. The highest mean accuracy 
was achieved in compatible condition using SVM linear 
kernel. However, the gain in performance achieved under the 
compatible condition is not statistically significant with the 
small number of novice subject group used in the trials.  

   In addition, in the Table V, we provide the ITR using 
linear SVM method for the combination of gaze and EEG 
when the system is used for 4 and 8 commands, by 
combining the selected item, and MI detection for all three 
conditions. The proposed hybrid BCI achieved the highest  
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mean ITR of 1.0 ± 0.6 in compatible condition. With the 
current subset of subjects, only S01 in compatible condition 
would obtain a gain in performance from combining the BCI 
and eye tracker to increase the number of commands, as 
compared to the use of eye tracker only.  

V. DISCUSSION & CONCLUSION 

In this paper, a hybrid BCI has been proposed that 
combines motor imagery detection and eye tracking. Whereas 
eye-trackers can provide an efficient way to specify the 
location of an item on a screen, a more user-centered 
approach needs to be proposed to select the chosen items. In 
addition, inexpensive eye-trackers are often not reliable in 
term of the precision of the gaze location, hence limiting the 
number of items that can be selected at any given time. 
Selection can be achieved by gazing for a specified duration 
(i.e. dwell time) on an item, or the detection of an event such 
as eye-blinking. In this paper, we have investigated the 
performance that can be obtained with the detection of motor 
imagery, and how this detection can increase the number of 
commands. This solution may provide a more convenient 
alternative communication means especially for differently-
abled people. The eye-tracker can be used for pointing to an 
item, and BCI can be used as a switch to select the item 
through brain activity responses. The presented results 
suggest that the drop of performance is due to the low 
accuracy of motor imagery detection as only two sensors 
were used with dry electrodes. Larger number and better 
quality of electrodes may provide better performance. The 
use of different modalities may however increase the 
difficulty in using the system as the user has to pay attention 
to the location of his gaze and to the movement imagery. 
Furthermore, naïve subjects have to get used to both the eye-
tracker, and the motor imagery task [18],[19]. 

The performances have been evaluated for three different 
classification scenarios corresponding to the effect of the 
similarity between the gaze direction (left/right) and the MI 
task (left/right) (standard, compatible, and incompatible). The 
results indicated a higher accuracy for the detection of 
commands with the same orientation between gaze and motor 
imagination. Thus, this effect should be taken into account 
while designing gaze-MI based BCI paradigms. Specifically, 
the experimental design could incorporate incompatible 
condition if the emphasis is on having a larger number of 
choices despite a slight dip in accuracy. This type of 
paradigms has been widely applied in cognitive psychology 
and neuroscience to study various cognitive abilities, e.g. the 
Simon effect [20]. They also used this paradigm for the 

diagnosis and characterization of psychiatric and neurological 
disorders [21],[22]. Further works will extend the proposed 
approach with optimized parameters to increase motor 
imagery detection. 
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