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Abstract

Modeling and simulation of gene-regulatory networks (GRNs) has become an important aspect of modern systems
biology investigations into mechanisms underlying gene regulation. A key challenge in this area is the automated
inference (reverse-engineering) of dynamic, mechanistic GRN models from gene expression time-course data.
Common mathematical formalisms for representing such models capture two aspects simultaneously within a
single parameter: (1) Whether or not a gene is regulated, and if so, the type of regulator (activator or repressor), and
(2) the strength of influence of the regulator (if any) on the target or effector gene. To accommodate both roles,
“generous” boundaries or limits for possible values of this parameter are commonly allowed in the reverse-
engineering process. This approach has several important drawbacks. First, in the absence of good guidelines, there
is no consensus on what limits are reasonable. Second, because the limits may vary greatly among different
reverse-engineering experiments, the concrete values obtained for the models may differ considerably, and thus it
is difficult to compare models. Third, if high values are chosen as limits, the search space of the model inference
process becomes very large, adding unnecessary computational load to the already complex reverse-engineering
process. In this study, we demonstrate that restricting the limits to the [−1, +1] interval is sufficient to represent the
essential features of GRN systems and offers a reduction of the search space without loss of quality in the resulting
models. To show this, we have carried out reverse-engineering studies on data generated from artificial and
experimentally determined from real GRN systems.

Introduction
Systems biology refers to the quantitative analysis of the
dynamic interactions among multiple components of a
biological system and aims to understand the character-
istics of a system as a whole [1,2]. It involves the devel-
opment and application of system-theoretic concepts for
the study of complex biological systems through itera-
tion over mathematical modeling, computational simula-
tion and biological experimentation. The regulation of
genes and their products is at the heart of a systems
view of complex biological processes. Hence, the model-
ing and simulation of gene-regulation networks (GRNs)
is becoming an area of growing interest in systems biol-
ogy research [3]. For instance, understanding gene-regu-
latory processes in the context of diseases is increasingly

important for therapeutic development. Cells regulate
the expression of their genes to create functional gene
products (RNA, proteins) from the information stored
in genes (DNA). Gene regulation is a complex process
involving the transcription of genetic information from
DNA to RNA, the translation of RNA information to
make protein, and the post-translational modification of
proteins. Gene regulation is essential for life as it allows
an organism to respond to changes in the environment
by making the required amount of the right type of pro-
tein when needed. Developing quantitative models of
gene regulation is essential to guide our understanding
of complex gene-regulatory processes and systems. The
approach considered in this study concentrates on a
conceptualization of GRNs that ignores intricate inter-
mediate biological processes of cellular gene regulation,
such as splicing, capping, translation, binding and
unbinding [4].
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As the amount of gene expression data is growing,
researchers are becoming increasingly interested in the
automated inference or reverse-engineering of quantitative
dynamic, mechanistic gene-regulatory network models
from gene expression time-course data [5,6,4,1,7-9]. The
quality of such reverse-engineered GRN models is deter-
mined mainly by two factors:
The quality of a GRN model depends on two factors:

the model’s explanatory power (or model completeness)
and the model’s predictive power (or model correctness).
A model’s explanatory power depends on how well the

elements of a mathematical model specification corre-
spond to the salient features of the modelled system.
Thus, the explanatory power depends crucially on the
concrete form of the chosen mathematical model. This
is a decision made by the modeler at the start of a mod-
eling process, hence it is related to the modeling error.
A poor choice at this stage means low explanatory
power and high modeling error. Even if an adequate
model form is chosen, we can still end up with a model
that has a low explanatory power. This can happen if
we create a model with parameter values that are unrea-
listic, i.e. are not in good agreement with the corre-
sponding system features.
A model’s predictive power is estimated by simulating

the system’s response to the initial condition captured
in an independent validation dataset [10]. The greater
the deviation (error) between the response time courses
predicted by the model and the actual time courses in
the validation data, the lower the predictive power of
the model.
The quality of the model inference or model reverse-

engineering algorithm is referred to as inferential power.
The inferential power depends on the quality of the
inferred GRN model. The higher the quality of the
inferred model (in terms of explanatory and predictive
power), the higher the inferential power of the algo-
rithm. Reverse-engineering of GRN models from data is
a highly compute-intensive process, hence another cru-
cial aspect in deciding the quality of a reverse-engineer-
ing algorithm is the computational performance of its
implementation.
Reverse-engineering GRN models with highly accurate

structure accuracy and predictive performance is a long-
standing problem [4]. Currently, some of the main chal-
lenges in reverse-engineering of more accurate and reli-
able GRN models include:

- A lack of sufficient amounts of gene expression
time-course data. While the number of sampling
points is important, far more important is to have
multiple stimulus-response data sets from the same
system [5]. This is a challenging requirement for
current experimental practice.

- A lack of reverse-engineering algorithms and meth-
ods that are able to incorporate existing biological
knowledge effectively.

In this study, we focus on an intricate aspect of the
GRN modelling and simulation that links predictive and
inferential power. Based on two common mathematical
GRN model formalisms, we analyze the effect that the
“structure parameter” of these formalisms has on the
quality of the inferred models. In order to assess this,
we have performed various reverse-engineering experi-
ments on synthetic data based on three different 5-gene
GRN systems, as well as on data obtained from an
11-gene yeast cell-cycle system [11]. This study is not
about presenting a new method, but about analyzing a
particular property of common GRN model formalisms
in the context automated of GRN model inference. To
account for systematic bias and random variation, we
have designed our experiment based on 4 different GRN
systems (3 artificial, 1 biological). For the artificial sys-
tems, we have generated multiple data sets under the
various realistic noise conditions to mimic real data as
closely as possible. Figure 1 shows a training data set
created from artificial system A with the Hill rate law
(Eq. 1).
The main contribution of this study is to provide

insight into the behavior of the structure parameter of
commonly used GRN model formalisms and guidelines
on how to deal with this parameter in similar optimiza-
tion-based reverse-engineering procedures. Thus, the
contribution of this study is not about a new method
for GRN model inference, but a better understanding of
the characteristics of existing formalisms in the context
of automated GRN model inference procedures. We
believe this is an important contribution, as it will help
scientists to understand better the relationship between
formalisms used to represent GRN models and auto-
mated procedures that generate such models from gene
expression data.

Figure 1 Training data set with Gaussian noise added.
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The remainder of this paper is organized as follows:
We first present two common semi-mechanistic mathe-
matical models used to represent GRN systems, and an
algorithm to automatically infer (reverse-engineer) such
models from gene-expression time-course data. We then
describe the main hypothesis underlying this study, the
data (synthetic and biological) we used, and the basic
experimental design and setup of the computational
experiments we performed. This is followed by a section
presenting the results of the experiments and their dis-
cussion and interpretation. First, we present and discuss
training and validation errors obtained from the 192
GRN models derived from the 24 training data sets gen-
erated from 3 synthetic 5-gene GRN systems. Then we
present and discuss the training/validation errors from
the 11-gene GRN models we inferred from a yeast data
set. Finally, in the Conclusions section, we reflect on the
results of this study in the broader context of inferring
reliable GRN models from time-series gene expression
data.

Methods
Rate law
The main assumption behind automated GRN model
inference from timecourse gene expression data is that
such data contains sufficient information to generate
models that capture the essential mechanistic character-
istics of the underlying biological GRN system. A com-
mon strategy for modeling and simulating dynamic
GRNs is based on nonlinear ordinary differential equa-
tions (ODEs) that are derived from standard mass-bal-
ance kinetic rate laws [2]. The ODEs in a GRN model
relate changes in gene transcripts concentration to each
other (and possibly to an external perturbations). Such
models consist of one ODE for each gene in the GRN,
where each equation describes the transcription rate of
the gene as a function of the other genes (and of the
external perturbations). The parameters of the equations
have to be inferred from the expression time-course
data. ODE GRN models are similar to metabolic models
that are formulated based on enzyme kinetics, where
each rate law approximates a series of elementary che-
mical steps. Here, the rate laws are one level of com-
plexity above that and represent a series of enzymatic
steps. Because these rate laws combine mechanistic
details into a small set of model parameters, they are
sometimes referred to as “lumped” or “semimechanistic”
models. In a sense, these models are neither fully
mechanistic nor purely phenomenological.
This study is based on two commonly used rate law

formulations: the Hill rate law [2,12], defined by Eq. 1,
and the artificial neural network (ANN) rate law [13],
defined by Eq. 2.

dxi

dt
= α̂i

n∑
j

∣∣ωij
∣∣ri(xi) − βixi, with

ri(xj) =
{

xj
nij

/
(xj

nij + γi
nij) ifωij > 0

1
/

(1 + (xj
/
γi)nij ifωij < 0

(1)

dxi
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= α̂i

1

1 + exp(γi −
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ωijxj)
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- xi, xj ∈ {x1, x2, ..., xn}: Time-dependent transcript
concentration of gene i and j, respectively, where n is
the total number of genes in the GRN system;
- dxi/dt ∈ ℝ: Total rate of xi change at time t;
- α̂i ∈ R

+ :Maximal synthesis rate of transcript xi;
- ωij ∈ ℝ: Type of synthesis regulation of transcript
xi by xj, such that
ωij >0: Synthesis activation of xi by xj;
ωij <0: Synthesis repression of xi by xj;
ωij = 0: No synthesis regulation of xi by xj.
-|ωij| ∈ R

+
0 :Relative weight of synthesis-regulatory

influence of xj on xi;
- gi: Activation/repression coefficient of gene i; gi ∈ ℝ
for ANN, and
gi ∈ ℝ+ for Hill;
- nij ∈ ℝ+: Hill coefficient controlling the steepness
of the sigmoidal regulation function; and
- bi ∈ ℝ+: Degradation rate constant modulating the
degradation rate of xi.

Both rate laws have been shown to represent essential
characteristics of biological processes [2,8,12-15]. They
capture a maximal synthesis rate (α̂i), sigmoidal (satur-
able) kinetics, and an activation/repression threshold
(gi). For nij <1, the Hill rate law represents Michaelis-
Menten kinetics. The rate law versions shown in Eqs. 1
and 2 assume additive input processing and a linear
transcript degradation rate (bixi) that depends only on
the concentration of the target gene’s product. These
assumptions are not set in stone; the rate laws may be
adapted to capture multiplicative input processing and a
non-linear degradation rate which may depend on var-
ious influences. Variations that capture basal transcript
synthesis and input delays are also possible [8,2].
Like in other comparable GRN rate laws (e.g. the

synergistic-system [16]), the omega parameter (ωij)
represents two distinct biological concepts simulta-
neously; a discrete as well as a continuous concept. On
one hand, it defines the nature or type of synthesis regu-
lation between two genes i and j: if ωij >0, then gene j
activates synthesis of transcript xi, if ωij <0, then gene j
represses xi synthesis, and if ωij = 0, then gene j does
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not regulate transcript xi at all. Hence, the totality of all
ωij parameters determines the transcript synthesis-regu-
latory network structure of the GRN. On the other
hand, the quantity |ωij | defines the strength or influence
of a regulator gene j on its target or effector gene i.
When we employ automated reverse-engineering of
GRN models from time-course gene expression data
with algorithms like the one illustrated in Algorithm 1,
the dual role of ωij and its discrete-continuous interpre-
tation has important consequences.
First, because ωij needs to be coded as a real number

(ωij ∈ ℝ), the chances of a typical parameter estima-
tion algorithm to find ωij = 0 are very small. Thus,
reverse-engineering algorithms like the one discussed
below have a tendency to infer only non-zero values
for |ωij |, representing fully connected network struc-
tures. Fully connected GRN network structures are at
best very difficult to interpret biologically, at worst
meaningless.
Second, because typical GRN model formalisms like

the ones in Eqs. 1 and 2 contain additional parameters
to represent other quantitative aspects of GRN systems,
reverse-engineering algorithms tend to “balance” the
quantitative values of all parameters. This means that
only the relative quantities |ωij | are important, not their
absolute values! It is important to understand this prop-
erty, as this lies at the heart of this study.
Third, in the absence of a clear understanding of the

effect ωij has in the inference process, there is a danger
that modelers choose large omega intervals in their
algorithms. This, of course, adds additional computa-
tional load because it increases the size of the search or
solution space.

Inference algorithm
Once one has chosen a rate law or model formalism to
represent a GRN, one needs to determine the concrete
values of the model’s parameters - the parameters that
describe the network structure, and the parameters that
represent other aspects of the modeled GRN system. If
these parameters are not known, they are typically
inferred by reverse-engineering or parameter estimation
algorithms like the one defined by Algorithm 1.
Given stimulus-response gene expression time-course

data, D, and a particular model formulation, M, Algorithm
1 determines concrete parameter values. The algorithm
iterates over three main steps:
1. An optimizer algorithm that generates candidate

model parameter values by attempting to minimize the
training error, E.
2. An ODE solver component that numerically inte-

grates the model equations using the initial values of the
time series in the training data set, D.

Input: M ¬ Model equations; L ¬ Parameter limits;
G ¬ Network topology; D ¬ Training data; ε ¬
Error threshold
Output: P ¬ Parameter values; E ¬ Training error;
(* Initialize and process: *)
S ¬ Simulation data (* Initialize *)
E ¬ ∞ (* Initialize *)
repeat

P ¬ Optimize(L, E) (* Parameter values *)
S ¬ SolveODE(M, P, D) (* Solve model *)
E ¬ Error(S, D) (* Determine error *)

until E < ε ;
Algorithm 1: Basic reverse-engineering algorithm.
The network topology, G, is an optional input. In this
study, we experiment with known network topology
only.

3. A component that computes the simulation error,
E, based on the gene expression time-course data in the
training data set, D, and the predicted or simulated data,
S, determined by the ODE solver.
GRN modeling and simulation software tools imple-

ment various features that realize the elements listed
above. The diagram in Figure 2 depicts the basic com-
ponents and “workflow” of a typical GRN model
reverse-engineering algorithm. The cloud shape on the
left represents the GRN system under study. In this sim-
plified example, the GRN system has 3 genes corre-
sponding to the model variables x1, x2, x3, respectively.
The series of dots labeled Experimental Data illustrates
the three gene-expression time-series that have been
experimentally obtained from the GRN system over 8
consecutive time points. We refer to this as the training
dataset. The right part of Figure 2 shows the main
reverse-engineering loop. The network shape on the
right (labeled GRN Model) is a graphical depiction of a
algorithm-generated concrete candidate model with
gene-regulatory interaction links between the three
genes of the system. The algorithm simulates the system
based on the candidate model and the initial condition
of the dataset (arrow labeled simulate). The simulation
produces a predicted or simulated dataset (curves
labeled Predicted Data). The experimental and predicted
data are then compared (diamond shape) to assess the
quality of the candidate model. If the quality is deemed
acceptable, the candidate model is retained as the final
candidate model. The final candidate model is still sub-
ject to validation on independent data (this is not
depicted in the diagram).
The simulation of the predicted time series depicted

in Figure 2 involves the numeric integration of the
model equations. In terms of computational effort, the
ODE solver step accounts for approximately for 80% of
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the total computing time of Algorithm 1. The reverse-
engineering process terminates, when the training error
drops below a pre-defined error threshold, or when a
maximum number of model evaluations is reached.
For this study we have employed the GRN modeling and

simulation tool MultGrain/MAPPER. The tool was devel-
oped as a part of the European FP7 project Multiscale
Applications on European e-Infrastructures (MAPPER)
[17]. The goal of MAPPER was to develop a general fra-
mework and technology facilitating the development,
deployment and execution of distributed multiscale
modeling and simulation applications [18,19]. Based on
tools and services developed in the MAPPER project,
MultiGrain/MAPPER realizes the GRN model reverse-
engineering process (Figure 2) based on a multi-swarm
particle swarm optimization algorithm.
In order to estimate the model parameters, we used

the our own implementation of a multi-swarm particle
swarm optimization [20] (PSO) algorithm. PSO is a
population-based meta-heuristic inspired by the flock-
ing, schooling or swarming behavior of animals. Two
main advantages of this method include that it opti-
mizes continuous variables and it has the ability to
avoid getting stuck in local minima by using a multi-
swarm approach which successively swaps particles
across each swarm after a fixed number of iterations in
order to increase the “genetic” diversity of the overall
swarm. The PSO parameters were set according to the
guidelines of Pedersen et al. [21], who performed a
meta-analysis of the PSO algorithm, testing its perfor-
mance for a wide range of parameter values.

Hypothesis, data and experiments
The “fitness landscape” that the reverse-engineering
Algorithm 1 is allowed to explore is defined by the
value ranges of the model parameter intervals. The basic
meaningful ranges of the GRN model parameters in
Eqs. 1 and 2 are specified below the equations. In order
to limit the computational effort required to estimate
the parameters, practical value ranges are typically much
smaller than those shown.
In this study we have tested the following hypothesis:

ωij ∈ [−1, +1] is a sufficiently large permissible range
for the important ωij parameter values, because it is
expressive enough
1. To encode the three regulatory interaction possibili-

ties (synthesis activation, synthesis repression, no synth-
esis regulation) between two genes i and j, and
2. To represent the strength of the regulatory influ-

ence of gene j on i. As we have discussed, only the rela-
tive values of |ωij | are relevant, because of the way the
ωij parameters interact with one another and the other
model parameters of the model Eqs. 1 and 2.
To test this hypothesis, we have conducted a number

of experiments on data obtained from artificial and real
GRN systems.
We have created three 5-gene GRN systems (Figure 3):

System A represents a yeast GRN with five synthesis acti-
vating and three synthesis repressing influences [8].
Systems B and C have six activating influences and
one repressing influence (B is modeled on Hlavacek and
Savageau [22] and C is a purely fictitious network struc-
ture with realistic network features).

Figure 2 GRN model reverse-engineering workflow. The modeling and simulation loop keeps generating models which predict data until
the quality of a candidate is deemed acceptable.
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For each of the three systems, we have created 4 train-
ing and 4 validation data sets with the Hill (Eq. 1) and 4
training and 4 validation data sets with the ANN (Eq. 2)
rate law, respectively (Table 1). So in total we created
24 training and 24 validation data sets (the validation
sets were created using different initial conditions). The
4 variants per system are distinguished by the encoding
of the ωij values used to represent the GRN structure.
While the sign and zero-values of the ωij values are
identical across the four variants per system, we have
varied the quantity of ωij as follows. For Version 1 we
used only ωij ∈ {−1, 0, +1}, i.e. ωij = −1 for synthesis
repression, ωij = +1 for syn-thesis activation, and ωij = 0
for no synthesis regulation. Correspondingly, for Version
2 we used only ωij ∈ {−5, 0, +5}, for Version 3 ωij ∈
{−10, 0, +10}, and for Version 4 ωij ∈ {−20, 0, +20}. For
example, in Table 1 “V(B5,Hill)” refers to the validation
data set from system B created with ωij = −5 represent-
ing a synthesis repression regulator, ωij = +5, a synthesis
activation regulator, and ωij = 0 no synthesis regulation.

All of the synthetic data sets consist of measurements
over 16 consecutive time points. After the data sets
were created, we added zero-mean Gaussian noise
(values are drawn from a normal random variable with a
mean of zero and a variance of 0.15 times the maximum
range of all the expression levels) [23].
In addition to the three artificial 5-gene GRN systems,

we used two real data sets obtained from 11 yeast cell
cycle genes [11]. One data set (38 time points) was used
for training, and the other (30 time points) for valida-
tion. The network structure of this 11-gene yeast cell
cycle system consists of 15 activating and 14 repressing
influences [24].
To determine the role that the omega parameters play

in GRN model inference, we reverse-engineered a total
of 192 GRN models from the 24 synthetic training
data sets. Each of the 24 training data sets depicted in
Table 1 was reverse-engineered 4 times with the Hill
(Eq. 1), and 4 times with the ANN (Eq. 2) rate law, with
the following interval settings for the omega parameters:

Figure 3 Artificial 5-gene GRN systems.

Table 1 Training/validation data sets for each artificial systems A, B and C, with four different ωij intervals.

ANN training data ANN validation data

ω−value A B C A B C

{-1, 0, +1} T(A1,ANN) T(B1,ANN) T(C1,ANN) V(A1,ANN) V(B1,ANN) V(C1,ANN)

{-5, 0, +5} T(A5,ANN) T(B5,ANN) T(C5,ANN) V(A5,ANN) V(B5,ANN) V(C5,ANN)

{-10, 0, +10} T(A10,ANN) T(B10,ANN) T(C10,ANN) V(A10,ANN) V(B10,ANN) V(C10,ANN)

{-20, 0, +20} T(A20,ANN) T(B20,ANN) T(C20,ANN) V(A20,ANN) V(B20,ANN) V(C20,ANN)

Hill training data Hill validation data

A B C A B C

{-1, 0, +1} T(A1,Hill) T(B1,Hill) T(C1,Hill) V(A1,Hill) V(B1,Hill) V(C1,Hill)

{-5, 0, +5} T(A5,Hill) T(B5,Hill) T(C5,Hill) V(A5,Hill) V(B5,Hill) V(C5,Hill)

{-10, 0, +10} T(A10,Hill) T(B10,Hill) T(C10,Hill) V(A10,Hill) V(B10,Hill) V(C10,Hill)

{-20, 0, +20} T(A20,Hill) T(B20,Hill) T(C20,Hill) V(A20,Hill) V(B20,Hill) V(C20,Hill)
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ωij ∈ [−1, +1], ωij ∈ [−5, +5], ωij ∈ [−10, +10] and ωij ∈
[−20, +20]. Notice, in the reverse-engineered models, the
parameters are free to assume any value within the
given interval limits, whereas in the artificial systems
(Section 3) the same parameters assume only the
boundary values of these intervals (for synthesis activa-
tion and repression), and zero for no synthesis regula-
tion (hence the first column in Table 1 does not show
intervals but sets that contain exactly three elements).
In addition to the 192 GRN models we reverse-engi-

neered from the data generated from our artificial sys-
tems, we have reverse-engineered 8 GRN models from
the single training data set (Alpha 38) of the yeast cell
cycle system using both the Hill and ANN rate laws with
the same interval specifications for the omega para-
meters: ωij ∈ [−1, +1], ωij ∈ [−5, +5], ωij ∈ [−10, +10]
and ωij ∈ [−20, +20].
Each of the 192 GRN models from synthetic data was

validated against the corresponding independent valida-
tion data set, and the each of the 8 models inferred
from the yeast cell cycle system was validated against
the single independent validation data set (Alpha 30).

Results and discussion
The training and validation errors (normalised root
mean squared errors) of our experiments are shown in
Tables 2, 3, 4, 5 and 6 below. In the tables x and s
denote the mean error and error standard deviation,
respectively, obtained from four reverse-engineering
replications per model. Rows in these tables refer to the
GRN systems from which the data was obtained, and
columns to omega intervals used to reverse-engineer the
GRN models.

Training errors synthetic systems
First, we consider the training errors of the GRN models
derived from the synthetic GRN systems in Tables 2 and
3. The training error’s means and standard deviations
are shown in the bottom-right corner of the tables.
The list below summarizes the average of the means

and the standard deviations of the training errors for the
4 sets of models across the four omega intervals used to
reverse-engineer the models. These are the averages
obtained from the sets of 4 mean training error values
in the second row from the bottom of Tables 2 and 3.
For example, the the average mean of 0.1427 and aver-
age standard deviation 0.0001 for the ANN-ANN sys-
tem/model model configuration (first four main
columns in Table 2) is obtained from the sets of four
values at the bottom of these columns. We use “S(X) ®
M (X): average mean error ± average standard deviation”
to denote the system/model configuration and the asso-
ciated error data; X denotes the rate law used to create
the system S and infer the model M, respectively.
- Training: S(ANN) ® M (ANN): 0.1427 ± 0.0001.
- Training: S(ANN) ® M (Hill): 0.1459 ± 0.0023.
- Training: S(Hill) ® M (ANN): 0.3554 ± 0.0009.
- Training: S(Hill) ® M (Hill): 0.1381 ± 0.0035.
From the average mean training errors, we notice that

both sets of Hill models have an average mean training
error close to 0.14. This is comparable to average mean
training error of the ANN model obtained from the
ANN system’s data. However, the mean training error
(0.3554) of the ANN model obtained from the ANN
system’s data is more than twice that value. Since the
ANN rate law (Eq. 2) has fewer parameters than the
Hill rate law (Eq. 1), and hence a smaller degree of

Table 2 Training errors of models of synthetic systems A, B, C which were created with ANN rate law.

System and Code Training data from synthetic ANN SYSTEM

ANN MODEL training error Hill MODEL training error

[-1,+1] [-5,+5] [-10,+10] [-20,+20] [-1,+1] [-5,+5] [-10,+10] [-20,+20] x s

A -1, 0, +1 0.135 0.136 0.135 0.136 0.139 0.140 0.136 0.133 0.136 0.002

B 0.161 0.160 0.160 0.160 0.176 0.163 0.159 0.162 0.163 0.006

C 0.160 0.160 0.160 0.160 0.158 0.160 0.158 0.166 0.160 0.002

A -5, 0, +5 0.137 0.136 0.139 0.137 0.142 0.141 0.136 0.143 0.139 0.003

B 0.128 0.126 0.124 0.124 0.139 0.125 0.126 0.124 0.127 0.005

C 0.152 0.152 0.152 0.152 0.153 0.155 0.151 0.153 0.152 0.001

A -10,0,+10 0.156 0.156 0.156 0.156 0.186 0.160 0.158 0.148 0.160 0.011

B 0.142 0.142 0.142 0.142 0.149 0.150 0.150 0.139 0.144 0.004

C 0.144 0.142 0.142 0.142 0.147 0.150 0.148 0.149 0.146 0.003

A -20,0,+20 0.132 0.136 0.136 0.134 0.141 0.137 0.138 0.131 0.136 0.003

B 0.135 0.137 0.136 0.136 0.137 0.145 0.145 0.136 0.138 0.004

C 0.131 0.130 0.130 0.130 0.132 0.130 0.130 0.131 0.130 0.001

x 0.143 0.143 0.143 0.143 0.150 0.146 0.145 0.143 ALL ALL

s 0.012 0.012 0.012 0.012 0.017 0.012 0.011 0.013 0.144 0.012
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freedom, it is harder for the ANN models to fit data
obtained from Hill systems. Hill models, on the other hand,
can adapt easier to data generated from ANN systems.
While above observations are interesting, the most

important information in the context of our investigation
relates to the groups of 4 error values for a given system/
model combination (e.g. 4 values highlighted in bold font
in Table 2), as well as to entire columns of error values
(e.g. blocks of errors in italic font in Table 3). Tables 2
and 3 highlight four horizontal groups of 4 training
errors in bold; these groups have a standard deviation
higher than 0.010. If anything, one would expect the

errors to get smaller for larger omega intervals (from left
to right), because larger omega intervals relate to a larger
solution space. However, in most cases such a pattern is
not observed. Indeed, even for the training errors in the
bottom three rows in both tables (these were obtained
from data of the three systems with large omega values:
−20 and +20 for repression and activation, respectively),
we cannot find a general improvement of training error
for increasing omega intervals. For example, in Table 2
the two horizontal groups of 4 training errors highlighted
in italic font do not show a clear pattern of decreasing
training errors.

Table 3 Training errors of models of synthetic systems A, B, C which were created with Hill rate law.

System and Code Training data from synthetic Hill SYSTEM

ANN MODEL training error Hill MODEL training error

[-1,+1] [-5,+5] [-10,+10] [-20,+20] [-1,+1] [-5,+5] [-10,+10] [-20,+20] x s

A -1, 0, +1 0.118 0.115 0.120 0.116 0.126 0.119 0.119 0.137 0.121 0.007

B 0.140 0.143 0.143 0.143 0.147 0.141 0.141 0.138 0.142 0.003

C 0.165 0.163 0.164 0.167 0.163 0.162 0.162 0.163 0.163 0.002

A -5, 0, +5 0.252 0.254 0.252 0.252 0.134 0.133 0.134 0.133 0.193 0.064

B 0.230 0.247 0.247 0.247 0.126 0.126 0.127 0.123 0.184 0.063

C 0.348 0.348 0.348 0.348 0.132 0.132 0.131 0.133 0.240 0.116

A -10,0,+10 0.470 0.471 0.470 0.470 0.153 0.152 0.152 0.153 0.311 0.170

B 0.455 0.447 0.443 0.455 0.125 0.125 0.125 0.124 0.287 0.174

C 0.432 0.432 0.432 0.432 0.126 0.112 0.111 0.112 0.274 0.170

A -20,0,+20 0.586 0.586 0.586 0.586 0.194 0.175 0.168 0.168 0.381 0.219

B 0.568 0.568 0.568 0.568 0.141 0.122 0.117 0.116 0.346 0.237

C 0.492 0.492 0.492 0.492 0.194 0.140 0.124 0.123 0.318 0.187

x 0.355 0.355 0.355 0.356 0.147 0.136 0.134 0.135 ALL ALL

s 0.168 0.167 0.166 0.167 0.025 0.019 0.018 0.018 0.247 0.158

Table 4 Validation errors of models of synthetic systems A, B, C which were created with ANN rate law.

System and Code Validation data from synthetic ANN SYSTEM

ANN MODEL validation error Hill MODEL validation error

[-1,+1] [-5,+5] [-10,+10] [-20,+20] [-1,+1] [-5,+5] [-10,+10] [-20,+20] x s

A -1, 0, +1 0.220 0.199 0.193 0.168 0.243 0.397 0.362 0.405 0.273 0.098

B 0.168 0.140 0.166 0.164 0.261 0.166 0.266 0.431 0.220 0.097

C 0.161 0.141 0.148 0.161 0.291 0.353 0.300 0.260 0.227 0.083

A -5, 0, +5 0.228 0.217 0.216 0.199 0.304 0.382 0.342 0.463 0.294 0.096

B 0.144 0.292 0.133 0.134 0.163 0.177 0.147 0.379 0.196 0.090

C 0.160 0.150 0.141 0.140 0.244 0.254 0.209 0.312 0.201 0.064

A -10,0,+10 0.163 0.159 0.155 0.198 0.329 0.298 0.255 0.375 0.242 0.086

B 0.198 0.192 0.187 0.188 0.227 0.194 0.198 0.432 0.227 0.084

C 0.144 0.167 0.159 0.181 0.236 0.277 0.265 0.369 0.225 0.077

A -20,0,+20 0.183 0.209 0.216 0.213 0.313 0.355 0.404 0.426 0.290 0.097

B 0.185 0.174 0.174 0.172 0.178 0.424 0.264 0.212 0.223 0.087

C 0.243 0.186 0.233 0.183 0.303 0.262 0.245 0.418 0.259 0.075

x 0.183 0.186 0.177 0.175 0.258 0.295 0.271 0.374 ALL ALL

s 0.033 0.042 0.032 0.024 0.053 0.088 0.072 0.076 0.240 0.087
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Furthermore, when we look at the profiles of the
training errors in the columns of both tables, we notice
a good pair-wise similarity of training errors (at least
within the four columns relating to the same system/
model combination). This is illustrated by two columns
highlighted in italic font in Table 3. This means that
models inferred with different omega intervals show
similar training errors for corresponding data sets.
There does not seem to be an advantage of using larger
omega intervals in the reverse-engineering process.

Validation errors synthetic systems
The validation error of the inferred models characterizes
the predictive power of the models. Tables 4 and 5 show
the validation errors of the models inferred from the
data of the synthetic systems depicted in Figure 3. The
mean validation error of all 192 models inferred from
the synthetic systems’ data is 0.263 with a standard
deviation of 0.127 (not shown in tables). So the mean
validation error across all models is ca. 34% higher than
the mean training error. The variation of the validation

errors is similar to that of the training errors (Tables 2
and 3).
The list below summarizes the average of the means

and the standard deviations of the validation errors of
the four sets of models across the four omega intervals
used to reverse-engineer the models.
- Validation: S(ANN) ® M (ANN): 0.1801 ± 0.0076.
- Validation: S(ANN) ® M (Hill): 0.2994 ± 0.0146.
- Validation: S(Hill) ® M (ANN): 0.4019 ± 0.0039.
- Validation: S(Hill) ® M (Hill): 0.1701 ± 0.0050.
The average mean validation errors are consistent with

the averages for the mean training errors, in that, the
ANN models’ predictive performance on the Hill sys-
tem’s data is much poorer than that of the other three
models. In fact, the validation errors reveal that inferring
models from data that was obtained from systems that
were created with the same rate law (as the model),
constitutes a considerable bias. The average mean errors
for ANN models obtained from ANN system data, and
for Hill models from Hill system data are quite low and
similar. However, with mixed configurations (different

Table 5 Validation errors of models of synthetic systems A, B, C which were created with Hill rate law.

System and Code Validation data from synthetic Hill SYSTEM

ANN MODEL validation error Hill MODEL validation error

[-1,+1] [-5,+5] [-10,+10] [-20,+20] [-1,+1] [-5,+5] [-10,+10] [-20,+20] x s

A -1, 0, +1 0.163 0.240 0.187 0.223 0.215 0.203 0.190 0.212 0.204 0.024

B 0.173 0.173 0.174 0.171 0.189 0.185 0.195 0.184 0.180 0.009

C 0.259 0.255 0.228 0.193 0.258 0.189 0.263 0.224 0.234 0.030

A -5, 0, +5 0.398 0.403 0.403 0.403 0.201 0.209 0.203 0.198 0.302 0.106

B 0.292 0.342 0.342 0.298 0.132 0.132 0.133 0.209 0.235 0.094

C 0.386 0.434 0.337 0.435 0.148 0.145 0.148 0.144 0.272 0.138

A -10,0,+10 0.483 0.481 0.507 0.482 0.163 0.164 0.169 0.171 0.327 0.172

B 0.426 0.423 0.418 0.427 0.132 0.133 0.132 0.134 0.278 0.156

C 0.516 0.556 0.488 0.556 0.165 0.153 0.153 0.152 0.343 0.201

A -20,0,+20 0.553 0.553 0.552 0.552 0.185 0.167 0.160 0.161 0.361 0.206

B 0.552 0.552 0.552 0.552 0.146 0.135 0.142 0.143 0.347 0.219

C 0.535 0.563 0.563 0.533 0.194 0.138 0.131 0.134 0.349 0.215

x 0.395 0.415 0.396 0.402 0.177 0.163 0.168 0.172 ALL ALL

s 0.143 0.137 0.143 0.146 0.037 0.028 0.039 0.032 0.286 0.153

Table 6 Training and validation errors of cell cycle models.

System Traing and validation data from Cell Cycle SYSTEM

Cell Cycle (alpha 38) Training error ANN MODEL Training error Hill MODEL

[-1,+1] [-5,+5] [-10,+10] [-20,+20] [-1,+1] [-5,+5] [-10,+10] [-20,+20] x s

0.110 0.111 0.109 0.114 0.110 0.110 0.113 0.113 0.111 0.002

Cell Cycle (alpha 30) Validation error ANN MODEL Validation error Hill MODEL x s

[-1,+1] [-5,+5] [-10,+10] [-20,+20] [-1,+1] [-5,+5] [-10,+10] [-20,+20]

0.220 0.416 0.725 0.213 0.201 0.195 0.214 0.214 0.300 0.187
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rate law for system and model), we get much higher
average mean validation errors. This relates to the
important but frequently ignored issue of the modeling
error. The modeling error is due to the fundamental
imperfections that arise when we make abstractions of
reality in the form of mathematical or computational
models. A model, any model, is by definition an approx-
imation of reality [25]. The modeling error quantifies
how well the abstraction approximates reality. Concep-
tualizing a complex phenomena such as GRN systems
as a mathematical or computational model is a relatively
new modeling abstraction. More research is required to
understand how to assess the modeling error in such
approaches.
Looking at the data in Tables 4 and 5 in detail, we

notice that things are less homogeneous than for train-
ing errors. This is to be expected, as predicting the
time-courses for unseen stimuli is a much harder task
than predicting the timecourses for known inputs. In
Table 4 the groups for which the within-group standard
deviation is greater than 0.075 are highlighted in bold
font. Surprisingly, there are many such groups in Hill/
ANN model/system configurations. Still, in terms of the
hypothesis we are testing, most groups of four do not
show a pattern of decreasing validation error with
increasing omega intervals. For example, the two hori-
zontal groups of four validation errors highlighted in ita-
lic font in Table 5 illustrate two sets of validation errors
that do not vary across the omega interval settings.
Indeed, in some cases there is even an increase of error
- and in other cases a slight decrease. Likewise, when
we look at the vertical validation error profiles in col-
umns (e.g. the two columns highlighted in italic font in
Table 5), we notice a general pair-wise similarity for
each model group. These observations confirm our
hypothesis that the absolute size of the interval for ωij is
not critical. Even when data is generated with large ωij

values, the reverse-engineered models can approximate
the data equally well with small and large ωij ranges.

Training and validation errors yeast system
Finally, we consider the training and validation errors
we obtained from the data of the cell cycle system in
Table 6. The mean training and validation errors (not
shown in Table 6) for the two models obtained with the
four omega intervals are presented below. S(CC) denotes
the cell cycle system, and M (X) the inferred models and
their underlying rate law formulations.
- Training: S(CC) ® M (ANN): 0.1110 ± 0.0019.
- Training: S(CC) ® M (Hill): 0.1116 ± 0.0018.
- Validation: S(CC) ® M (ANN): 0.3936 ± 0.2402.
- Validation: S(CC) ® M (Hill): 0.2058 ± 0.0094.
In terms of the mean training error, the two models

perform almost identically. But the mean validation

error of the ANN model is nearly twice that of the Hill
model! This difference in predictive power is quite
remarkable, even though we are testing only four omega
conditions. We also observe that the variation (standard
deviation) in the ANN model performance (validation
error) is much higher than that of the Hill model. Clearly,
the Hill rate law has more parameters and hence is more
likely to fit complex curves. Still, that the ANN model
mean validation error is nearly 100% higher than that of
the Hill model (when the mean training errors are simi-
lar), seems to be an important observation.
We now analyze how the training and validation per-

formance depends on the omega intervals. We observe
essentially a similar pattern as in the evaluation of the
synthetic systems. For the two groups of four training
errors in Table 6 there seems to be hardly any variation
in training error from smaller to larger omega intervals.
In the four validation errors of the Hill model, we see a
minor variation, but a slight rise in error as we move to
larger omega intervals (if anything, the error should
become smaller, as more solution possibilities are being
explored). And in the validation errors of the ANN
model, we notice a considerable variation in validation
errors but no pattern of decrease in validation error
from smaller to larger omega intervals. So overall, this
seems to corroborate the results derived from the syn-
thetic systems in Tables 2 and 3 (training errors), and
Tables 4 and 5 (validation errors). It seems, that choos-
ing large (and ad hoc) omega intervals does not make a
real difference.

Conclusions
In this study, we focused on the automated reverse-engi-
neering (or inference) of gene-regulatory models from
time-course gene expression data. The “grand challenge”
in this area is to infer dynamic (time-resolved) mechan-
istic (quantitative cause-effect) regulatory interactions
from data [4]. Currently, this task is hampered by the
lack of sufficient amounts of data in terms of stimulus-
response data sets from the same system. However, as
experimental techniques improve and become more
affordable, more and more relevant data is likely to be
produced in the future. We anticipate that multi-stimu-
lus data on the same system is likely to reveal more of
the underlying mechanistic details of GRN systems, and
modeling approaches as the one presented in this study
will become a part of the standard toolbox [5].
The particular focus of this study was to investigate the

role of the omega parameters within a particular class of
semi-mechanistic mathematical GRN model formalisms
or rate laws. In ANN and Hill laws [2,13] and similar (e.g.
the synergistic-system [16]) rate laws, the ωij parameters
simultaneously represent the presence or absence of tran-
script synthesis regulators (a discrete concept) and the
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strength of their regulatory influence (a continuous con-
cept). When we reverse-engineer GRN models from time-
series gene expression data, we need to define reasonable
limits for these parameters, to avoid an excessively large
solution search space. Often, the choice of the size of the
ωij intervals is defined in an ad hoc way or determined by
trial-and-error experimentation. The hypothesis we tested
in this study was that limiting ωij to ωij ∈ [−1, +1] facili-
tates full expression without loss in accuracy of the
inferred models.
To test this hypothesis, we created various data sets

from three synthetic 5-gene systems (A, B, and C; see
Figure 3) based on the ANN and Hill rate laws defined
by Eqs. 1 and 2, and used two publicly available data
sets from an 11-gene cell cycle system [11,24]. From the
synthetic systems, we generated 192 training and 192
validation data sets under different omega interval con-
ditions. We explored how the model training errors and
model validation errors (predictive power) vary in rela-
tion to different settings of the omega interval. Our
results suggest that the absolute size of the omega inter-
val does not seem to have any effect on the models’ pre-
dictive performance (validation error).
This result has important consequences for reverse-

engineering algorithms that estimate concrete values of
ωij and other model parameters. In particular, it is not
necessary to choose an excessively large interval range
for ωij. Because we need to specify a ωij interval for all
possible n2 regulators of a GRN, large ωij intervals have
a considerable impact on the computational complexity
(size of parameter solution space) of the model infer-
ence algorithm. Knowing that ωij ∈ [−1, +1] is sufficient
is likely to improve the computing performance of such
algorithms.
Clearly, more research is needed to form a more com-

prehensive view on the merits and limitations of GRN
model inference. In particular, we need methods and
tools that are capable of inferring reliable and interpre-
table mechanistic gene-regulatory networks from data.
While empirical studies like the one presented here are
important, more theoretical investigations are needed to
establish how much information relating to the mechan-
istic gene-regulatory network structure of the underlying
GRN system is actually contained in the experimental
data. We need also more studies like that of Cantone
and colleagues [8] that provide the basis for comprehen-
sive studies based on real data.
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