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Abstract— Braitenberg vehicles are simple models of the
motion of animal towards, or away from, a stimulus. They
have been used to implement target reaching and avoidance
behaviours in robotics, based, among others, on sound, light,
distance, and pressure sensors. When the sensors are accurate
enough – when they provide a high signal to noise ratio –
variations on the readings can be neglected. Their behaviour,
in these applications, can be explained using a non-linear
deterministic dynamical system. For noisy sensors, or when
the physical interaction between the robot and the measured
variable is complex, a deterministic model is not good enough.
Some examples include robots with cheap sensors, sensor pro-
totypes, or settings where the interaction with the environment
changes the measurements, like odour tracking – as the motion
of the robot creates turbulences in the air. This paper presents
the first analysis of the behaviour of Braitenberg vehicle 3a
with noisy sensors. The mathematical equations of the evolution
of the vehicle state probability are derived under white noise
assumptions, and a bound for the vehicle state uncertainty is
obtained assuming Gaussian probability distributions of the
pose. These equations relate the morphological parameters of
the vehicle, the noise variance and the function connecting the
sensors to the actuators. The non-linear controller simulations
illustrate the local validity of the model, and global simulations
show how the vehicles converge.

I. INTRODUCTION

In his seminal work [1] Valentino Braitenberg presented
as a thought experiment a set of models of animal be-
haviour with increasing levels of complexity. These models
correspond in their simpler version to the animal behaviour
known as taxes, motion of animals towards (or away from) a
stimulus [2]. Qualitative in nature, they are used in biology
[3], although their apparent simplicity made then appealing
for fields like Artificial Life [4] [5] and robotics. Whilst
the descriptive version of the models are highly intuitive, its
mathematical formulation has shown unreported interesting
features of their behaviour like: oscillatory and bounded
motion [6], or chaos [7]. The main drawback of these models
is that they assume noiseless sensors, which in some cases
might be unrealistic. Their validity is questionable for robots
with cheap or noisy sensors, or when the robot is immersed in
an environment with complex dynamics. This paper presents
the first analysis of the behaviour of Braitenberg vehicle 3a
in the presence of non-negligible sensor noise.

Clearly, even simpler animals master the “art” of moving
in the real world. Therefore, a proper understanding of
how they perform their motion would be very valuable
for robotics. In fact, the principles behind a simple model
like the Braitenberg vehicles has been successfully used
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in many robotic works. One such successful story is pre-
sented in the imitation of female cricket phonotaxis [8] [9]
[10], i.e. the motion of a robot towards a sound source.
A spiking neural network based model with connections
following the ideas of Braitenberg vehicles achieved very
good performance under quite adverse outdoor conditions.
The control mechanism is comparable to a combination of
vehicles 2a and 3b since excitatory neurons follow a direct
connection between sensors and motors, while inhibitory
units are crossed. [11] presents another implementation of
phonotaxis. While the main contributions in this work are
the modelling of the central auditory system in mammals
(rats), and the implementation of a sound source localisation
based on the pinnae and the cochlea model, the authors use
the vehicle 3a principle to control their robot motion. The
auditory system of a lizard is used to achieve phonotaxis in
another robotic application [12]. The performance of this
implementation of a lizard’s ear model is good enough
to work over a wide range of frequencies with a high
success rate using a Braitenberg vehicle 2b and a bang-bang
controller. Although the theoretical models and results of
the Braitenberg vehicle 2b were not available to the authors,
they were able to tune the parameters to achieve similar
performance for both controllers. A wandering mechanism
based on vehicle 2b is presented in [7], where the stimulus
is the free area measured by the robot laser sensor. This work
also shows that the motion of the vehicle 2b is equivalent
to a particle in a potential well and, therefore, it can display
chaotic behaviour. Finally, a vision based implementation of
Braitenberg vehicles 2a and 2b was presented in [13]. The
goal of this work was to imitate several reflex responses of
arthropods using optical flow as a sensory input.

All of the above works can be considered to follow the
deterministic models of Braitenberg vehicles. When imple-
menting, for instance, phonotaxis, if the signal to noise ratio
is high enough the noise can be neglected. On the other hand,
since the readings of the laser scanners are quite accurate, in
the case of the free area based wandering, the noise can also
be ignored. In general that means the stochastic component
of the stimulus has little influence in the behaviour. However,
Braitenberg vehicles have been also used in applications
with more complex stimuli. One of the pioneering works
in odour source localisation [14] experimentally analysed
the behaviour of Braitenberg vehicles 3a and 3b. Using two
chemical sensors and normalising the readings the authors
were able to direct a robot towards a chemical source or to
stay near high concentrations levels. This type of application
clearly differs from the ones mentioned so far. As the robot
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moves it induces air flows making the concentration of
chemicals in the air change in potentially chaotic ways, yet
this work showed that, when carefully done, Braitenberg
vehicles are able to to deal with these situations. Another
example of a complex vehicle is presented in [15] where
a fish robot provided with pressure sensors can keep its
orientation relative to a laminar flow. In this rheotaxis
implementation the forward speed of the fish is kept constant,
but the turning rate is computed following the principles of
Braitenberg vehicles. This is another example of a situation
in which the interaction between the robot and stimulus
generates complex measurement patterns, and the determin-
istic model might not be enough to accurately describe the
robot behaviour. Another application to underwater robotics
worth mentioning is presented in [16], the implementation
of a robotic electric fish. In this work the steering control
is performed using the differences between the currents,
perceived through electrodes located on the sides of the
robot. The resulting trajectories approach conductive objects
in a pond while avoiding isolating ones.

Through the literature we find multiple empirical applica-
tions of Braitenberg vehicles, ranging from target seeking
and sound source localisation to wandering and obstacle
avoidance. To characterise some of these works a determin-
istic model of Braitenberg vehicles might be enough. How-
ever, if the sensor readings are too noisy or the interaction
between the robot and the environment produces complex
variations of the measurements around some expected value
– like for turbulent air flows – a model accounting for
sensor noise seems more appropriate. This paper presents
the first model and theoretical analysis of the motion of
Braitenberg vehicle 3a for the case of noisy sensors. The
theoretical analysis of the model shows interesting results
linking the sensor noise, the controller and the morphological
parameters of the vehicle. Therefore, this work contributes
to a better understanding of this biological motion model
widely used in robotics. The rest of the paper is organised
as follows. Section II briefly reviews the qualitative model
of Braitenberg vehicle 3a, states the working assumptions,
and formally derives the model equations under sensor noise
conditions. Simulations in section III illustrate the validity of
the model – when the local assumptions are fulfilled – and its
limits in a global situation. However we also show that the
behaviour of the vehicles is globally convergent under certain
conditions. Section IV ends the paper with some conclusions
and future work directions.

II. A STOCHASTIC MODEL BRAITENBERG VEHICLE 3A

As stated in the introduction, Braitenberg vehicles model
positive and negative taxis, i.e. motion towards, or away
from, a stimulus. Vehicle 3a represents a model of positive
tropo-taxis, taxis based on two sensors. Figure 1 shows the
qualitative model of vehicle 3a, which has a decreasing
connection between the sensors and the wheels (negative sign
in the figure). The stimulus (light) source is located on the
right side of the robot, which implies that the right sensor
perceives a higher intensity value. A decreasing connection
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Fig. 1. Braitenberg vehicle 3a

means that the turning velocity of the right wheel will be
smaller than the one for the left wheel, making the vehicle
effectively head towards the (light) source. Therefore, one of
the implicit assumptions in the original qualitative work [1] is
that there is a purely kinematic relation between the sensors
and the actuators. While wheels abstract the locomotive
system of animals, they also capture the fact that their motion
is non-holonomic, which is a good approximation especially
for high speeds.

A. Linear and angular velocities uncertainty

Following figure 1, we will assume the state of the vehicle
can be described by the Cartesian coordinates of the midpoint
between the sensors x = (x, y), and its heading direction
θ. We will also assume that there is a position dependent
stimulus which can be modelled as a smooth function S(x).
If the stimulus comes for instance from a light or sound
source, its intensity – what we expect the sensor to measure
– decays with the square of the distance, i.e. it follows
the inverse square law. In general, however, the function
S(x) does not need to be a real stimulus, it could represent
an artificial potential or even a function of a group of
sensor readings, like the free area around the robot used in
[7]. We will assume the stimulus is the combination of a
deterministic function S0(x) and some white random noise
following a Gaussian distribution, S(x) = S0(x) + η, where
η ∼ N

(
0, σ2

η

)
. It is worth reminding that the deterministic

function can have any profile, depending on the stimulus
used, but we will assume it is a smooth enough function of
the position x.

Using the same notation as for the deterministic model of
vehicle 3a [17] we define an orthonormal reference system
linked to the front of the vehicle {ê, êp}. These vectors
are defined by the heading direction of the vehicle θ (see
figure 1) as êT = [cos θ sin θ] and êTp = [− sin θ cos θ]. We
will further assume that the relation between the measured
stimulus and the speeds of the wheels is purely functional,
i.e. v = F (s), where s is the sensor measurement and v the
linear velocity of the wheel axis. The fact that this vehicle



has a decreasing connection constrains the possible functions
to have a negative slope in the range of the sensor readings,
i.e. F ′(s) < 0. This also implies that F (s) has to be at least
C1, but for convenience we will assume F (s) ∈ C∞. It
is worth noting that there is no linearity constraint on the
function and, therefore, the wheel speeds might not follow a
Gaussian distribution. Under these assumptions, the speeds
of the right and left wheels can be stated as:

vr = F (S(x− δ

2
êp))

vl = F (S(x +
δ

2
êp)) (1)

where δ is the distance between the vehicle sensors
(see figure 1). We can linearise F (s) and approximate
the wheel speeds as vr ∼ N

(
Fr, [F

′
r]

2
σ2
η

)
and vl ∼

N
(
Fl, [F

′
l ]
2
σ2
η

)
, where Fr, Fl, F ′r and F ′l are the com-

pound function F (S0(x)) and its derivative evaluated at the
corresponding sensor locations xr = x − δ

2 êp and xl =
x + δ

2 êp. If we now use the standard linear transformation
between wheel velocities (vr and vl) and the forward speed
v and turning rate ω of the vehicle, they approximately
follow the distributions v ∼ N

(
Fr+Fl

2 ,
σ2
η

4 [[F ′r]
2 + [F ′l ]

2]
)

ω ∼ N
(
Fl−Fr
d ,

σ2
η

d2 [[F ′r]
2 + [F ′l ]

2]
)

, where, as figure 1, d is
the vehicle wheelbase.

Since we imposed smoothness conditions for the stimu-
lus function S0(x) and for F (s), we can approximate the
function composition around the middle point between the
sensors as:

Fl ≈ F (S0(x)) +
δ

2
F ′(S0(x))∇S0(x) · êp (2)

Fr ≈ F (S0(x))− δ

2
F ′(S0(x))∇S0(x) · êp (3)

where F ′(s) represents the derivative of F (s) w.r.t. ‘s’
and ∇S0(x) is the gradient of the deterministic component
of the stimulus function. The corresponding derivatives can
be also approximated as:

F ′l ≈ F ′(S0(x)) +
δ

2
F ′′(S0(x))∇S0(x) · êp (4)

F ′r ≈ F ′(S0(x))− δ

2
F ′′(S0(x))∇S0(x) · êp (5)

where F ′′(s) is the second derivative of F (s) w.r.t. ‘s’. If
we substitute equations (2), (3), (4) and (5) in the expressions
for the mean and covariances of the linear and angular speeds
of the vehicle, we get:

v ∼ N

(
F,
σ2
η

2
ρ

)
(6)

ω ∼ N

(
− δ
d
F ′∇S0 · êp,

2σ2
η

d2
ρ

)
(7)

where F = F (S0(x)) is the function evaluated at the
stimulus value of the middle point between the sensors, F ′ =
F ′(S0(x)) is its derivative, ∇S0 = ∇S0(x) is the gradient
of the stimulus at that point, and

ρ = [F ′]2 +
δ2

2
[F ′′∇S0 · êp]

2 (8)

Obviously, the expressions obtained for average speeds
are the same as for the deterministic model of vehicle 3a
[17], yet the equations of the variances show interesting
results. It is straightforward to see that the noise variance
σ2
η has a direct effect on the variances of both variables,

linear and angular speeds. However, equation (7) shows that
to reduce the overall effect of the noise on the angular
velocity, the vehicle requires a large wheelbase d. This has
an intuitive explanation if we consider the mean value of the
vehicle turning rate. The change in the direction is driven
by the directional derivative of the stimulus in the direction
orthogonal to the vehicle, the mean in the equation (7).
Because the angular velocity is ω = vl−vr

d , increasing the
wheel base reduces the turning rate, and this has the effect of
decreasing the variance σ2

ω . Therefore, the model provides a
relation between the vehicle morphological parameter d, the
variance of the sensor noise, and the parameters of the non-
linear controller F (s). It is worth noting that the variance
of the turning rate depends on the direction the vehicle is
heading, such that it has its minimum when it is aligned with
the gradient of S(x), either the same or opposite directions.

B. Time evolution of the trajectories

From the probability distributions of the speeds, equations
(6) and (7) we can derive the evolution of the state of the
Braitenberg vehicle 3a. Its kinematics correspond to the well
known unicycle motion model, a non-linear non-holonomic
system which in its discrete form can be written as:

 xk+1

yk+1

θk+1

 =

 xk + ∆Tvk cos θk
yk + ∆Tvk sin θk
θk + ∆Tωk

 (9)

where Xk = [xk, yk, θk] is the state of the vehicle at
time-step k, vk and ωk are the linear and angular speeds,
and ∆T is the sampling discretisation time. Through these
equations we can obtain the evolution of the vehicle over
time. Since we have a model of the control variables as
a Gaussian probability, we can compute an approximation
of the distribution of the state at k + 1 if we assume
the probability distribution of the state of the system at
time k is Gaussian p(Xk) ∼ N (µXk

,ΣXk
), where µXk

is the average of the state, and ΣXk
its covariance matrix.

Obviously, because the unicycle system’s equations are non-
linear, the resulting distribution will not be Gaussian, but we
can linearise equation (9) to get an approximation and we
obtain a closed form solution for the probability p(Xk+1).
Moreover, due to the topology of the state space it might
be more appropriate to model the heading direction as a



von Mises distribution, but we will follow the standard
assumption of Gaussianity over the pose.

The mean of the p(Xk+1) distribution µXk+1
can be easily

computed plugging µXk
in equations (9), while the covari-

ance matrix ΣXk+1
is obtained from linearised equations of

the system as:

ΣXk+1
= ΣXk

+ JXk
ΣXk

JTXk
+ JukΣukJ

T
uk

(10)

where we define the control input vector uk = [vk, ωk],
which follows a two dimensional Gaussian distribution uk ∼
N (µuk ,Σuk), with µuk the vector of means from equations
(6) and (7), and Σuk a diagonal matrix with the variances
from equations (6) and (7). The matrices JXk

and Juk are
the Jacobians of the evolution equation (9) with respect to
the state and the control input respectively, which have the
following form:

JXk
=

 0 0 −∆Tvk sin θk
0 0 ∆Tvk cos θk
0 0 0


and

Juk =

 ∆T cos θk 0
∆T sin θk 0

0 ∆T


In general, for the deterministic equations – which co-

incides with the average behaviour of the vehicle – the
trajectory the robot will follow can be quite complex. It
is in fact the solution to a set of non-linear differential
equations. However, for some specific stimulus functions
analytic solutions can be found. Simple solutions to motion
include circular trajectories or spirals around a circularly
symmetric stimulus source [17], or straight line trajectories
for circular symmetry or compound functions of parabolas
(stimulus of the type S(xTAx) with A a positive definite
matrix) [6]. This latter case occurs when the robot is aligned
with one of the principal directions of the parabola. If it
heads the source it will follow a straight line trajectory with
variable linear speed ending at the stimulus maximum. The
robot will follow a straight line trajectory moving away from
the maximum of S(x) if the source is on its back. We can
use these simple average trajectories to analyse the behaviour
of the stochastic model. Assuming without loss of generality
that the maximum of S(x) is at the origin, and the vehicle
lies on the negative side of the ‘x’ axis with an initial heading
θ0 = 0, the average trajectory for a circularly symmetric
(S(r), with r2 = |x|2) or parabolic stimulus (S(xTDx)
with D a diagonal positive definite matrix) will be a straight
line, and the Jacobian matrices in equation (10) will simplify.
Under these assumptions the initial covariance matrix of the
state of the vehicle is simply a zero matrix ΣX0 , and the
recursive estimation of the covariance using equation (10)
leads to:

ΣXk
= T 2σ2

η


1
2

k−1∑
i=0

[F ′i ]
2 0 0

0 2T2

d2

k−1∑
i=1

[Fi]
2
i−1∑
j=0

[F ′j ]
2 0

0 0 2
d2

k−1∑
i=0

[F ′i ]
2


where Fi = F (S0(xi)) and F ′i = F ′(S0(xi)), since for

the selected scenario the gradient of S0(x) is orthogonal
to êp, simplifying the expression (8) to ρ = [F ′]2. Given
our continuity assumption on F (s), the function will also
be Lipschitz continuous, which means a bound value m
for its derivative exists, but also a bound f for the F (s)
function itself within the domain. This condition helps in
finding a boundary to the state covariance matrix under our
assumptions, and therefore:

ΣXk
< T 2σ2

ηm
2


k
2 0 0

0
[
fT
d

]2
k(k + 1) 0

0 0 2k
d2

 (11)

where the < sign applies to the elements of the diagonal
matrix. This limit shows interesting properties of the evolu-
tion of the state probability. First, our assumptions imply that
the state variables are uncorrelated, since all the off-diagonal
elements of the matrix are zero for this specific solution.
More importantly, while the variance of the x position and
the vehicle heading θ grows linearly with time, the dispersion
in the y direction grows as a quadratic function of time.
Moreover, the variance in the y coordinate depends on the
variance of the angular velocity σ2

ω . This is not a surprising
result given the trajectory we are analysing, as the heading
integrates the angular velocity and the linearised equation for
y integrates the heading (ẏ ≈ vθ). In general, if the robot
heads the target along one of the principal directions – or
radially for circular symmetry – the growth of the variance
in the direction orthogonal to the vehicle motion will be a
quadratic function of time, while it will be linear for the
heading and the direction of motion.

C. Remarks on the resulting model

One interesting result of the above equations is the fact
that the speed variances depend on the direction of motion of
the vehicle, but also on the second derivative of the function
F (s), see equation (6)-(8). What equation (8) tells is that to
minimise the variance of both control variables, one good
option is to choose a linear F (s), since its second derivative
vanishes for all ‘s’. This is a very interesting result which
helps in understanding and justifies, for instance, why in [14]
the authors selected a linear connection between the sensors
and the actuators. Besides being the simplest option, a linear
F (s) achieves a minimum variance of the speeds in noisy
situations (in the case of [14] when the stimulus changes are
linked to the robot motion in a complex way). Likewise, if we
select a linear function F (s) = as+ b, we could eventually
reduce the variances to zero for a = 0. This is the limit case



in which the sensors are disconnected from the motors and,
therefore, the vehicle will not move, which trivially leads to
a zero variance of the speeds.

In order to minimise the dispersion of the vehicle tra-
jectories a low value of F ′(s) is required. However, if we
consider the stability condition [17] obtained for a circularly
symmetric stimulus in the deterministic (average) case:

F

r
− δ

d
F ′
∂S

∂r
< 0

where r is the distance to the stimulus source, and S(·) is
just a function of r, we can rewrite this condition as F ′

d >
F

rδSr
, with Sr = ∂S

∂r . This sets a convergence limit to the ratio
F ′

d , and if its value is too low the vehicle will not reach the

target. It can be seen that for a linear F (s), σ2
ω ∝

[
F ′

d

]2
and

therefore the selection of F (s) requires to have small enough
F ′

d to minimise the dispersion of the vehicle heading, but
large enough for it to converge to the goal, the maximum of
S(x).

III. SIMULATIONS

This section presents simulations of Braitenberg vehicles
to illustrate the derived stochastic evolution model of vehi-
cle 3a. We compare the analytical results with simulations
of 1, 000 vehicles moving in the corresponding conditions
following to the discretised unicycle model, equation (9). We
also present simulations of global behaviour of this Braiten-
berg vehicle to show the general convergence properties of
the controller in a noisy environment.

Figure 2 shows the simulation of a Braitenberg vehicle 3a
starting with poses x0 = −3 (fig. 2(a)), x0 = −1.5 (fig. 2(a)),
y0 = 0 and θ0 = 0. The stimulus consists of a parabolic
shaped function with the peak at the origin, and F (s) is
simply a linear function of ‘s’ with negative slope. Therefore,
the compound function is F (S(x)) = α[g0 − xTAx] + β,
for g0 > 0, A positive definite, α < 0, and such that
F (S(0)) = 0. This type of stimulus can be always used as
an approximation close enough to a smooth stimulus peak.
As the plots show, the average trajectory follows a straight
line towards the origin. The figures show the average model
trajectory – continuous line – and the simulated trajectory –
dashed line. Only six steps of equation (9) were simulated
to illustrate the theoretical results, and, as it can be seen,
all the simulated vehicles started with the same pose, i.e.
the probability distribution p(X0) is a Gaussian with zero
covariance matrix. The theoretical covariance matrix was
computed iteratively for each step, and the maximum values
of F (s) and F ′(x) (f and m) at the simulated points were
used to obtain the covariance bound matrix, equation (11).
Figures show the ‘x − y’ components of the covariances
(±σ) at each position of the vehicle, with the dotted ellipses
corresponding to the theoretical bound. As we can see from
the figures the sampled trajectory coincides quite well with
the theoretical one, both the mean – the horizontal line – and
covariance – ellipses around the simulated points. Comparing
the dispersion on the ‘y’ direction of figures 2(a) and 2(b) we

can see several interesting effects. It is worth noting that the
linear speed decreases as the vehicle approaches the stimulus
source, which means that the points {x0, x1, · · · , x7} are
closer to each other for the starting position x0 = −1.5.
That has an effect on how the ‘x − y’ covariance matrix
spreads over the ‘y’ direction, since a higher forward speed
implies a higher σ2

y in equation (11), which is reflected in
the ‘y’ range of the plots. On the other hand, that also means
that as the vehicle gets closer to the origin its variance
in the perpendicular direction to motion does not grow so
fast. Therefore, the covariance boundary matrix becomes less
conservative as the vehicle approaches the target, as shown
by the fact that the dotted lines are closer to the theoretical
value in figure 2(b).
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(a) Starting point x = −3

−1.5 −1.45 −1.4 −1.35 −1.3

−0.015

−0.01

−0.005

0

0.005

0.01

0.015

x coordinate

y
co
o
rd
in
at
e

(b) Starting point x = −1.5

Fig. 2. Simulated stochastic vehicle for a parabolic S(x) and linear F (s)

Although the simulations match the theoretical results and
help to understand the behaviour of vehicles in presence of
noise, because of the locality of the assumptions the global
behaviour is not captured by the model. It would seem,
looking at equation (11), that the covariance of the vehicles
always increases, yet globally, as illustrated in Figure 3, the



opposite actually happens. The figure shows a simulation
of vehicles initialised randomly over the ‘x − y’ plane
according to a Gaussian distribution. In this case the stimulus
follows an inverse square law S(x) = g0

1+αxTAx
and F (s)

is linear. Each vehicle initially points towards the origin –
the peak of S(x) – with a random deviation following a
Gaussian distribution. The nearly concentric ellipses show
the evolution of the covariance of the simulated vehicles,
while the line close to the origin is the average position,
which ideally should be zero. The outer ellipse in the figure
corresponds to the initial pose distribution of the vehicles
around the origin (within ±σ). Because it is common to
let the vehicles move only forward, if one of the simulated
vehicles has a negative velocity for its wheels, it is set to
zero. The figure shows that the dispersion of the simulated
vehicles decreases, something the model is not able to predict
since, for instance, a zero average of the heading direction
means that the vehicles move parallel to the x axis (yet in this
case is clearly at the origin). This zero mean effect occurs in
this simulation, although the distribution of vehicle directions
is uniform, which implies the average of the angle is not
properly defined. Figure 3 shows that vehicles 3a actually
move towards the goal despite the noisy sensors.

−20 −15 −10 −5 0 5 10 15 20
−25

−20

−15

−10

−5

0

5

10

15

20

x coordinate

y
co

or
di
na

te

Fig. 3. Evolution of a Gaussian distribution over time of vehicles in x−y

IV. CONCLUSIONS AND FURTHER WORK

This paper presents the first model and analysis of Brait-
enberg vehicles under sensor noise conditions. The existing
deterministic model seems suitable to understand and design
controllers for non-holonomic vehicles with good signal to
noise ratio. However, for very noisy sensors or complex
interactions between the robot and the environment, e.g.
chemical sensing in air or water, a deterministic approach
seems unsuitable. Using the derived model and existing
stability conditions, we showed that there is a trade-off
between stability and noise through the control function F (s)
and the wheelbase d. Specifically, an increase in the ratio F ′

d
makes the vehicle more stable on average, but also increases

the vehicle state covariance. Another interesting result from
the presented analysis is that the best controller for this taxis
model – in terms of the dispersion it generates – is actually
a linear relation between the sensors and the motors. This
has interesting implications for robotics, but also for biology.
Coincidentally, this type of connection was the one used for
a Braitenberg vehicle with a complex stimulus pattern [14].

As shown in section III the working range of the model
is limited by the matching assumptions, as it can only
explain local behaviour. Our goal is to extend this model
and analyse globally the behaviour of these vehicles using
Monte Carlo simulations. The model can also be extended to
other Braitenberg vehicles, like vehicle 2b, which can display
chaotic behaviour. The analysis of this vehicle would turn to
be much more complex, as it might be a mixture of chaos
and randomness.
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[15] T. Salumäe, I. Rañó, O. Akanyeti, and M. Kruusmaa, “Against the
flow: A braitenberg controller for a fish robot,” in Proceedings of the
International Conference on Robotics and Automation (ICRA), 2012,
pp. 4210–4215.

[16] V. Lebastard, F. Boyer, C. Chevallereau, and N. Servagent, “Underwa-
ter electro-naviagation in the dark,” in Proceedings of the International
Conference on Robotics and Automation (ICRA), 2012, pp. 1155–
1160.
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