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Abstract

Motion camouflage is an animal stealth behaviour in
which a shadower – or predator – moves in the vicinity
of a shadowee – or prey – in such a way that the later
perceives no apparent motion apart from the self mo-
tion. Despite some light has been shed on the control
mechanism generating this pursuit strategy, it is not
fully understood. Motion camouflage represents an in-
teresting challenge in biological motion, and although
simulated controllers can be found in the literature,
no implementation on real robots has been done so
far. This paper presents the first implementation of
motion camouflage in real wheeled robots through a
polynomial NARMAX model controller. The trajecto-
ries to adjust the model are generated using a heuris-
tic approach. The NARMAX model outperforms the
heuristic approach in terms of computational time and
generates good camouflage trajectories in real robots
and simulation. The transparency of polynomial mod-
els can also shed some light over this complex animal
behaviour.

1 Introduction

Motion camouflage is a stealth behaviour observed in
hover-flies (Srinivasan, 1995) and also found in territo-
rial disputes of dragon-flies (Mizutani, Chahl, & Srini-
vasan, 2003). In a general pursuit situation, a predator
needs to have some advantage – higher velocity or ac-
celeration – to capture a prey (Alexander, 2003), since
the prey (or shadowee in the motion camouflage sce-
nario) will escape as soon as it detects the threat. A
moving shadowee which does not perceive any threat
will follow a normal path, most likely a straight line.
Therefore, if the predator (or shadower) induces no op-
tical flow on its victim’s visual system while approach-
ing, there is no need to rely on speed or acceleration
superiority. Motion camouflage represents a very ef-
fective kind of pursuit behaviour exploiting the fact
that depth cannot be estimated from bearing under
some conditions. It is more effective since the predator
chances to catch the prey are bigger, and it is more ef-
ficient because it will not spend so much energy during
the pursuing. Except for the looming – the increase in
size of the predator in the prey’s visual system – no
apparent motion is perceived.

Figure 1 shows the basic mechanism of motion cam-
ouflage. The dashed line represents the trajectory of
the shadowee, and the dark dots are its position at

time t1, t2, t3, t4, t5 and t6. If at the same time,
the shadower, represented as clear circles, follows the
corresponding trajectory, its motion will be camoufled.
Moreover, from the point of view of the shadowee, the
shadower appears as a stationary object at the focal
point, the point where all the lines joining the two in-
stantaneous positions intersect. These lines are called
Camouflage Constraint Lines (CCL) as they indicate
that the position of the shadower will seemingly be at
the focal point from the shadowee’s viewpoint. The
focal point can be any point in the environment, the
starting position of the shadower or a point at infin-
ity, which produces the so called camouflage at infin-
ity with the CCLs being parallel to each other. The
trajectory followed by the shadower can approach –
as presented in Figure 1 – or retreat from the shad-
owee, generating motion camouflage attack or retreat
behaviours. It has been shown that humans can be
fooled by such tactics (Anderson & McOwan, 2003a),
as the peripheral visual system cannot estimate depth,
and the motion camouflage effect seems to be respon-
sible of some motorbike accidents in cross-roads (when
a driver fails to detect the motion of a biker approach-
ing an intersection). Besides the obvious military ap-
plication of motion camouflage, it could be used as a
deception mechanism by robots (Shim & Arkin, 2013),
for instance, by flying robots to approach animals in
the wild without being noticed and gather informa-
tion about their behaviour. Because the predator has
to stay aligned with the prey and the focal point, an-
other potential application would be as part of a forma-
tion control strategy for multi-robot systems if three or
more robots have to keep a straight segment formation
(this would entail a moving focal point).
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Figure 1: Motion camouflage (adapted from (Rañó,
2012))

Different works performed computer simulations of
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motion camouflage, and several control mechanisms
have been proposed to generate these complex trajec-
tories. In one of the pioneer works on motion camou-
flage (Carey, Ford, & Chahl, 2004) an optimal control
mechanism was used to generate the trajectories us-
ing a finite horizon Linear Quadratic Regulator (LQR).
Assuming a constant velocity of the shadowee and no
motion restrictions on the shadower, the problem was
formalised as a time independent linear system, and
the obtained regulator was a time dependent function.
However, the assumptions of this work are not biolog-
ically plausible, since their method does not account
for the heading direction and the non-holonomic re-
strictions to the motion of animals, which turns its
implementation in real robots troublesome. A simi-
lar solution has been presented in (Rañó, 2012), where
non-linear indirect optimal control is used to generate
motion camouflage for a shadowee trajectory known
beforehand. The optimised functional is the area of the
triangle formed by the prey, the predator and the focal
point. Further works (Rañó, 2013) included velocity
and acceleration constraints of the shadower convert-
ing the optimal control problem into a large scale con-
strained optimisation problem. Despite including bio-
logically plausible constraints to motion, these works
assume perfect knowledge of the Cartesian positions
of both shadower and shadowee, therefore the assump-
tions on the perceptual capabilities of insects are not
biologically plausible.

(Anderson & McOwan, 2003b) and (Anderson, 2003)
present a neural architecture to achieve simulated mo-
tion camouflage. A neural network is used to estimate
the distance from the shadower to the focal point based
on the position of the shadowee in the shadower’s vi-
sual field. Using two other recurrent neural networks,
and assuming constant linear velocity of the shadower,
the motion direction and rotation is computed by the
predator. Neural networks for 2D and 3D motion are
trained and tested using the relative visual position of
the shadowee as the only input, which corresponds to
a biologically plausible setting. This work is very valu-
able since it shows that motion camouflage can be ob-
tained using only the relative heading of the shadowee,
but the control of the heading and motion direction
are decoupled making it unsuitable as a wheeled robot
controller. A curvature control law also based on bi-
ologically plausible information is derived in (Justh &
Krishnaprasad, 2006; Reddy, Justh, & Krishnaprasad,
2006), where the speeds of both shadower and shad-
owee are assumed constant, and the heading direction
is considered as a change in the curvature of the trajec-
tories. Even though this technique provides a closed-
loop expression to generate motion camouflage for any
trajectory of the shadowee, its application is restricted
to the case of camouflage at infinity.

Implementing motion camouflage in mobile robots is
challenging as existing techniques cannot be adapted to
their sensing and motion capabilities. Despite several
pursuit strategies are properly understood and simple
control laws can implement them (Pais & Leonard,
2010), there is no closed-form solution to the prob-

lem of generating motion camouflage trajectories with
a finite focal point. This work contributes to a bet-
ter understanding of this natural phenomenon by pre-
senting the first implementation of motion camouflage
on a real robot. Using polynomial NARMAX mod-
els (Chen & Billings, 1989) to learn a controller from
motion camouflage training data provides a transpar-
ent way to implement it and allows interpreting the
controller as opposed to, for instance, existing solu-
tions based on neural networks. Polynomial NARMAX
models have been used to implement non-linear con-
trollers to perform different complex tasks on mobile
robots like; wall following (Iglesias, Kyriacou, Nehm-
zow, & Billings, 2007), door traversal (Iglesias, Kyr-
iacou, Nehmzow, & Billings, 2005) (Akanyeti, Rañó,
Nehmzow, & Billings, 2008), route learning (Iglesias,
Kyriacou, Nehmzow, & S.Billings, 2006) and visual ob-
ject tracking (Akanyeti, Kyriacou, Nehmzow, Iglesias,
& Billings, 2007). The main problem when applying
this methodology to motion camouflage is to obtain
data to train the controller, which, in this work, has
been solved by first implementing a heuristic controller
inspired by the Dynamic Window Approach to obstacle
avoidance (Fox, Burgard, & Thrun, 1997). The rest of
the paper is organised as follows; section 2 presents the
mechanism designed to generate the training data fol-
lowed by a brief review of the polynomial NARMAX
approach to systems identification and the Orthogo-
nal Parameter Estimation algorithm used to train the
models. The experimental procedure to generate the
train trajectories in the real robots, train and vali-
date the polynomial controller and test it again in real
robots is presented in Section 3, jointly with the exper-
imental results. The paper ends with a discussion and
further work directions in Section 4.

2 Systems Identification Ap-
plied to Motion Camouflage

Our goal is to implement a transparent motion camou-
flage controller in a real wheeled mobile robot to shed
light on the relations between the biologically plausible
perceptual inputs and the motion commands. Polyno-
mial models are a good candidate for this, since they
are simple approximators of any smooth function, but
we face the problem of obtaining the training data
samples. Like in programming by demonstration or
imitation learning, the approach used so far to learn
a NARMAX controller is to provide data generated
by humans. This turns to be rather difficult in this
case for two main reasons; first, the motion camouflage
problem is ill-posed, and second the trajectory of the
shadower – because of the non-holonomic constraints
to motion – is very difficult to obtain manually. For
a problem to be well-posed the solution must exist –
we know motion camouflage trajectories indeed exist
–, and be unique – which is not the case for motion
camouflage, as for a given setup an infinite number of
solutions exist. Therefore, if we would try to manu-
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ally generate motion camouflage trajectories to train
a learning mechanism, we should ensure that the un-
derlying structure of all the training samples is con-
sistent among samples, otherwise the learning mecha-
nism will not succeed. An extreme case, for instance,
would be training with trajectories for camouflage ap-
proach and retreat. On the other hand, because the
controls of the shadower are the linear speed and the
turning rate – not the position of the shadower –, and
both signals must be properly synchronised, generating
these trajectories manually is highly complex. More-
over, as we saw in the introduction, existing control
mechanism to generate motion camouflage trajectories
are not suitable to obtain training examples from real
robots. In sum, we need a new mechanism to gener-
ate interception motion camouflage trajectories to train
such a transparent model. Because the principle of mo-
tion camouflage with a finite focal point is not yet un-
derstood, nor a closed-form pursuit law exist (Pais &
Leonard, 2010), any way of generating these trajecto-
ries will rely on an arbitrarily selected measure of some
camouflage error E. Therefore, to obtain the training
data needed for the controller we developed a heuristic
error function which is evaluated and optimised like in
the well know Dynamic Window Approach to obstacle
avoidance (Fox et al., 1997).

Several variables have to be considered in a general
motion camouflage setting; the trajectory of the shad-
owee, the location of the focal point, and the maximum
velocities and accelerations of the shadower. The ob-
tained controller will depend on all these parameters,
which complicates the learning process. To simplify
the problem we will first assume that the shadowee
does not change its velocity during the process, a bio-
logically plausible assumption if the prey does not per-
ceive any threat. Therefore, the shadowee will follow a
straight line with constant speed. We will further as-
sume a fixed focal point located at the initial position
of the shadower, and we will fix the maximum speeds
and accelerations of the predator to match those of our
robot hardware. Under these assumptions, the prob-
lem can be simply stated as a one step optimisation
problem, i.e. finding the motion commands for the
predator v∗ and ω∗ within the set of reachable speeds
V and Ω, such that:

(v∗, ω∗) = arg max
(v,ω)∈V×Ω

E(v, ω) (1)

where E(v, ω) is an error function designed to
achieve camouflage trajectories, and all other variables
and parameters fixed. The rest of the section presents
the heuristic process implemented to generate the sam-
ple trajectories and the methodology used to train the
polynomial model.

2.1 The Motion Camouflage Mecha-
nism for Data Generation

To obtain the training data for the polynomial model
we implemented a heuristic approach to motion camou-

flage inspired by the Dynamic Window Approach (Fox
et al., 1997), a well known obstacle avoidance technique
for unicycle type robots. The main idea behind this
approach for obstacle avoidance is to define a function
to optimise over the space of possible linear and an-
gular speeds the robot can reach, that is, to maximise
a function f : (v, ω) → < which measures a weighted
average of clearance – distance to obstacles –, target
heading – progress of the robot towards the target –,
and velocity of the robot. In the case of motion cam-
ouflage, a similar function can be defined to ensure the
shadower moves towards the target while staying on
the camouflage constraint lines.

Let us denote xPk = (xPk , y
P
k ) and θPk the posi-

tion and orientation of the shadower at time k, and
uk = (vk, ωk) the control inputs of the shadower, linear
and angular speeds. The position of the shadowee at
time k will be denoted as xTk = (xTk , y

T
k ), and the fixed

focal point will be denoted as f = (fx, fy). Because we
assumed the shadowee follows a straight line with con-
stant velocity (vTk = vT ), given an initial position xT0
and the sampling time ∆T , its position at time k will
simply be xTk = xT0 + k∆TvT . It is worth noting that
the proposed mechanism works for any trajectory of
the shadowee provided that it is smooth enough to be
predicted by the shadower. The motion of the shad-
ower follows the unicycle model, the difference equa-
tion of its motion – the equation relating the future
pose k + 1 to the current pose and the current inputs
k – can be stated as:

xPk+1 = xPk +
vPk
ωPk

[
− sin θPk + sin(θPk + ωPk ∆T )

]
(2)

yPk+1 = yPk +
vPk
ωPk

[
cos θPk − cos(θPk + ωPk ∆T )

]
(3)

θPk+1 = θPk + ωPk ∆T (4)

since the instantaneous trajectories of the shadower
are arcs of circumference (Thrun, Burgard, & Fox,
2005). Our goal is to find, for every time-step k, a
set of speeds (vPk , ω

P
k ) to keep the trajectory of the

shadower in the camouflage line.

C
C
L
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Figure 2: Shadower and Shadowee motion time step.

Figure 2 presents a motion camouflage situation,
where the shadower is in perfect camouflage a time step
k. Since the shadowee has a constant speed vT , at time
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step k+1 its position will be xTk+1, and the correspond-
ing camouflage constraint line would have changed. To
stay under camouflage conditions, the shadower must
move following a circular arc to be at time k + 1 in a
position such that xPk+1 = f + λ(xTk+1 − f) for some
possible values of λ, which reflects the fact that the
problem is ill-posed. Given the focal point and the
shadowee state – position and velocity – at time k, we
can predict the position at time k + 1 and, therefore,
compute the camouflage constraint line (CCL), where
the shadower should be at time k + 1. Under our as-
sumptions the equation of the CCL will be given by:

x = f + λ(xTK + vT∆T − f) (5)

and, therefore, for a pair of motor commands of the
shadower (v, ω), we can estimate some measure of cam-
ouflage error using equation (5) and the position pre-
diction obtained from equations (2), (3), and (4). The
estimate of the camouflage error can be then minimised
to find the optimal speed commands within the reach-
able motion limits of the shadower.

There is a wide variety of global and local meth-
ods to optimise an error function, which in our case is
defined on the continuous space of speeds. However,
from a practical viewpoint, because we want to use the
method in a real robot and the hardware cannot reach
any arbitrary speed – reachable speeds depend on the
motor controllers – it is enough to approximate the
camouflage error function at a set of points in <2, i.e.
as a piece-wise constant function, which has to be fine
enough to evaluate all possible robot speeds. On the
other hand, a too fine sampling will increase unnec-
essarily the computational cost, since the robot might
not be able to reach some of the speeds. Moreover,
since the reachable velocities are bounded, the search
space is relatively small, and a systematic search of the
optimal function value can be performed like in the Dy-
namic Window Approach. We will further assume that
the shadower moves with low speeds and, therefore any
speed within the search space can be reachable in the
next time-step.

Let us assume the shadower linear speed must fall
on the range v ∈ [vm, vM ], such that 0 < vm < vM ,
which makes the robot always have a positive velocity
to ensure that the shadower does not move backwards,
generating a undesirable camouflage retreat. More-
over, since the starting position is the focal point, a
perfect shadower camouflage can be achieved by sim-
ply not moving, hence the strict inequality condition
0 < vm. Similarly, for the angular speed we will as-
sume the range is ω ∈ [−ωM , ωM ].

We can select now two integer numbers nv and nω ac-
cording to the reachable speeds of the robot, to sample
the velocity space at points (vi, ωj) where i = 1, · · · , nv
and j = 1, · · · , nω, such that v1 = vm < v2 · · · <
vnv−1 < vnv = vM and ω1 = −ωM < ω2 < · · · <
ωnω−1 < ωnω = ωM . We will partition the search space
homogeneously, although, as we will see, other ways of
sampling could be more appropriate for the problem at

hand. The heuristic camouflage function will be com-
puted for each of these points in [vm, vM ]× [−ωM , ωM ]
and therefore the complexity of this technique is nv ·nω
times the complexity of evaluating the function. Once
the function is evaluated, the optimisation takes a time
proportional to nv · nω, since an exhaustive search is
performed. For each pair of speeds (vi, ωj), and given
the current pose of the shadower xPk at time k, its
next position xPk+1 can be computed from the kine-
matic model, equations (2), (3) and (4). If the position
and velocity of the shadowee are known (or can be esti-
mated) the equation of the camouflage constraint line
for the time step ‘k+1’ can be computed, and through
it, for instance, the misalignment of the shadower as a
function to be minimised. We found through simula-
tions that the Cartesian distance from xPk+1 to the CCL
is not appropriate to measure the camouflage quality of
the shadower. We also found experimentally that try-
ing to optimise only the camouflage performance is not
enough for the shadower to catch the shadowee as, for
instance it can follow a trajectory parallel to the mo-
tion direction of the shadowee. Moreover, the motion
in the direction towards the prey can be too slow as
for effectively reach it in a reasonable time. Therefore,
we introduced three different terms in the function to
optimise measuring: the quality of the camouflage, the
distance to the prey, and the relative heading of the
prey as viewed by the shadower.

The global heuristic function E(v, ω) is a linear com-
bination of three terms Ei(v, ω) for i = 1, 2, 3 de-
fined over the reachable velocity space, and normalised
according to the absolute values of the function in
the search domain at each time step to fall in the
range [0, 1]. If for a given time-step the approximated
function Ei is such that Em ≤ Ei(v, ω) ≤ EM , all
the values are scaled accordingly. These values can
be easily found through an exhaustive search over
the discrete space approximation, and this normali-
sation helps scaling the individual term contributions
through the weights only. Moreover, we experimen-
tally found that scaling the functions produces bet-
ter camouflage trajectories and easier tuneable error
functions. The final function to minimise is E(v, ω) =
w1Ẽ1(v, ω) +w2Ẽ2(v, ω) +w3Ẽ3(v, ω) where Ẽi repre-
sents the normalised error function and wi corresponds
to their weights, which we select to fulfil the condition
w1 +w2 +w3 = 1 to keep the global heuristic function
in the range [0, 1]. The feasible velocity pair (v∗, ω∗)
minimising this function is used as the set of commands
to send to the robot, and the process repeats until the
shadowee is caught, therefore no constraint is imposed
to the interception time, a problem some existing tech-
niques suffer from.

2.1.1 Motion camouflage heuristic

Different measures exist to assess the camouflage of
the predicted position of the shadower, the Euclidean
distance from xPk+1 to the camouflage constraint line
being one of the most obvious. This distance has a big
drawback since a distance value close to the focal point
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affects – from the viewpoint of the shadowee – much
less the camouflage quality than that same distance
close to the target. We experimentally found that the
distance is not a good error function to minimise, and
other works (Rañó, 2012) use, for instance, the area
inside the triangle formed by the shadower, the shad-
owee and the focal point as the function to optimise. A
more natural option would be to minimise the angular
difference between the shadower and the focal point as
view from the shadowee. This is in fact the error per-
ceived by the prey when the predator approaches, since
their visual system can only perceive angular distances
– distance can be only estimated through motion or
multiple views. To illustrate this error measure, fig-
ure 3 shows a situation in which the shadower does
not exactly lay on the camouflage line. Given the fo-
cal point f and the positions of the shadower xPk+1 and

shadowee xTk+1 the relative angle φk+1 should be zero
for a perfectly camouflage position. The cosinus of the
angle can also be used to assess the camouflage, and
can be computed from the dot product of normalised
vectors f − xTk+1 and xPk+1 − xTk+1. The underlying
assumption is that the shadower always stays on the
same side of the half plane defined by the trajectory of
the shadowee, which is a requirement of motion cam-
ouflage. Therefore, the first term in the error function
to optimise will be:

E1(v, ω) = 1−
(f − xTk+1) · (xPk+1 − xTk+1)

|f − xTk+1||xPk+1 − xTk+1|
(6)

where | · | represents the norm of the vector. Accord-
ing to equation (6) the error becomes zero for φ = 0
and one for φ = π/2. It is worth reminding that we
experimentally found that the results obtained using
this measure outperform the Euclidean distance from
the shadower to the camouflage constraint line.

CCLFocal Point

Shadower

Shadowee

φk+1
xT
k+1

xP
k+1

f

Figure 3: Camouflage error function

2.1.2 Approaching the target

As we already stated, there are two kinds of motion
camouflage trajectories; approach and retreat. We are
interested in implementing approaching trajectories,
but this is not considered by the first error measure.
In fact, we found that, under certain circumstances,
the shadower moves away from the target if an addi-
tional term is not included, as further distances usu-
ally generate a smaller angular error. Therefore, the
second term E2(v, ω) in the global error can be defined

based on the distance to the target along the predicted
camouflage constraint line to make the shadower ap-
proach the shadowee. We simply used the normalised
Euclidean distance relative to the initial distance – dis-
tance at time zero d0 = |xT0 − xP0 |– between the shad-
ower and shadowee. Therefore the expression for the
second term on the error function is:

E2(v, ω) =
|xTk+1 − xPk+1|
|xT0 − xP0 |

(7)

which takes it maximum value (E(v, ω) = 1) for
k = 0 and decreases to zero when the shadower catches
the shadowee. Ideally, in a pursuit situation, this error
function will be monotonically decreasing over time,
yet this cannot be ensure for motion camouflage tra-
jectories as the distance could increase to keep a proper
camouflage.

2.1.3 Heading towards the target

Although the previous contributions to the error func-
tion measuring the distance between the shadower and
the shadowee tries to ensure both trajectories inter-
cept, if the heading direction of the shadower is nearly
parallel to the trajectory of the prey, the distance will
decrease very slowly. This is due to the non-holonomic
motion restrictions, which, in the mentioned situation,
means instantaneous motion contribution perpendicu-
lar to both trajectories will be very small. This is il-
lustrated in figure 4, which shows the simulation of an
interception where the predator tries to optimise the
two errors defined so far. If a heading term is included
the interception occurs much earlier as the largest com-
ponent of the shadower motion is towards the shadowee
(cf. fig 4 and 7).

Figure 4: Heading error pointing to the target

To solve this issue we need to include an extra er-
ror factor measuring the alignment of the shadower
with the predicted position of the target. There-
fore, the heuristic function E3(v, ω) measures the de-
viation – for each pair of potential commands – be-
tween the predicted heading of the shadower θPk+1
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and the line formed by the predicted target position
xTk+1 and shadower position xPk+1. Figure 5 repre-
sents this error, which can be computed from the angle

α = arctan
[
yTk+1−y

P
k+1

xTk+1−x
P
k+1

]
and θPk+1 simply as Ψk+1 =

θPk+1 − α. Like in the case of the camouflage error
function, we can assume that the shadower trajectory
is located on one of the half-plane areas defined by the
shadowee trajectory. To keep the error function nor-
malised, we will use E3(v, ω) = 1− cos Ψ, which takes
a zero value if the shadower is directly pointing to-
wards the predicted position of the prey, and one when
the shadowee is on either side of the shadower. It is
worth noting that this function is independent of the
camouflage quality but tries to keep the heading of the
shadower aligned with the camouflage constraint line.

Shadower

CCL

Focal Point

Shadowee

f
Ψk+1

xT
k+1

xP
k+1

α

Figure 5: Heading error pointing to the target

2.2 NARMAX Models and Orthogonal
Parameter Estimation Algorithm

As we mentioned, we want to identify and model the
behaviour of the shadower to implement it in a real
robot. We will assume that we can sample the be-
haviour of the shadower, i.e. we have a set of observed
inputs (perceptions of the shadower) u, and outputs y
(behaviour of the shadower). We aim at finding a re-
lationship amongst past observations [ut, yt−1] and the
current output, yt:

ut = [u1, u2, ..., ut−1, ut]

yt = [y1, y2, ..., yt−1, yt]

A successful tool for modelling these non linear dy-
namical systems is NARMAX (Non-linear AutoRegres-
sive Moving Average with eXogenous inputs) (Chen &
Billings, 1989). The general formulation of these kind
of models is:

yk = F (yk−1, · · · , yk−Ny , uk, uk−1, · · ·
· · · , uk−Nu , εk−1, εk−2, · · · , εk−Ne) +

+εk (8)

where F (·) is a non-linear function, yk−1, · · · , yk−Ny
and uk, · · ·uk−Nu are the previous Ny outputs and Nu
input vectors respectively. It is worth noting that we
assume a multiple-input single output system, i.e. yk−1

is a scalar and uk−1 is a vector. Nu, Ny represent the

number of lags in the input and output. Finally, εk =
yk− ŷk is the prediction error – the difference between
the training output yk and the output computed by the
model ŷk, and Nε is the lag of this error in the model.

A time delay in the input (d), and a dc level can
easily be incorporated into the model, by rewriting Eq.
8 as:

yk = dc+ F (yk−1, · · · , yk−Ny , uk−d,
uk−d−1, · · ·uk−d−Nu , εk−1, εk−2,

· · · , εk−Ne) + εk (9)

(Leontaris & Billings, 1985) proved that a non-linear
discrete-time time-invariant system can always be rep-
resented by the model (Eq. 8) in a region around
an equilibrium point, provided that certain restrictions
were fulfilled. The benefit of using this kind of NAR-
MAX model is that it avoids the excessive number of
parameters associated with Volterra series (or related
Wiener series), both used to represent a large class of
non-linear systems (Rugh, 1981).

In some cases, the non-linear form F(.) is known and
the task of specifying the input-output relationship of
the system is reduced to determining some unknown
parameters. Nevertheless, for most real sampled non-
linear systems their exact NARMAX models are very
difficult to determine. This can be considered as black
box modelling (Sjoberg et al., 1995), since no physi-
cal insight is available, and the chosen model will be
a type of function with enough expressive power to
model the system’s dynamics. In the case of the NAR-
MAX models, there are many practical examples where
industrial systems have been adequately modelled by
polynomial functions (Chen & Billings, 1989). Thus,
we can expand Eq. 9 by defining the function F(.) to
be a polynomial of degree l:

y(t) =

M∑
m=0

θmpm(t) + ε(t) (10)

where

p0(t) = 1

pm(t) = yt−ny1 , · · · yt−nykut−d−nu1 · · ·
· · ·ut−d−nuj εt−nε1 · · · εt−nεq

1 ≤ ny1 ≤ Ny, · · · , 1 ≤ nyk ≤ Ny
0 ≤ nu1 ≤ Nu, · · · , 0 ≤ nuj ≤ Nu
1 ≤ nε1 ≤ Nε, · · · , 1 ≤ nεq ≤ Nε

The degree l of the polynomial is the highest sum
of powers in any of its terms. The parameter vec-
tor θ, i.e, the coefficients of the polynomial terms can
be estimated independently using the orthogonal algo-
rithm described in (Korenberg, Billings, Liu, & McIl-
roy, 1988). This algorithm can be summarised in the
following steps:
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• The prediction errors are estimated to be zero and
all the remaining parameters, which do not include
ε are estimated. To compute the values of all the
parameters but the prediction errors, it is neces-
sary to compute an auxiliary model defined such
that the terms in the model are orthogonal over
the data set.

• Estimate the prediction errors, and after that the
parameters associated with the prediction error
terms in the polynomial model. This stage is re-
peated until convergence.

The determination of the model structure – which
variables to include in the NARMAX model expansion
described in equation (10) – is a key issue. Simply in-
creasing the order of the dynamic terms (Ny, Nu, Nε)
and the order of the polynomial expansion (l) to
achieve the desired prediction accuracy will in general
result in an excessively complex model. This can lead
to a model that overfits the dynamical system sampled
data (low bias) but that generalises poorly (high vari-
ance). In general, a dynamical system has infinitely
many different but input-output equivalent NARMAX
models, but models with a minimal representation are
usually preferred. There are several possible ways to
determine which are the significant terms which should
be included in the model, one of them is using the so-
called Error Reduction Ratios (ERR). The ERR of a
term of the model is the percentage reduction in the to-
tal mean-squared error – the difference between model
predicted and the true system output – obtained as a
result of including (in the model equation) the term
under consideration. The bigger the ERR is, the more
significant the term. The ERR will allow the deter-
mination of the significant terms in the model thus
achieving a minimal polynomial representation able to
capture the dynamics of the nonlinear process.

Hence, and to summarise this section, we can state
that the NARMAX methodology breaks the modelling
problem into the following steps:

• Any data set that we intend to model is first split
in two sets (usually of equal size). The first is
called the estimation data set, and will be used to
calculate the model parameters. The remaining
set is called the validation set, and is used to eval-
uate the model. Once this has been done, we have
to set the structure of the NARMAX polynomial,
i.e. we have to determine the inputs u, the out-
put y, the lags Nu, Ny, Nε, and the degree of the
polynomial function.

• The polynomial model is determined using the Or-
thogonal Parameter Estimation algorithm to ob-
tain the value of the coefficients.

• The NARMAX model is then tested using the val-
idation data set. If there is no significant error
between the model’s predicted output and the ac-
tual output, non-contributing model terms will be
removed using the error reduction errors.

• Removal of the non-relevant terms of the model:
this is an iterative process that basically consists
of three steps: a) the Error Reduction Ration is
computed for each term. b) Those terms with
the biggest ERR are removed from the model. c)
The new reduced model is now validated to see
whether its error is acceptable or not. If so, the
error reduction error of all the remaining terms is
re-calculated and a new removal takes place, oth-
erwise the last terms removed are re-inserted back
into the model equation, and the model is returned
by the algorithm.

3 Experimental Procedure

To learn the polynomial controller that generates mo-
tion camouflage trajectories in a real robot, we need
realistic and accurate training data. Although, in the-
ory, the data could be obtained from simulations, the
dynamic aspects of the robot motion and the intrinsic
sensor noise will make a model learned from simulation
useless in a real robot. Therefore, to gather the train-
ing and validation data the proposed heuristic mecha-
nism was implemented in the real robots. Because the
optimisation of the heuristic function is performed for
the next step only, and its computational complexity
is relatively low this technique can control the robot
in real time to obtain the required trajectories. How-
ever, to confirm that we can generate accurate motion
camouflage trajectories, we first show a set of proof-of-
concept simulations under ideal, noise-free, conditions.

3.1 Simulated results of the motion
camouflage generator

As already stated, a general motion camouflage sce-
nario depends on several parameters (focal point po-
sition, shadowee trajectory and shadower initial pose)
and because of the broad casuistry of the problem, we
constrain the conditions for our case study. Although
the motion camouflage generation mechanism can deal
with general relative position of the focal point and
the initial position of the shadower we decided to fo-
cus on the situations in which both positions coincide.
In a general situation, though, the initial position of
the shadower should fall on the camouflage constraint
line defined by the focal point and the shadowee ini-
tial position, otherwise the trajectory would already
start from a non-camoufled situation. Without loss of
generality we can set the origin of a global reference
system at the focal point – i.e. the initial position of
the shadower.

Although in the real robots we will focus on straight
line trajectories of the shadowee, we ran simulations of
the motion camouflage generator algorithm for differ-
ent trajectories. Straight line trajectories can be mod-
elled as a simple integrator, yet in our simulations the
prey also follows the unicycle motion model:
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ẋT = vT cos θT (11)

ẏT = vT sin θT (12)

θ̇T = ωT (13)

where (xT , yT , θT ) and (vT , ωT ) are the pose and
velocity commands of the shadowee respectively. A
straight line trajectory can be obtained from this model
for some initial conditions (xT0 , y

T
0 , θ

T
0 ) simply by set-

ting ωT = 0 and fixing vT .

(a) Motion camouflage trajectory

(b) Trajectory angular error

Figure 6: Simulated motion camouflage trajectory for
the shadowee following a circular arc

Figure 6 shows the results of the simulation of a
motion camouflage scenario with the shadowee follow-
ing a circular arc trajectory. Both, the linear and
angular velocities were fixed to vT = 0.3 m/s and
ωT = 0.1 rad/sec, with an initial pose of (xT , yT , θT ) =
(4,−4, π/4) and a sampling time interval of ∆T =
0.25 s. Figure 6(a) shows the trajectories of the shad-
ower and the shadowee, with the instantaneous posi-
tions joined by lines, which, ideally should all contain
the origin of the Cartesian coordinate system (the focal
point). The shadower is represented as the ‘+’ sign in

the figure, and the shadowee by ‘◦’. To illustrate the
quality of the camouflage trajectory, figure 6(b) shows
the absolute angular error as a function of time. As
the figure shows the error increases as the shadower ap-
proaches the target but it stays below 5◦. Obviously,
as the shadower gets close to the shadowee a small
Cartesian distance to the Camouflage Constrain Line
corresponds to a larger angular error, which makes the
angular error increase. This is an effect of discretising
the velocity space, since the sampling of the Cartesian
positions forms a triangular mesh on the x − y plane.
As the shadower tries to minimise the distance to the
shadowee, it will always opt for high speeds, which rep-
resent larger distances between samples and, therefore,
larger camouflage errors. However, the selected sam-
pling produces acceptable angular deviations.

(a) Motion camouflage trajectory

(b) Trajectory angular error

Figure 7: Simulated motion camouflage trajectory for
the shadowee following a straight line

Figure 7 shows the motion camouflage simulation
when the shadowee follows a straight line trajectory
with a constant forward speed of vT = 0.25 m/s. The
plot of the error evolution over time (figure 7(b)) shows
that the error is bounded by 6◦ and it also increases
when the shadower approaches the shadowee due to
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the velocity space discretisation. In both simulations
a threshold distance of 5 cm is defined as the stop cri-
terium – i.e. when the distance between shadower and
shadowee is smaller than this threshold – which is a
very small distance compared to the initial distance
between the two agents. The initial pose of the shad-
ower is (xP , yP , θP ) = (0, 0, 0) for the two simulations,
which coincides with the focal point. As we can see in
the horizontal axis of the error plots, the interception
time is different for each simulation and depends on
the specific trajectory followed by the shadower.

3.2 Data collection on the real robots

Once the heuristic mechanism to obtain motion cam-
ouflage was tested in simulation, we implemented it in
a dual-drive Pioneer 3 robot. Our robots are equipped
with different sensors; a digital camera mounted on a
pan & tilt unit, a ring of sonar transducers, two micro-
phones, odometry sensors, and a SICK laser scanner.
The odometry and the laser sensor could be used by
the shadower to localise itself and the shadowee in the
robot arena, while the shadowee velocity could be es-
timated from the laser readings, for instance, through
a Kalman filter. However, odometry is unreliable since
errors accumulate as the robot moves (Borenstein &
Feng, 1996) and we need accurate data to train our
controller. An option to correct these errors would be
to localise the robot through landmarks also detected
with the laser scanner, but in the motion camouflage
process the region in which both agents move should
be free of obstacles. This makes difficult the problem
of placing landmarks to localise the robot, since they
must be far enough not to interfere with the trajecto-
ries, therefore reducing the localisation accuracy.

Our lab facilities include a VICON tracking sys-
tem that provides fast and accurate 3D information
about the Cartesian positions and orientations of ob-
jects within the robot arena. It obtains readings at
a frequency of 60 Hz and with a position accuracy of
passive markers in the order of the millimetre. We
used the tracking system to obtain the position and
orientation of the robots, but because of their rela-
tive low speeds the information was subsampled using
a sampling period of 0.3 s. The uncertainty the VI-
CON system provides is negligible for the problem at
hand and it is bounded along the whole trajectory, i.e.
it does not increase with time. This external visual
tracking system clearly outperforms any robot sensor
based existing technique to estimate the position and
orientation of the robots, both in terms of accuracy
and sampling time. Passive infra-red reflecting mark-
ers were placed on the Pioneer 3 robots to be uniquely
identified by the VICON tracking system, and the cen-
tre position and orientation of both robots were ob-
tained. From the position of the shadowee its velocity
– we assume constant – can be easily estimated. This
provided accurate position, velocity and orientation in-
formation needed to apply our motion camouflage gen-
eration mechanism and obtain reliable training data.
Therefore, the heuristic method based control program

to generate the motion camouflage training data was
fed with the information provided by the VICON track-
ing system through the wireless network available in
our lab, while the expected position of the target was
obtained using the estimated velocity. The program
stored in a file all the sensor information (sonars, laser
and odometry) and the issued motor commands, to
later train the NARMAX controller.

To run the experiments we placed both robots in the
centre of the area covered by the VICON tracking sys-
tem to maximise their visibility and ensure the trajec-
tories could be tracked accurately. The initial relative
headings of the robots was 90◦ and the origin of the
reference system of the VICON was moved to coincide
with the focal point (also the initial pose of the shad-
ower). The x-axis of the reference system was chosen
to be the initial heading of the shadower and the initial
position of the shadowee in the reference system was
approximately xT ≈ 3 m and yT ≈ −2.5 m with its
heading roughly corresponding with the ‘y’ axis (90◦).
This configuration represents an initial distance be-
tween the shadower and the shadowee of around 4 m,
within the detection range of the laser scanner. The
speed of the shadowee for all the tests was fixed to
0.2 m/s, but instead of being fed directly in the al-
gorithm, as already stated, it was estimated from the
tracking information at every time-step to account for
its potential variation. The maximum speed of the
shadower was set to 0.35 m/s, and, because no safety
mechanism to avoid collisions between the two robots
was implemented, the program was manually stopped
right before the interception occurred for each trial.

Figure 8(a) shows one of the collected training cam-
ouflage trajectories, where the shadower is drawn as
small triangles – representing the heading – with a cir-
cle inside – representing the position – and the shad-
owee simply as ‘+’ signs, since its heading is not rele-
vant. The ‘x’ axis is the initial orientation of the shad-
ower, and the dotted lines join the position of both
robots obtained by the VICON tracking system, while
for clarity purposes only one out of two positions of the
whole trajectory is shown in the figure. Figure 8(b)
shows the corresponding camouflage error for the tra-
jectory, which has a maximum value smaller than 8◦.
Although the error seems similar to the one obtained in
the simulated trajectories (cf. figures 6(b) and 7(b)),
it is worth noting that, due to the size of the robots,
the distance between them does not get as close as
in the simulations, and therefore the angular error is
larger along the trajectory. The positions shown in the
figure correspond to the centre points of the robots,
which, because of their physical size, is about 0.5 m at
the interception point, ten times larger than the 5 cm
threshold selected for the simulations.

Using these initial conditions, and the constant shad-
owee speed, we collected data for twenty-five sample
camouflage trajectories with a sampling time of 0.3 s.
These trajectories were used to obtain (train and val-
idate) the NARMAX polynomial models. The stored
position information of both robots jointly with the
laser readings of the shadower helped identifying the
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Figure 8: Sample training trajectory

relative position of the shadowee. The average initial
distance among the training dataset – obtained from
the tracking system – was 4.14 m with a standard de-
viation of 9 cm, while the final distance between the
two robots was 0.63 m on average with a standard de-
viation of 4 cm. The average interception time for all
the train samples was 13.28 seconds. Figure 9 shows
the camouflage errors for the training and validation
trajectories as a function of time, i.e. the trajectories
obtained from the robot experiments using our heuris-
tic approach. The plot shows the average angular error
as a function of time enclosed between the maximum
and minimum errors for all the trajectories, and the
error plot is computed for all the trajectories only up
to the lower interception time.

3.3 Model Generation and Testing

Our goal is to obtain a motion camouflage controller,
through system identification, that performs well with
plausible biological inputs. However, the heuristic
mechanism for data generation relies on Cartesian co-

Figure 9: Overall errors on the training and validation
data

ordinates and velocities to generate the camouflage
control variables. Clearly, insects do not use abso-
lute Cartesian coordinates to drive its camouflage be-
haviour. Since the aim of this work is to generate a
biologically plausible controller, we defined new inputs
for the NARMAX model different from the those used
by the heuristic controller. Therefore, the inputs used
to train the controller were computed from the robot’s
on-board sensors extracted from the data stored for
the heuristic method runs. To obtain good training
data, we performed experiments under conditions en-
suring the generated model will capture the essence
of the behaviour with sufficiently realistic noise, and
under our assumptions (see section 2). For instance,
the laser scanner obtains relative angular positioning
and distance, which simplifies the whole sensorial in-
formation processing, whilst providing a realistic noisy
signal. The relative angular position and distance to
the shadowee as seen by the shadower are biologically
plausible inputs for the controller. Since the shadower
moves in a obstacle free area it is easy to detect the
pattern of the shadowee. A blob search algorithm im-
plemented to find the position of the shadowee in the
laser readings provided the information necessary to
feed the controller. Therefore, a simple pattern search
on the difference between consecutive laser readings
suffices to detect the shadowee.

Figure 10 represents the selected input variables for
the controller. The first sensorial reading of the shad-
ower robot when the motion camouflage process starts
was used to compute initial values for d0 and φ0, the
initial distance to the target and relative angle (which
for the first step coincides with the absolute angle). As
the camouflage trajectory evolves, the controller input
variables will be: i) the quotient between the current
and the initial distances dk

d0
and ii) the difference be-

tween the view angles of the shadowee ∆φk = φk−φ0.
These variables are both relative to the shadower pose,
therefore, they can be easily computed from its sensors.
From the blob, obtained using the above mentioned
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blob detector at each time step, the distance and rela-
tive angles are derived and used to compute the input
for the controller.

t 0
0d

kd

t k

φ
0

φ
k

Target
Shadower

Figure 10: Input variables used by the controller

Since our heuristic controller computes the linear
and angular velocities, two NARMAX controllers must
be obtained, one for each output variable. They were
trained and validated using the data from the camou-
flage trajectories presented in section 3.2 after comput-
ing the corresponding input variables. Our implemen-
tation of the Orthogonal Parameter Estimation algo-
rithm splits the training dataset into two equal parts
one for learning and one for validation of the model.
However, contrary to the methodology presented in
section 2.2, the testing phase will be carried in the real
robot as we will see later. The polynomial controllers
obtained are:

vk = 0.393− 0.190∆φk − 0.007
dk
d0

−0.108∆φ2
k − 0.274

[
dk
d0

]2

+ 0.331∆φk
dk
d0

(14)

ωk = 0.486− 0.148∆φk − 2.825
dk
d0

+4.941

[
dk
d0

]2

− 2.837

[
dk
d0

]3

+ 2.808
dk
d0

∆φk

−2.877∆φk

[
dk
d0

]2

+ 0.117
dk
d0

∆φ2
k (15)

The algorithm used to obtain the NARMAX model
selected only the relevant terms to generate the be-
haviour according to the training data trajectories. For
instance, the model corresponding to the angular ve-
locity had initially 12 terms which were reduced to 8
after the removal of the non-relevant monomials using
the Error Reduction Ratios. Figures 11 and 12 show
the outputs of the validation dataset – angular and
linear velocities respectively –for all the validation tra-
jectories (chained one after the other) superposed with
the prediction of the NARMAX model. Therefore, the
x axis represents the index of the validation data point
– for all the dataset – and the y axis the angular and
linear speeds. These models were obtained with pa-
rameters Nu = 0, Ny = 0, Ne = 0, and the initial

Figure 11: Outputs of the validation data and predic-
tion of the NARMAX model for the angular velocity

Figure 12: Outputs of the validation data and predic-
tion of the NARMAX model for the linear velocity

degree of the polynomial was 3. Units of all variables
are SI (International System), therefore, angles are in
radians and distances in metres. Likewise the turning
rate is obtained in rad/s and the forward speed in m/s.

Obviously the computation time needed to generate
a pair of velocities using the polynomial is much less
than using the heuristic algorithm, since the late has
to perform a function evaluation and a search over the
velocity space. In fact the velocities are computed from
a fixed number of additions and products, much lower
than the exhaustive evaluation and search in the nv ×
nω discretised space for the heuristic method.

Once the pursuer-relative control models of equa-
tions (14) and (15) were obtained, we used them to
control the shadower, while the target robot performed
straight-line motion. We conducted 37 test runs with
the Pioneer 3 robots and a similar experimental setup
as for the data collection, i.e. both robots started
around 4 m apart from each other with initial orthogo-
nal heading directions. Specifically, the initial distance
between the two robots was 4.05 m on average, with a
standard deviation of 6 cm, and the final distance was
0.67 m. The average interception time of the test tra-
jectories was 11 s with a standard deviation of 0.45 s.
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Figure 13: Overall errors on the experiments with the
learnt NARMAX controller

Figure 13 shows the average error for all the test trajec-
tories with the maximum and minimum error bounds.
As it can be seen, the errors of the NARMAX con-
trollers are larger than the heuristic method. This is
normal since the polynomial controller is a truncated
non-linear approximate of the solution. The focal point
was also the initial position of the shadower, and the
shadowee velocity was set to 0.2 m/s. The VICON sys-
tem was used to record the exact trajectories of both
robots and measure the camouflage performance using
the angular error. Figure 14 shows one of the exper-
iments using the NARMAX controller, for which the
median error angle is −1.8◦, with a confidence inter-
val of [−1.3◦,−6.5◦] at the 5% significance level. Fig-
ure 14(a) shows the trajectories of the shadower and
shadowee as collected from the VICON system, which
as it can be seen is smoother than the train trajectory
depicted in Figure 8(a). The fact that the trajectories
of the NARMAX controller are smoother is the con-
sequence of the removal of some terms of the polyno-
mial controller by the train algorithm, as higher order
terms in the polynomial represent abrupt changes in
the controller. The orthogonal parameter estimation
algorithm was able to identify the relevant terms to be
included on the controller and capture the essence of
motion camouflage. Like for the train data trajectories
the test runs lasted about 13 sec and the error increases
over the time. This effect cannot be avoided as it is a
feature of the heuristic algorithm and, therefore, of the
training data.

Figure 15 represents four frames corresponding to
a video recorded with a camera from the shadowee
point of view. The pictures show how the shadower
appears always in the corresponding camouflage line
which lays approximately to the left of the centre of
the door. All in all, for the 37 experiments performed
using the NARMAX controller the median angular er-
ror was −5.3◦ ([−5.1◦,−5.5◦], p = 0.05).
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Figure 14: NARMAX controller test trajectory

3.4 Simulation of the NARMAX model
and discussion

We further implemented the polynomial model, equa-
tions (14) and (15), in simulation to test their working
limits as a motion camouflage controller. The ratio-
nale for this is that simulating the model is less time
consuming than running it on the real robot. Fig-
ure 16 shows the results of simulating the model for
initial conditions similar to those in the training set.
As figure 16(a) shows the controller can extrapolate
camouflage behaviour even for unseen situations like
the shadower and shadowee being closer than 0.6 m
(the limit imposed by the physical size of the robots).
Despite the angular error being larger than the one ob-
tained in simulation through the heuristic mechanism
(cf. figures 16(b) and 7(b)), as we argued earlier there
is a clear computational advantage on using the poly-
nomial model.

From the model equations we see that both variables,
the distance and relative angle contribute to the linear
and angular speeds of the learnt motion camouflage
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Figure 15: Images from the shadowee point of view

controller. However, as the shadower approaches the
shadowee, the terms containing d

d0
represent a smaller

contribution to the speeds. Figure 17 shows, as a func-
tion of time, the contributions of the individual terms
of the polynomial model – except the DC term – for
the simulation presented in figure 16, and the sum of
all the monomials is shown as a dashed line. From
the figures we can see that the distance between the
shadower and the shadowee decreases approximately
as a linear function of time (see monomial ‘−2.825d’ in
figure 17(b)), an interesting result as both agents are
moving. This also means that close to the intercep-
tion point the terms involving the distance will have
less importance (eventually vanishing when the preda-
tor captures the prey). Figure 17(a) shows how the
forward speed (the sum of the dashed line and the DC
component) of the shadowee increases with time and
its profile is quite similar to the monomial on d2. The
profile of the angular velocity is slightly more complex
as it increases or decreases with time in different parts
of the trajectory and there is no simple way to have
a good approximation with fewer terms. In any case
we can see that both controllers can be generated at
most with polynomials of order three, and the selected
inputs allow implementing motion camouflage. This
matches the hypothesis on how motion camouflage is
generated in nature, as the angular direction to the
shadowee can be directly obtained by the shadower,
while the distance can be estimated using the visual
apparent size of the prey. The Orthogonal Parameter
Estimation algorithm selected a parsimonious model
to generate motion camouflage, and it shows that this
behaviour can be achieved with relatively simple con-
trollers as the degrees of the polynomials are smaller
or equal than three.

Param. Train value Min. range Max. range

Heading 90◦ 69◦ 96◦

Speed (m/s) 0.2 0.185 0.25
Dist. (m) 4.14 1.0 4.5

Table 1: Training parameters and working limits of the
NARMAX controller

(a) Motion camouflage trajectory

(b) Angular trajectory error

Figure 16: Simulated NARMAX controller

To evaluate the working limits – the generalisation
– of the NARMAX model, we performed simulations
changing the parameters relative to the shadowee fixed
during the robot experimental runs. These parame-
ters are the initial heading of the shadower, its forward
velocity and the initial distance to the shadower. As
table 1 shows the approximate values to obtain the
training data were 90◦, 0.2 m/s, and 4.14 m, respec-
tively. We fixed the proximity threshold distance –
final distance between the shadower and the shadowee
to 0.6 m and considered that a good generalisation for
the camouflage trajectory had a bounding angular er-
ror (see section 2.1.1) of 16◦. Based on these values we
changed the parameters incrementing and decrement-
ing their value by a small amount until the simulated
trajectory error was above 16◦. Table 1 summarises the
resulting working limits of the polynomial controller. It
is worth noting that although the standard deviation of
the initial distance between the shadower and the shad-
owee was 0.09 m for the training data, the controller
can generalise to large range of distances (specially for
shorter distances). The table also shows that general-
isation ability with respect to the initial direction of
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(a) Monomial contribution for the v controller

(b) Monomial contribution for the ω controller

Figure 17: Simulated NARMAX controller contribu-
tions

the shadowee is not symmetric, since it extends almost
20◦ towards lower headings. In these situations the
shadowee approaches the shadower and the intercep-
tion occurs faster but without increasing camouflage
the error.

4 Conclusions and Further
Work

This paper presents the first implementation of motion
camouflage behaviour in real robots through a non-
linear polynomial controller learnt from real data us-
ing the Orthogonal Parameter Estimation algorithm.
A computationally expensive heuristic mechanism in-
spired by the Dynamic Window Approach to obstacle
avoidance was developed to obtain the training data,
while the camouflage accuracy of the learnt controller
was close to the heuristic approach (with much less
computational requirements). The controllers were ob-
tained as polynomials of degree smaller or equal than
three, which indicates motion camouflage with a finite

focal point can be generated through relatively simple
mechanisms.

Contrary to existing optimal control techniques
(Rañó, 2012) (Carey, 2007) the whole trajectory does
not need to be know beforehand and the inputs of the
obtained controller are biologically plausible. Whilst
these optimal control based methods require accurate
knowledge of the whole trajectory to compute the ve-
locity commands as a function of time, our method
requires only a prediction of the position of the shad-
owee at the next time-step. This requirement is also
eliminated in the polynomial controller since speeds are
generated using current sensor inputs. Existing closed-
loop mechanisms to generate motion camouflage either
focus on camouflage at infinity or use artificial neural
networks, which do not provide a direct inside view, for
instance, on the controller complexity. The view that
to generate motion camouflage trajectories the control
of the linear velocity was a function of the distance to
the target only, and the control of the angular veloc-
ity depends uniquely on the relative prey direction is
presented in (Rañó, 2012). Our approach seems to con-
tradict that view since both learnt controllers depend
on both input variables.

A well know drawback of the Orthogonal Parame-
ter Estimation algorithm is its sensitivity to the order
in which the controller variables are presented. This
means that the obtained controller is parsimonious for
the selected order, but an even simpler motion cam-
ouflage controller could exist. We plan to investigate
this in the future to find the minimal set of inputs and
monomials that can generate this complex animal be-
haviour.

The performance of our heuristic implementation
of motion camouflage degrades as the shadower ap-
proaches the shadowee because the discretisation on
the velocity space induces a discretisation on the Carte-
sian positions the predator can reach. This was re-
flected in the final part of the error plots, where the
angular error always increased. This obviously affects
the polynomial NARMAX controller, which presents
the same performance degradation for close distances
between the two agents. To solve this problem, in the
future, we plan to introduce a distance dependent dis-
cretisation to allow a finer Cartesian sampling and re-
duce the angular error for close distances. Even though
the used input variables of the controller are biologi-
cally plausible, as a first approach, we disregarded the
possibility of using landmarks on the environment to
localise the shadower. As a future line of work we plan
to include information of potential landmarks in the
polynomial model, such that the controller will be more
robust to changes in the initial conditions – position
and velocity – of the shadowee. This would provide a
broader view of the situated motion camouflage pro-
cess.
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